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Multicore programming, why?

Run faster.

Some program are much easier to write that way
(e.g. avoid asynchronous IO).

2



Multicore programming, why?

Run faster.

Some program are much easier to write that way
(e.g. avoid asynchronous IO).

2



Run faster, our running example

The n queens puzzle: placing n chess queens on an n × n chessboard so
that no two queens threaten each other.

A classics in backtracking: place one queen per row, from top to bottom:

int solve( int n, int row, int *cols) {
i f (row == n) return 1 ;
int r = 0 ;
for ( int i = 0 ; i < n ; i++) {

i f (ok(i,row,cols)) {
cols[row] = i ;
r += solve(n,row+1,cols) ;

}
}
return r;

}

Demo (in queens):

% ./q.out -v -v 8 2>&1 | less

...
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Run faster, sequentially

Simple implementation (demo in queens):

% safe ./q.out 15

2279184

status: 0

real: 34.70

user: 34.57

sys: 0.01

Optimised implementation (demo in queens):

safe ./fast.out 15

2279184

status: 0

real: 0.66

user: 0.66

sys: 0.00

Optimisations: symetries, integers as bitsets, avoiding function calls. . .
The point is: parallelize the fasted program, not the slowest.
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Faster without threads

A process in three steps

1 Place queens in the first d rows.

2 Count how many ways there are for placing the remaining n − d
queens.

3 Sum counts.

Step 2 can run concurrently. . .

Demo (queens), two C programs:

gen.out -d[d] n : place the first d queens.

run.out : count solutions with the first d queens placed as read
on standard input.

The programs gen.out and run.out communicate through files.

We shall concurrently run the requested invocations of run.out, by using
a shell script , a Makefile, or the parallel utility.
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Before we parallelize, a quiz

How do we solve the 8-queens puzzle?

With ./gen.out only:

set d = 8.

% ./gen.out -d8 8

0 8 8 0 4 7 5 2 6 1 3

1 8 8 0 5 7 2 6 3 1 4

...

45 8 8 5 7 1 3 0 6 4 2

With symmetry: 46× 2→ 92 solutions.

With ./run.out only: set d = 0.

% ./run.out

0 8 0

92
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Aggressive parallelism

% sh shell.sh 17 > A/script.sh

Here is script.sh:

# Fork the computing processes, one per line of "gen.out 17" output

( echo 0 17 2 0 2 | ../run.out > 000.out ) &

( echo 1 17 2 0 3 | ../run.out > 001.out ) &

...

( echo 119 17 2 14 16 | ../run.out > 119.out ) &

# Wait for the computing processes to terminate

wait

# Sum partial results

cat 000.out 001.out ... 119.out > 17.out

( echo 0 && awk ’{printf("%s +\n",$1)}’ 17.out && echo p ) | dc

% safe sh script.sh

95815104

real: 4.74

user: 36.66

sys: 0.07

Drawback: Why run more than 8 processes at the same time on a 4 core
×2 hyperthreaded machine?

7



Controlling parallelism with make -j N

% sh make.sh 17 > B/Makefile

The Makefile:
all: 17.out

@( echo 0 && awk ’{printf("%s +\n",$$1)}’ 17.out && echo ’p’ ) | dc

OUT := 000.out ... 119.out

17.out: $(OUT)
@cat $(OUT) > 17.out

000.out:
echo 1 20 15 1 1 1 1 1 | ../run.out > $@

...
063.out:

echo 63 20 15 1 2 3 3 3 | ../run.out > $@

# My machine has 4 X 2 virtual processors
% safe make -C B -j 8
make: Entering directory ‘/home/maranget/MPRI/01/queens/B’
echo 0 17 2 0 2 | ../run.out > 000.out
...
95815104
make: Leaving directory ‘/home/maranget/MPRI/01/queens/B’
status: 0
real: 4.79
user: 36.98
sys: 0.05

#make -j 4 worth trying!
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With the parallel utility

Usage:

parallel -j N command -- A1 ... An

Will run n invocations of command on arguments A1 . . .An, with at
most N invocations running concurrently.

