
Introduction: What is a weak

memory model ?

Luc Maranget Luc.Maranget@inria.fr

1

Happy Mondays

Our course is on Mondays, 16h15, (in room 1004. . .).

December January February

3 A. Guatto 7 A. Guatto
6 L. Maranget 10 A. Guatto 14 Lab class
13 L. Maranget 17 L. Maranget 21 Free slot
20 24 L. Maranget
27 31 A. Guatto

Exam will take place, on February 28, March 7 or March 14.

Weather permitting. . .

2

The business model of washing machines

I buy a new washing machine

⇒

when the old one is broken.

3

The business model of computers

The old one is still working, but. . .

The new one runs so faster. . . It looks nicer too?

4

Avoid the washing machine business model, at any price

However, processors do not get faster anymore.

More precisely, clock speed does not increase anymore.

5

Performance sill increases!

Spec Benchmark results:

How long before it stabilises? Can we trust benchmarks?

6

And though, more and more transistors

What to do with all these transistors (and how to sell them) ?

7

Change your phone

New one looks nicer? But it also (often) has more cores.

8

More and more cores, also for high-end computers

Power 6, 2 cores per chip Power 7, 8 cores per chip Power 8, 12 cores per
chip Power 9, 24 cores per chip

9

Multiprocessors exist too

10

Summary of processor evolution

Current trends: integration is still increasing, performance and
clock speed are stabilising, number of cores is increasing.

11

Programming multi-(processor/core) machines

I Expected question:

How to program, correctly, efficiently?

This is difficult, because of “state explosion”.

I Another, less expected question?

How do they function?
Or, rather, what do they do?

We shall limit ourselves to second second sub-question of second
question.

12

What is a weak memory model ?

Hardware

13

A simple model for shared memory

N threads (cores) write to and read from a shared memory.

T0 T1 Tn−1

WR WR WR

Shared memory

“Sequential consistency” (SC, L. Lamport, 1979):

The result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.

14

Another, intuitive?, view of SC

T0 T1 Tn−1

WR WR WR

Shared memory

The program order is the execution order specified by the program which
a thread executes. This ordering extends to “operations” or events.

The “sequential order”, or schedule results from interleaving the
program orders of all threads.

Reads from location x read the value written to x by the most
recent write.
Or: a read event from location x reads the value written to x by the
maximal among writes to x that precede the read in the schedule.

15

Example

Schedule: (a) (b) (c) (d)

T0 T1

(a) x← 1 (c) y← 1

(b) r0← y (d) r1← x

T0

r0=0;

T1

r1=1;

Wx1Ry0 Wy1Rx1

x=1; y=1;

Final state: r0=0; r1=1;.

16

Simple question on SC execution

Is final observation r0=0; r1=0; possible?

T0 T1

(a) x← 1 (c) y← 1

(b) r0← y (d) r1← x

No.

Because schedule must start either by instruction (a) or by
instruction (c).

17

ProgrammersExperts often assume SC!

18

A typical concurrent program

int x; // Shared variable

void *P(void *p) {
for (int k = 0 ; k < 256 ; k++) {

int tmp = x ;
x = tmp+1;

}
}

Let us run two instances of P concurrently.

As x is incremented 2*256 → 512 times, x final value is 2*256 → 512.

Demo: (tst/dekker/unprotected.out)

% ./unprotected.out 256

x=512

...

x=512

x=510

19

What happened?

R and W by two threads interleave as T0:R T1:R T1:W T0:W

T0 T1

. . .
int tmp = x ;
x = tmp+1 ;

. . .

. . .
int tmp = x ;
x = tmp+1 ;

. . .

For instance,

· · ·T0:Rx(v) T1:Rx(v) T1:Wx(v + 1) T0:Rx(v + 1) · · ·

Solution: RW become scheduling atoms,

· · · [T0:Rx(v) T0:Wx(v + 1)] [T1:Rx(v + 1) T1:Wx(v + 2)] · · ·

20

Mutual exclusion

Sequence “read then write plus one” must be exclusive: only one thread
at a time can execute it.

Dekker’s algoritm solves the issue (for two threads).

21

Dekker’s locking and unlocking

Critical section: a code sequence to be executed by at most one thread
at a time.