This interface is not ideal, as our program run.out reads its arguments
from standard input.

Easily corrected:

% cat run.sh

#! /bin/sh

echo $1 | ./run.out
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Using the parallel utility

A parallel.sh script that combines gen.out and the parallel utility:

...

./gen.out -g$G $N |\

(

while read arg; do A="’$arg’ $A"; done

echo 0

eval "parallel $J sh ./run.sh -- $A" |\

awk ’{printf("%s +\n",$1)}’

echo p

) | dc

Demo (in queens):

% J="-j 8" safe sh ./parallel.sh 17

95815104

status: 0

real: 4.80

user: 37.51

sys: 0.07
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Processes vs. threads

Up to now we used processes.

A process is the running instance of a program:

A process consists in, register values, memory, file descriptors etc.

The process own its memory.

Processes communicate (mostly) through the file system.

A thread is a lightweight process:

A process may host several threads.

A thread consists in register values, file descriptors, etc.

The threads in a process share the memory (or part of).
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Multicore programming, from inside programs

Principle

Manage threads explicitly,

threads communicate through shared memory.

Advantages

Efficiency: threads cost less to create than processes. Also consider
context switch cost.

Memory is faster than files, or memory hardware is faster than disk.

User convenience: only one program to run, no scripts.

Issues

Very difficult to get right.

Relaxed memory models. . .

This class

Programming with the C POSIX threads library (pthreads).

Well synchronised programs only — programming on top of the
Data Race Free model (DRF).
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Starting a thread, getting its result

A.k.a. “asynchronous function call” — of f that accepts an argument of
type void * and returns a result of type void *

void *f (void *arg) { . . . }

void run(. . .) {

// Compute f(arg) asynchronously.
void *arg = . . . ;
pthread t th ;
create_thread(&th,f,arg) ;

// Some computation performed concurrently with f(arg)
. . .

// Get back f(arg)
void *r = join_thread(&th) ;
. . .

}
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Thread create and join, helper functions

Handle error checking — this is C!

#include <pthread.h>
#include <stdlib.h>
#include <string.h>
...
static void exit_error (char *msg, int st) {
fprintf(stderr,"%s: %s\n",msg,strerror(st));
exit(EXIT FAILURE);

}

void create_thread
(pthread t *th,void *(*f)(void *),void *x) {
int st = pthread_create(th,NULL,f,x)) ;
i f (st != 0) exit_error("pthread_create",st) ;

}

void *join_thread(pthread t *th) {
void *r ;
int st = pthread_join (*th,&r) ;
i f (st != 0) exit_error("pthread_join",st) ;
return r ;

}
14



Informal semantics (man pthread create)

int pthread_create

( pthread t *th,...,void *(*f)(void *),void *z)

Call f with argument z on a new thread whose identity is stored
in *th.

Returns 0 (success), or error status.

... are options, which we ignore for now.

int pthread_join(pthread t th, void **r)

If the thread identified by th has returned v, store v into *r.

If not, suspend and wait for th to return.

Returns 0 (success), or error status.

It is an error to call pthread_join more than once on the same
thread.

Notice: Threads can be created “detached”. Detached threads cannot
join (and spare the needed resources).
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C11 thread create and join

The “new” C11 standard defines the following functions, with shorter
names and (unfortunately) a slightly different interface (in header
threads.h).

typedef int(*thrd start t)(void*);
int thrd_create(thrd t *thr, thrd start t func, void *arg);

The spawned function now returns an int (was void *)

The ’options’ argument is no longer here.

int thrd_join( thrd t thr, int *res);

We still have: if the thread identified by thr has returned v, store v

into *res.

But the type of v has changed w.r.t. pthreads!

To keep things gcc simple, we stick to pthread.
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Asynchronous function call, easy example I

Let us compute:
n∑

k=1

k2

Sketch

Fork n threads to compute 12, 22, . . . , n2.

Sum square as we get thread results.
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Asynchronous function call, easy example I

A bit of boxing.

// ‘‘Boxed’’ int
typedef struct { int v ; } val_t ;
// Or typedef int val_t ;
val_t *alloc_val( int i) ;
void free_val(val_t *p) ;

// Actual computation
int square( int i) { return i*i ; }

// Stub function
void *f(void *p) {
val_t *_p = (val_t *)p ;
int i = _p->v ;
free_val(_p) ;
return alloc_val(square(i)) ;

}

Safer and cleaner that casting “ int ” (or “ intptr t ”) into “void *”
and back.
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Asynchronous function call, easy example II

int sum( int n) {
// Fork
pthread t th[n] ;
for ( int k = 0 ; k < n ; k++)
create_thread(&th[k],f,alloc_val(k+1)) ;

// Retrieve and sum results

int r = 0 ;
for ( int k = 0 ; k < n ; k++) {
val_t *p = (val_t *)join_thread(&th[k]) ;
r += p->v ;
free_val(p) ;

}
return r ;

}
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Petty optimisation: spare one thread

int sum( int n) {
// Fork
pthread t th[n-1] ;
for ( int k = 0 ; k < n-1 ; k++)
create_thread(&th[k],f,alloc_val(k+1)) ;

// Retrieve and sum results
int r = square(n) ;
for ( int k = 0 ; k < n-1 ; k++) {
val_t *p = (val_t *)thread_join(&th[k]) ;
r += p->v ;
free_val(p) ;
}
return r ;

}
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Exercise I

Count n-queens solutions using aggressive parallelism. That is write:

/* count_t is the type of unsigned 64bits integers */
count_t run( int n, int depth)

Useful functions:

/* Thread create and join*/
void create_thread(pthread t *th,void *(*f)(void *),void *x) ;
void *join_thread(pthread t *th) ;

/* Subtask: concretely a placement of the d first queens */
typedef struct { . . . } subtask_t ;

/* Run a subtask */
count_t run_subtask(subtask_t *z) ;

typedef void emit_t(subtask_t *z) ;
/* Subtask generator, calls emit on all subtasks,

returns number of generated subtasks */
int generate_subtasks( int n, int depth, emit_t emit) ;
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A little help

This is how one uses generator/runner for sequential computation:
(exp1/seq.out).

static count_t sum ;

void emit_run(subtask_t *z) {
sum += run_subtask(z) ;

}

count_t run( int n, int depth) {
sum = 0 ;
(void)generate_subtasks(n,depth,emit_run) ;
return sum ;

}

Hence, write “emit” that creates threads and join on them later.
Simplification: you can assume there will be less then NTASKS subtasks.
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A little more help

Define the proper type val_t for boxed count_t:

typedef struct { count_t c ; } val_t ;

void free_val(val_t *p) ;
val_t *alloc_val(count_t c) ;

Define an array to store threads identifiers:

static pthread t th[NTASKS] ;
static int th_next ;

Then, it’s up to you:

void *run_stub(void *z) {

count_t r = run_subtask((subtask_t *)z) ; free_arg(z) ;
return alloc_val(r) ;

}

void emit_thread(subtask_t *z) {
i f (th_next >= NTASKS) exit EXIT FAILURE ; // Enough space?
create_thread(&th[th_next],run_stub,copy_arg(z)) ; //NB:copy
th_next++ ;

}
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Solution I

count_t run( int n, int depth) {
count_t sum = 0 ;

// Fork
th_next = 0 ;
int ntasks = generate_subtasks(n,depth,emit_thread) ;

// Join
for ( int k = 0 ; k < ntasks ; k++) {
val_t *r = (val_t *)join_thread(&th[k]) ;
sum += r->c ;
free_val(r) ; // optional

}
return sum ;

}

Demo: Check performance (queens/tnaive.out).

% safe ./tnaive.out 17

...

real: 4.56

user: 36.17

sys: 0.06
24



Optimising the sum of squares

Avoid dynamic memory allocation (a frequent C programmer’s concern)

static volati le int sq ; // Notice ‘‘ volatile’’

void *f2(void *p) {
int i = ((val_t *)p)->v ;
sq += i*i ; // ie int x = sq ; int y = i*i ; sq = x + y ;
return NULL ;

}

Savings achieved:

Update running sum “sq” instead of returning boxed result.