The critical section of thread whose identity is id starts by calling
lock(id) and ends by calling unlock(id).

T0 T1

int id = 0;
. . .
lock(id) ;
int tmp = x ;
x = tmp+1 ;
unlock(id) ;

. . .

int id = 1;
. . .
lock(id) ;
int tmp = x ;
x = tmp+1 ;
unlock(id) ;

. . .

22

Code from a reliable source (Wikipedia)

volati le int want[2], turn;

void lock(int id) {
want[id] = 1 ; // I want to enter
while (want[1-id]) {

/* Other also wants to enter,
let us arbitrate,
depending on turn */
i f (turn != id) want[id] = 0 ;
while (turn != id) ;
want[id] = 1 ;

}
}

void unlock(int id) {
turn = 1-id ;
want[id] = 0 ;

}

23

Ok, let’s go

Demo: (tst/dekker/dekker.out)

% ./dekker.out

x=512

x=512

x=512

x=512

x=512

x=510

What happened? Wikipedia cannot be wrong!

24

What happened ?

Let us simplify Dekker’s locking code:

void lock(int id) {
want[id] = 1 ; //I write 1
while (want[1-id]) {

. . .
}
// I have read 0

}

Let us simplify even more:

T0 T1

(a) x← 1 (c) y← 1

(b) r0← y (d) r1← x

Can we observe r0=0; r1=0; ? If so, Dekker’s locking code does not
guarantee mutual exclusion.

Remember: the observation is not possible on top of SC.

25

Demo: tst/Machine/Dekker.litmus

To avoid compiler interference, we run assembly code:

X86_64 Dekker
{ want0=0; want1=0; }
P0 | P1 ;
movl $1,(want0) | movl $1,(want1) ;
movl (want1),%eax | movl (want0),%eax ;
exists (0:rax=0 /\ 1:rax=0)

We run the test several times with the litmus tool:

% litmus7 -mach x86_64 Dekker.litmus

..

Test Dekker Allowed

Histogram (4 states)

178 *>0:rax=0; 1:rax=0;

1999870:>0:rax=1; 1:rax=0;

1999881:>0:rax=0; 1:rax=1;

71 :>0:rax=1; 1:rax=1;

...

We observe the non-SC outcome 178 times out of 4 millions attempts.
26

The horrible truth

Modern processors perform many optimisations:

out of order execution;

speculative execution;

in-core store buffers;

cache hierarchies. . .

These are

unobservable by single-thread programs;

sometime observable by concurrent programs;

As a result, modern multiprocessors are not sequentially consistent

As a result, concurrent programming is even more difficult than you
thought.

27

Tell me more, oh tell me more

The x86-tso model features visible (Fifo) store buffers.

T0 T1 Tn−1

F
if

o

W
R

R

F
if

o

W
R

R

F
if

o

W
R

R

Shared memory

Cores write into their store buffer.

Then, writes are flushed asynchronously to shared memory.

28

The complete truth about store buffers

Schedule: (a) (c) (b) Flush(T1) (d) Flush(T0)

T0 T1

(a) x← 1 (c) y← 1

(b) r0← y (d) r1← x

r0=0 r1=0

x=0; y=0;x=0; y=1;x=1; y=1;

Wx1 Wy1

Ry0

Wy1

Rx0

Wx1

Final state: r0=0; r1=0;.

29

Message passing test

MP

T0 T1

(a) x← 1 (c) r0← y

(b) y← 1 (d) r1← x

Observed? r0=1; r1=0

All TSO executions:

Fx Fy (c) (d) r0=1 r1=1

Fx (c) Fy (d) r0=0 r1=1

Fx (c) (d) Fy r0=0 r1=1

(c) Fx Fy (d) r0=0 r1=1

(c) Fx (d) Fy r0=0 r1=0

(c) (d) Fx Fy r0=0 r1=0

Outcome r0=1 r1=0 is forbidden.

As T1 must see writes in order, T1 must see flushes in order.

30

Reality check: tst/Machine/MP.litmus

X86_64 MP

P0 | P1 ;

movl $1,(x) | movl (y),%eax ;

movl $1,(y) | movl (x),%ebx ;

exists (1:rax=1 /\ 1:rbx=0)

Let us run the test:

% litmus7 -mach x86_64 MP.litmus

...