Also notice:

Argument space reclaimed by caller.

25



Optimised sum of squares

int sum2( int n) {
sq = 0 ; // Be cautious
// Fork
pthread t th[n] ; val_t arg[n] ; // Stack allocation
for ( int k = 0 ; k < n ; k++) {
val_t *a = &arg[k] ;
a->v = k+1 ;
create_thread(&th[k],f2,a) ;

}

// Join
for ( int k = 0 ; k < n ; k++)
(void)join_thread(&th[k]) ;

return sq ;
}

Do you see a problem?

Yes, the program is broken. . .
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A simpler, broken, program

static volati le int sum = 0, start = 0 ;

void *f(void *p) {
while (!start) ; // Wait partner
sum++ ;
return NULL ;

}

void run_loose( int n) {
int broken = 0 ;
for ( int k = 0 ; k < n ; k++) {
sum = 0 ; start = 0 ;
pthread t th1,th2 ;
create_thread(&th1,f,NULL) ; create_thread(&th2,f,NULL) ;
start = 1 ;
(void)join_thread(&th2) ; (void)join_thread(&th1) ;
i f (sum != 2) broken++ ;

}
i f (broken > 0) printf("Broken: %i/%i\n",broken,n) ;

}

Demo (in exp20): ./two.out
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Where broken?

The instructions sum++ performs two accesses to memory:

int x = sum ; // Access R, read.
int y = x + 1 ; // Compute
sum = y ; ; // Access W, write.

In our programming model (SC) accesses are atomic (they don’t mix).
The effect of a program on memory results of a given interleaving of
memory accesses (a.k.a a schedule).

Consider the following scheduling for threads 1 and 2:

R1,R2,W2,W1

The final value of sum is:

1.
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Enforcing atomicity with locks

If [R,W ] is considered a scheduling unit, the remaining schedules are:

[R1,W1], [R2,W2] [R2,W2], [R1,W1]

And the result is always 2.

In practice, the “scheduling unit” is defined by a lock L (or mutual
exclusion lock) as:

lock(L) ;
sum++ ;
unlock(L) ;

The instruction block from lock to unlock is a critical section.
And there can be several locks, only the critical sections of the same lock
do not mix.
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Mutexes, or locks, creation

We allocate all such primitive data dynamically (calling malloc/free).

pthread mutex t *alloc_mutex(void) {
pthread mutex t *r = malloc_check(sizeof(*r)) ;

// Important, initialize mutex
int st = pthread_mutex_init(r,NULL) ;
i f (st != 0) exit_error("pthread_mutex_init",st) ;
return r ;

}

void free_mutex(pthread mutex t *p) {
int st = pthread_mutex_destroy(p);
i f (st != 0) error_exit("pthread_mutex_destroy",st) ;
free(p) ;

}
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Locking and unlocking (pthreads)

We write some wrappers for error-checking — this is C!

void lock_mutex(pthread mutex t *p) {
int st = pthread_mutex_lock(p) ;
i f (st != 0) exit_error("pthread_mutex_lock",st) ;

}

void unlock_mutex(pthread mutex t *p) {
int st = pthread_mutex_unlock(p) ;
i f (st != 0) exit_error("pthread_mutex_unlock",st) ;

}
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Bonus: C11 locks (not available everywhere)

#include <threads.h>

mtx t *alloc_mutex(void) {
mtx t *r = malloc_check(sizeof(*r)) ;
int st = mtx init(r,mtx plain) ;
i f (st != thrd success) exit_cmd("mtx_init") ;
return r ;

}
...

void lock_mutex(mtx t *p) {
int st = mtx lock(p) ;
i f (st != thrd success) exit_cmd("mtx_lock") ;

}

Etc. Notice the slightly cleaner interface. . . (e.g. mtx init second
argument).
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The informal semantics of locks

A lock holds a bit of information: taken or free.

lock: Acquire the lock.

Read status, if free, then set status to taken – Atomically. and
return.
If taken then wait until free.

By polling the status, (busy wait),
or by going to sleep.

unlock: Release the lock.

Set lock status to free,
then awake one sleeping thread, if any,
then return.

Remark: Same functionality as class 00 (Dekker), very different
implementation.
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Bonus: C11 atomics

C11 atomics feature “atomic” read-modify-write operations.

atomic int sum = ATOMICVAR INIT(0) ;
atomic int start = ATOMICVAR INIT(0) ;

void *f(void *p) {
while (!atomic load explicit(&start,memory order relaxed)) ;
// Atomic increment of sum
(void)atomic fetch add explicit(&sum,1,memory order relaxed) ;
return NULL ;

}

Besides, conflicting accesses on C11 atomics are not racy.
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The simpler program fixed

static volati le int sum = 0 ;
static pthread mutex t *mutex ;

void *g(void *p) {
lock_mutex(mutex) ;
sum++ ;
unlock_mutex(mutex) ;
return NULL ;

}

void run_locked(void) {
sum = 0 ;
mutex = alloc_mutex() ;

pthread t th1,th2 ;
create_thread(&th1,f,NULL) ; create_thread(&th2,f,NULL) ;
(void)join_thread(&th2) ; (void)join_thread(&th1) ;
free_mutex(mutex) ;
i f (sum != 2) printf("Pas possible") ;

}
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Problems with locks

Performance:

Critical sections cannot execute simultaneously, and parallelism
decreases. Solutions.

Write short critical sections, in particular avoid non-termination risks.
Use several locks (but see next slide).

The code for of lock/unlock takes time. Solution: attempt
balance between poll/suspend.

Contention: when a lot of lock are performed simultaneously,
performance degrades severely. Solution: hierarchical locks.
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Problems with locks

Correction: Locks are error prone. One easily reaches deadlock:

Assume that f1 use lock L1 and f2 uses L2. Then, if f1 and f2 are
mutually recursive, we may have the following execution trace:

Thread 1 Thread 2

lock(L1) ;
. . .
lock(L2) ;
. . .
unlock(L2) ;
. . .
unlock(L1) ;

lock(L2) ;
. . .
lock(L1) ;
. . .
unlock(L1) ;
. . .
unlock(L2) ;

As a consequence, programming with lock is not compositional, saved for
a crippling discipline: use only one lock (or master lock), or take locks
following a defined order (hard to check).
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Exercise II

Write the n-queens solver without thread_join.
Thread creation is simplified, since there is no need to save threads
somewhere. Termination gets more involved.
To address termination, let us define a new component wait_t and two
primitives:

/* Perform a ‘‘tick’’ */
void tick(wait_t *p) ;

/* Wait for n ticks ticks */
void wait_done(wait_t *p, int n) ;

Synchronisation is as follows, n subtasks are generated:

I A tick is performed whenever a subtask is completed,

I Programm terminates having waited for n ticks.
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Computing a subtask, and ticking

static volati le count_t sum ;
static pthread mutex t *mutex ;
static wait_t *wait_on ; // New component, to be defined.

void *run_stub(void *z) {
count_t r = run_subtask((subtask_t *)z) ;
free_arg(z) ;
lock_mutex(mutex) ; sum += r ; unlock_mutex(mutex) ;
tick(wait_on) ; // Signal I am done
return NULL ;

}

void emit_thread(subtask_t *z) {
pthread t th ; // Hum, looks ok for detached thread!
// Notice detached, ie no provision for join.
create_thread_detached(&th,run_stub,copy_arg(z)) ;

}
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Coding bonus

For the curious, here is the code of create_thread_detached:

void create_thread_detached
(pthread t *th,void *(*f)(void *),void *x) {
pthread attr t tattr;
int st ;

st = pthread_attr_init(&tattr) ;
i f (st != 0) exit_error("pthread_attr_init",st) ;

st = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED) ;
i f (st != 0) exit_error("pthread_attr_setdetachstate",st) ;

st = pthread_create(th,&tattr,f,x) ;
i f (st != 0) exit_error("pthread_create",st) ;

st = pthread_attr_destroy(&tattr) ;
i f (st != 0) exit_error("pthread_attr_destroy",st) ;