Test MP Allowed

Histogram (3 states)

1999919:>1:rax=0; 1:rbx=0;

3062 :>1:rax=0; 1:rbx=1;

1997019:>1:rax=1; 1:rbx=1;

...

The non-SC behaviour is not observed.

31

Reality check II

Demo: test/ARMv8/MP.litmus

% cat MP.litmus

AArch64 MP

{ 0:X1=x; 0:X3=y; 1:X1=y; 1:X3=x; }

P0 | P1 ;

MOV W0,#1 | LDR W0,[X1] ;

STR W0,[X1] | LDR W2,[X3] ;

MOV W2,#1 | ;

STR W2,[X3] | ;

exists (1:X0=1 /\ 1:X2=0)

Let us compile and upload on my phone

% litmus7 -mach phone -o R MP.litmus

% make -C R

/opt/android-ndk/bin/aarch64-linux-android-gcc -Wall -O2 -pthread MP.c

...

% scp -C -P 2222 R/run.exe 128.93.84.97:MP.exe

32

Run MP on my phone

% ssh -p 2222 128.93.84.97 ./MP.exe

...

AArch64 MP

{0:X1=x; 0:X3=y; 1:X1=y; 1:X3=x;}

P0 | P1 ;

MOV W0,#1 | LDR W0,[X1] ;

STR W0,[X1] | LDR W2,[X3] ;

MOV W2,#1 | ;

STR W2,[X3] | ;

exists (1:X0=1 /\ 1:X2=0)

...

Test MP Allowed

Histogram (4 states)

1770774:>1:X0=0; 1:X2=0;

3909 *>1:X0=1; 1:X2=0;

7670 :>1:X0=0; 1:X2=1;

217647:>1:X0=1; 1:X2=1;

...

Bingo.

Operational model much more complex than TSO store-buffer machine.

33

Restoring SC

Why ? Using all those clever algorithms:

How ? By using specific instructions.

34

Strong fence

All architectures (I know of) provide a “strong” fence, whose purpose is
restoring SC.
Demo: tst/machine/Dekker+Fences.litmus

% cat Dekker+Fences.litmus

X86_64 Dekker+Fences

{ }

P0 | P1 ;

movl $1,(x) | movl $1,(y) ;

mfence | mfence ;

movl (y),%eax | movl (x),%eax ;

exists (0:rax=0 /\ 1:rax=0)

% litmus7 -mach x86_64 Dekker+Fences.litmus

...

Test Dekker+Fences Allowed

Histogram (3 states)

1957077:>0:rax=1; 1:rax=0;

1930882:>0:rax=0; 1:rax=1;

112041:>0:rax=1; 1:rax=1;

...

Notice: Fences are inserted in-between memory accesses. 35

Specific store and load instructions

ARMv8 provides store release and load acquire.

Demo: tst/ARMv8/MP+Rel+Acq.litmus

% cat MP+Rel+Acq.litmus

AArch64 MP+Rel+Acq

{ 0:X1=x; 0:X3=y; 1:X1=y; 1:X3=x; }

P0 | P1 ;

MOV W0,#1 | LDAR W0,[X1] ;

STR W0,[X1] | LDR W2,[X3] ;

MOV W2,#1 | ;

STLR W2,[X3] | ;

exists (1:X0=1 /\ 1:X2=0)

...

%

Test MP+Rel+Acq Allowed

922885:>1:X0=0; 1:X2=0;

27630 :>1:X0=0; 1:X2=1;

1049485:>1:X0=1; 1:X2=1;

...

Store-Release/Load-Acquire communication restores SC.
36

What is a weak memory model ?

High-Level language

37

Semantics and efficiency

Programmers:

Want to understand the code they write.
Code meaning.

Compilers (and hardware):

Optimise code as much as they can.
Must not betray.

Betraying is transforming the program so that it produces additional
behaviours.

Additional behaviours that are disallowed by the untransformed program.

38

Correctness, half-informal

Whole program approach: one program execution yields a behaviour (e.g.
final state of some variables).