}

Well. . . Just remember that one does not join on a detached thread and
thus spare the associated resources.
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Breaking news: simpler coding. . .

void create_thread_detached
(pthread t *th,void *(*f)(void *),void *x) {
int st ;

st = pthread_create(th,NULL,f,x) ;
i f (st != 0) exit_error("pthread_create",st) ;
st = pthread_detach(*th);
i f (st != 0) exit_error("pthread_detach",st) ;

}
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Exercise II, run function

count_t run( int n, int depth) {
/* Initialise */
mutex = alloc_mutex() ;
wait_on = alloc_wait() ;
sum = 0 ;

/* Fork all subtasks */
int ntasks = generate_subtasks(n,depth,emit_thread) ;

/* Wait result */
wait_done(wait_on,ntasks) ;
return sum ;

}
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Real exercise II

Write the wait_t component.

/* Component to wait on */
typedef struct {

pthread mutex t *mutex ;
volati le int nret ;

} wait_t ;

wait_t *alloc_wait(void) {
wait_t *r = malloc_check(sizeof(*r)) ;
r->nret = 0 ;
r->mutex = alloc_mutex() ;
return r ;

}

void tick(wait_t *p) ; // To be written
void wait_done(wait_t *p, int ntasks) ; // To be written
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Solution II

Function tick is easy, we have seen this before:

void tick(wait_t *p) {

lock_mutex(p->mutex) ;
p->nret++ ;
unlock_mutex(p->mutex) ;

}

Function wait_on looks easy:

void wait_done(wait_t *p, int ntasks) {
while (p->nret < ntasks) ;

}

But. . .

Busy waiting degrades performance (demo queens/busy.out, can
be worse)

We are no longer in the DRF fragment of pthreads!

44



Solution II

Function tick is easy, we have seen this before:

void tick(wait_t *p) {
lock_mutex(p->mutex) ;
p->nret++ ;
unlock_mutex(p->mutex) ;

}

Function wait_on looks easy:

void wait_done(wait_t *p, int ntasks) {

while (p->nret < ntasks) ;
}

But. . .

Busy waiting degrades performance (demo queens/busy.out, can
be worse)

We are no longer in the DRF fragment of pthreads!

44



Solution II

Function tick is easy, we have seen this before:

void tick(wait_t *p) {
lock_mutex(p->mutex) ;
p->nret++ ;
unlock_mutex(p->mutex) ;

}

Function wait_on looks easy:

void wait_done(wait_t *p, int ntasks) {
while (p->nret < ntasks) ;

}

But. . .

Busy waiting degrades performance (demo queens/busy.out, can
be worse)

We are no longer in the DRF fragment of pthreads!

44



Solution II

Function tick is easy, we have seen this before:

void tick(wait_t *p) {
lock_mutex(p->mutex) ;
p->nret++ ;
unlock_mutex(p->mutex) ;

}

Function wait_on looks easy:

void wait_done(wait_t *p, int ntasks) {
while (p->nret < ntasks) ;

}

But. . .

Busy waiting degrades performance (demo queens/busy.out, can
be worse)

We are no longer in the DRF fragment of pthreads!

44



Data Race Free guarantee

Race: occurs when two different threads access the same shared location
simultaneously, and when at least one access is a write.

(Non) simultaneous accesses Accesses “ordered” by pthreads calls:

Accesses in critical sections that use the same lock.

Accesses performed before calling pthread_create, and accesses by
the created thread.

Accesses by thread th, and accesses performed by the caller of
phread_join(th,...).

DRF execution: An execution with no data races.

DRF guarantee: All executions of a program whose SC executions are
DRF (a DRF program) are SC. The behaviour of non-DRF programs is
unspecified.

And indeed we have a race on wait_on->nret.
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Data-race old-style

Simultaneous accesses to data may, in some circumstance, yield absurd
results. On some 32bits mode, we execute simultaneously:

void P0(void *p) {
uint64 t *x = (uint64 t)p;
*x = 0x0101010101010101 ;

}

void P1(void *p) {
uint64 t *x = (uint64 t *)p;
uint64 t r = *x;

}

Demo :

# We execute the test (initial value of *x is zero)

10025054:>1:r=0x0;

29906 :>1:r=0x1010101;

9945040:>1:r=0x101010101010101;

Value 0x1010101 results from accesses to quad words not being atomic.
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Ordering critical sections

Critical sections restore atomicity by mutual exclusion. That is, the
instructions in critical section never execute simultaneously:

As a consequence of critical sections non-overlapping, critical sections are
ordered:
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Ordering memory accesses

Critical sections restore atomicity by mutual exclusion. That is, the
instructions in critical section never execute simultaneously:

As a consequence of critical sections non-overlapping, critical sections are
ordered:

a

b a

b

Let a and b be memory accesses.
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Ordering memory accesses

Critical sections restore atomicity by mutual exclusion. That is, the
instructions in critical section never execute simultaneously:

As a consequence of critical sections non-overlapping, critical sections are
ordered:

a

b a

b

Let a and b be memory accesses.

A usable (i.e. with DRF guarantee) memory model will lift critical section
ordering to memory accesses.

47



Ordering accesses, in pthreads

In POSIX threads, two accesses “separated” by synchronisation calls are
not simultaneous. Hence, they are not racy.
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Coarse locking

void P0
( int *x, int *y,mtx t *m) {

mtx lock(m);
*x = 1;
int r0 = *y;
mtx_unlock(m);

}

void P1
( int *x, int *y,mtx t *m) {

mtx lock(m);
*y = 1;
int r1 = *x;
mtx_unlock(m);

}

Demo ?

All accesses of P0 (resp. P1) are performed before those of P1

(res. P0). Thus we get:

...

Histogram (2 states)

9999825:>0:r0=1; 1:r1=0;

10000175:>0:r0=0; 1:r1=1;

...

Notice : The “order” of accesses inside crtitical sections is irrelevant.
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Fine-grain locking

To a memory cell, one associate a mutex (x→ mx and y→ my).

void P0 ( int *x, int *y,mtx t *mx,mtx t *my) {
mtx lock(mx); *x = 1; mtx_unlock(mx);
mtx lock(my); int r0 = *y; mtx_unlock(my);

}

void P1 ( int *x, int *y,mtx t *mx,mtx t *my) {
mtx lock(my); *y = 1; mtx_unlock(my);
mtx lock(mx); int r1 = *x; mtx_unlock(mx);

}

Demo ?

(in litmus/) All potential data-races (i.e. all conflicting
accesses) are covered One sees that the non-SC outcome (r0=0 et r1=0)
is not observed :

...

Histogram (3 states)

9455682:>0:r0=1; 1:r1=0;

9280838:>0:r0=0; 1:r1=1;

1263480:>0:r0=1; 1:r1=1;

...
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Some sufficent condition for fine-grain locking

Let us note Sx
0 (write x), Sy

0 (read y), Sx
1 (read x), Sy

1 (write y) les
sections critiques.

Let us assume

Sx
0

Sx
1Sy

0

Sy
1
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Bingo ! (cycle.) That is, the non-SC behaviour is excluded by fine-grain
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A more realistic account of fine-grain locking

Sx
0

Sx
1Sy

0

Sy
1

As r0=0 and r1=0,

from unlock to lock, acquire, unlocks ordered,release
and Bingo!
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There is more than locks: synchronisation barrier

barrier wait(. . .)
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a

c
b

d

barrier wait(. . .)
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There is more than locks: synchronisation barrier

a

c
b

d

barrier wait(. . .)

Accesses before (a) and after (b, c and d) the barrier cannot execute
simultaneously. There is no data-race.
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Back to our race on p->nret, bad solutions

We can. . .

Ignore the issue (it works on x86).

Program (correctly) out of the DRF fragment (hard, non-portable,
see next classes).