I Compiler correctness

. Given any behaviour of the compiled program,

. the source program can legitimately produce this behaviour.

I Compiler non-correcteness:

. There exists a behaviour of the compiled program,

. which the source program cannot legitimately produce.

39

A simple optimisation

Let x and y be two shared variables of type int (with initial value 0).

void P0(void) {
x = 1 ;
i f (y == 1) {
printf("%i\n",x) ;

}
}

⇓
void P0(void) {
x = 1 ;
i f (y == 1) {
printf("%i\n",1) ;

}
}

This is constant propagation, a very innocent optimisation.

40

Constant propagation is invalid (SC model)

x = 1 ;
i f (y == 1) {
printf("%i\n",x) ;

}

i f (x == 1) {
x = 0 ;
y = 1 ; // NB: y==1 → x == 0

}

Print “0” or nothing

x = 1 ;
i f (y == 1) {
printf("%i\n",1) ;

}

i f (x == 1) {
x = 0 ;
y = 1 ; // NB: y==1 → x == 0

}

Print “1” or nothing

41

Another optimisation

Re-ordering “independant reads” does not harm (in sequential code).
Compile time:

int rx = x ;
int ry = y ;
printf("%i, %i\n", rx, ry) ;

⇓
int ry = y ;
int rx = x ;
printf("%i, %i\n", rx, ry) ;

Runtime:

Rxv1; Ryv2; ⇒ Ryv2; Rxv1;

However, output v1, v2 does not change.

42

Read reordering is invalid on SC

int rx = x ;
int ry = y ;
printf("%i, %i\n", rx, ry) ;

y = 1 ;
x = 1 ;

schedule output
Wy1; Wx1; Rx1; Ry1 1, 1
Wy1; Rx0; Wx1; Ry1 0, 1
Wy1; Rx0; Ry0; Wx1 0, 0
Rx0; Wy1; Wx1; Ry1 0, 1
Rx0; Wy1; Ry1; Wx1 0, 1
Rx0; Ry0; Wy1; Wx1 0, 0

43

Read reordering is invalid on SC

int ry = y ;
int rx = x ;
printf("%i, %i\n", rx, ry) ;

y = 1 ;
x = 1 ;

schedule output
Wy1; Wx1; Ry1; Rx1 1, 1
Wy1; Ry1; Wx1; Rx1 1, 1
Wy1; Ry1; Rx0; Wx1 0, 1
Ry0; Wy1; Wx1; Rx1 1, 0
Ry0; Wy1; Rx0; Wx1 0, 0
Ry0; Rx0; Wy1; Wx1 0, 0

Additional output: 1, 0

44

Does it happen?

Let x, y and n be pointers to shared memory.

int rx = 0; int ry = 0;
for (int k=0 ; k < *n ; k++) {
rx += x[k] ;
ry += *y ;

}
printf("%i, %i\n", rx, ry) ;

⇓
int rx = 0; int ry = 0;
int tmp = *y ;
for (int k=0 ; k < *n ; k++) {
rx += x[k] ;
ry += tmp ;

}
printf("%i, %i\n", rx, ry) ;

Now assume *n to be 1.

Source program performs one read of *x, followed by one read of *y.
Optimised program performs one read of *y, followed by one read of *x.

45

Reality check

Demo: tst/C/MP-LOOP.litmus

% cat MP-LOOP.litmus

C MP-LOOP

{ int n=1; }

void P0(int *x,int *y, int *n) {

int rx = 0; int ry = 0;

for (int k=0 ; k < *n ; k++) {

rx += x[k] ;

ry += *y ;

}

}

void P1(int *x,int *y) {

*y = 1;

*x = 1;

}

exists 0:rx=1 /\ 0:ry=0
46

Reality check

Compile and run:

% litmus7 -mach ../tst.cfg -o R MP-LOOP.litmus

% cd R

% make

...

% sh run.sh

...

Test MP-LOOP Allowed

10000137:>0:rx=0; 0:ry=0;

129 *>0:rx=1; 0:ry=0;

281 :>0:rx=0; 0:ry=1;

9999453:>0:rx=1; 0:ry=1;

...

Bingo!

47

Even worse

Let consider our loop example again, as a (library) function:

typedef struct { int r0,r1; } pair_t;

pair_t f(int *x, int *y, int n) {
pait_t p;
p.r0 = p.r1 = 0 ;
for (int k=0 ; k < n ; k++) {
p.r0 += x[k] ;
p.r1 += *y ;

}
return p ;

}

Again, assuming n to be one. Optimised code will read *y first and then
*x once.

48

Even worse

Let z be a pointer to shared memory.

pair_t p = f(z,z,1) ;
// p.r0 is read first, then p.r1
printf("%i, %i\n",p.r0, p.r1);

*z = 1 ;
*z = 2 ;

One expects output:

schedule output
Wz1; Wz2; Rz2; Rz2 2, 2
Wz1; Rz1; Wz2; Rz2 1, 2
Wz1; Rz1; Rz1; Wz2 1, 1
Rz0; Wz1; Wz2; Rz2 0, 2
Rz0; Wz1; Rz1; Wz2 0, 1
Rz0; Rz0; Wz1; Wz2 0, 0

Demo: tst/C/CoRR-LOOP.litmus

49

Even worse

Let z be a pointer to shared memory.

pair_t p = f(z,z,1) ;
// p.r1 is read first, then p.r0
printf("%i, %i\n",p.r0, p.r1);

*z = 1 ;
*z = 2 ;

One gets output:

schedule output
Wz1; Wz2; Rz2; Rz2 2, 2
Wz1; Rz1; Wz2; Rz2 2, 1
Wz1; Rz1; Rz1; Wz2 1, 1
Rz0; Wz1; Wz2; Rz2 2, 0
Rz0; Wz1; Rz1; Wz2 1, 0
Rz0; Rz0; Wz1; Wz2 0, 0

Demo: tst/C/CoRR-LOOP.litmus

50

Really even worse

Consider the simple CoRR program

int r0 = *z ;
int r1 = *z ;
printf("%i, %i\n",r0, r1);

*z = 1 ;
*z = 2 ;

Notice that CoRR and CoRR-LOOP have the same traces.

schedule output
Wz1; Wz2; Rz2; Rz2 2, 2
Wz1; Rz1; Wz2; Rz2 1, 2 or 2, 1
Wz1; Rz1; Rz1; Wz2 1, 1
Rz0; Wz1; Wz2; Rz2 0, 2 or 2, 0
Rz0; Wz1; Rz1; Wz2 0, 1 or 1, 0
Rz0; Rz0; Wz1; Wz2 0, 0

Hence, considering a trace-based semantics, allowing output 2, 1 for
CoRR-LOOP, means allowing it for CoRR.

51

Let sum it up

SC is simple, let us choose SC as our model, but:

Machines have relaxed memory model for speed.

Many useful compiler transformation are invalid on SC.

So having SC as a model would be inefficient.

So let us adopt a weaker model, but

When the model is too weak. . .

One canot guarantee anything.

52

What to do?

1 Provide programmers with “reordering” or “synchronising”
constructs. With simple and precise semantics.

2 As to “non-synchronised” programs
1 Either forbid them, i.e. leave their meaning undefined.
2 Or provide weak semantics.

Languages options, accepting undefined behaviours or not.

1 C11/C++11, POSIX threads, ADA 83

2 Java, OCAML multicore.

53

Data races

Problematic (non-SC) executions exhibit races:

Memory accesses conflict when:

they are by different threads,
they access the same memory location,
at least one is a write.

Conflicting accesses form a data race when:

they occur “concurrently” or “simultaneaously”.

Disallowing conflicting accesses looks too drastic.

Disallowing races hence means avoiding concurrency. This looks plausible.

Define “concurrent accesses” in SC traces: adjacent accesses.

54

A racy program

*y = 1 ;
*x = 1 ;

int rx = *x ;
i f (rx == 1)
printf("%i\n",*y) ;

A program is racy, when one of its execution is.

schedule race?
Wy1; Wx1; Rx1; Ry1 Ok
Wy1; Rx0; Wx1; Ok
Rx0; Wy1; Wx1; No

Important: We quantify over SC executions.

Non-SC behaviour “print 0” is observed on the weak model (of course).

55

Avoiding data races

High level languages provide “synchronising” constructs

Mutexes Critical sections lock(`). . . unlock(`) do not overlap.

Atomic Concurrent accesses are not racy.

Example:

*y = 1 ;
lock(`) ;
*x = 1 ;
unlock(`) ;

lock(`) ;
int rx = *x ;
unlock(`) ;
i f (rx == 1)
printf("%i\n",*y) ;

schedule race?
Wy1; L(`); Wx1; U(`); L(`); Rx1; U(`); Ry1 No
Wy1; L(`); Rx0; U(`); L(`); Wx1; U(`); No
L(`); Wy1; Rx0; U(`); L(`); Wx1; U(`); No
L(`); Rx0; Wy1; U(`); L(`); Wx1; U(`); No
L(`); Rx0; U(`); Wy1; L(`); Wx1; U(`); No

56

Another well synchronised program

lock(`) ;
*y = 1 ;
*x = 1 ;
unlock(`) ;

lock(`) ;
int rx = *x ;
i f (rx == 1)
printf("%i\n",*y);

unlock(`) ;

schedule race?
L(`); Wy1; Wx1; U(`); L(`); Rx1; Ry1; U(`) No
L(`); Rx0; U(`); L(`); Wy1Wx1; U(`) No

57

Races can be worse than being non-SC

Let x be a non-aligned pointer to some int in shared memory.

*x = 0x01010202; printf("0x%x\n",*x);

Demo: tst/C/NoAlign.litmus

Can (and does) output:

% litmus7 -mach ../tst -hexa -noalign x NoAlign.litmus

...

Test NoAlign

10000228:>1:r1=0x0;

1388 :>1:r1=0x202;

15 :>1:r1=0x1010000;

9998369:>1:r1=0x1010202;

...

58

DRF Guarantee

A model (any model) provides the DRF guarantee, when:

Race-free programs have SC semantics.

So what?

Race-free is defined by quantifying over SC execution.

In reality programs run on weak hardware, after optimisation by
compiler.

This means that DRF is a property of the system “compiler + hardware”.

Synchronising calls are opaque to the compiler: potentially modifying
any location, memory operation cannot be moved past them.

Compiler must not introdude race wen there is none.

Synchronising calls contain “sufficient fences” to prevent hardware
reordering.

59

Semantics of programming languages

1 No concurrency at all (OCaml). Well, not very fashionable.

2 No shared memory (Erlang, MPI). Possible, but not a “natural”
generalisation of sequential programming.

3 Enforce data-race freedom statically. Not general-purpose.

4 Leave it to the hardware (Aligned C,ML-toon). Not portable.
5 Complete solutions, DRF, plus

1 DRF as a definition: racy-programs can behave in any way (catch
fire semantics).

2 Give semantics to racy programs.

DRF is not 100% satisfactory:

Race-freedom is hard to verify (undecidable), even test.

Debugging gets harder: a wrong program may result from a pure
bug or from a data-race.

Useful racy programs exist, their semantics can be complex.

60

Some references

Introduction

“Memory Models: A Case for Rethinking Parallel Languages
and Hardware” Sarita V. Adve and Hans-J. Boehm. Commun.
ACM 53(8): (2010) pp. 90-101.

“Shared Memory Consistency Models: a Tutorial” Sarita
V. Adve and Kourosh Gharacorloo, IEEE Computer 29, 12
(1996) pp. 66–76.

61

Some references

On Hardware models:

“A Rigorous and Usable Programmers Model for x86
Multiprocessors” Peter Sewell, Susmit Sarkar, Scott Owens,
Francesco Zappa Nardelli, and Magnus O. Myreen. Commun.
ACM 53(7): 89-97 (2010).

“Herding Cats: Modelling, Simulation, Testing, and Data
Mining for Weak Memory” Jade Alglave, Luc Maranget,
Michael Tautschnig: ACM Trans. Program. Lang. Syst. 36(2):
7:1-7:74 (2014)

On languages:

“Foundations of the C++ concurrency memory model”’
Hans-Juergen Boehm, Sarita V. Adve: PLDI 2008: 68-78

“Repairing Sequential Consistency in C/C++11” Ori Lahav,
Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur and Derek
Dreyer: PLDI 2017.

62