Avoid the race, as writes to p->nret are protected by p->mutex, we
additionally protect reads:

void wait_done(wait_t *p, int ntasks) {
for ( ; ; ) {

int over ;
lock_mutex(p->mutex) ;
over = p->nret >= ntasks ;
unlock_mutex(p->mutex) ;
i f (over) return ;

}
}

Efficiency penalty may be severe (try, demo). . . It can be alleviated
by introducing a sleep delay in loop (however, introduces latency).

54



Back to our race on p->nret, bad solutions

We can. . .

Ignore the issue (it works on x86).

Program (correctly) out of the DRF fragment (hard, non-portable
[no longer true with C11], see next classes).

Avoid the race, as writes to p->nret are protected by p->mutex, we
additionally protect reads:

void wait_done(wait_t *p, int ntasks) {
for ( ; ; ) {

int over ;
lock_mutex(p->mutex) ;
over = p->nret >= ntasks ;
unlock_mutex(p->mutex) ;
i f (over) return ;

}
}

Efficiency penalty may be severe (try, demo). . . It can be alleviated
by introducing a sleep delay in loop (however, introduces latency).

54



Back to our race on p->nret, bad solutions

We can. . .

Ignore the issue (it works on x86).

Program (correctly) out of the DRF fragment (hard, non-portable
[no longer true with C11], see next classes).

Avoid the race, as writes to p->nret are protected by p->mutex, we
additionally protect reads:

void wait_done(wait_t *p, int ntasks) {
for ( ; ; ) {

int over ;
lock_mutex(p->mutex) ;
over = p->nret >= ntasks ;
unlock_mutex(p->mutex) ;
i f (over) return ;

}
}

Efficiency penalty may be severe (try, demo). . . It can be alleviated
by introducing a sleep delay in loop (however, introduces latency).

54



Solving all problems

We aim at:

The waiting thread sleeps as long as less than ntasks computing
threads have ticked.

The last thread to tick awake the main thread.

In fact, we aim at something similar to the “sleep when someone is in
critical section” behavior or mutexes.

A condition variable C is a device for doing this.

wait(C,L), release the lock L and suspend on condition C
atomically.

signal(C) wake up one thread suspended on C , if any.

broadcast(C) wake up all threads suspended on C .

Notice that awaken threads will hold the mutex L they have released
when performing wait(C,L).
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A simpler example

A synchronous cell, to be used once (pthread_join may use something
similar).

typedef struct {
pthread mutex t *mutex;
pthread cond t *cond;
int v,something ;

} cell_t ;

// NB. alloc_cell initialises mutex and condition
cell_t alloc_cell(void) ;
void free_cell(cell_t *p) ;

// Put v in cell
void put(cell_t *p, int v) ;

//Get value from cell, suspending until something is here.
int get(cell_t *p) ;
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A simpler example, continued

void put(cell_t *p, int v) {
lock_mutex(p->mutex) ;
i f (something) {
unlock_mutex(p->mutex) ;
fprintf(stderr,"put more than once!\n") ;
exit(2)

}
p->something = 1 ;
p->v = v ;
signal_cond(p->cond) ; // Signal (potential) reader
unlock_mutex(p->mutex) ;

}

int get(cell_t *p) {
int r ;
lock_mutex(p->mutex) ;
// Correct, when wait_cond returns only when signalled
i f (!something) wait_cond(p->cond,mutex) ;
r = p->v ;
unlock_mutex(p->mutex) ;
return r ;

}
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A simpler example, continued
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i f (something) {
unlock_mutex(p->mutex) ;
fprintf(stderr,"put more than once!\n") ;
exit(2)

}
p->something = 1 ;
p->v = v ;
signal_cond(p->cond) ; // Signal (potential) reader
unlock_mutex(p->mutex) ;

}

int get(cell_t *p) {
int r ;
lock_mutex(p->mutex) ;
// Correct, when wait_cond returns only when signalled
i f (!something) wait_cond(p->cond,mutex) ;
r = p->v ;
unlock_mutex(p->mutex) ;
return r ;

}
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Spurious wakeups

Notice We wrote if (!something) wait_cond(. . .). While the
preferred idiom is while (!something) wait_cond(. . .).

Why so?

Spurious wakeups? wait_cond may return for any reason.

POSIX standard allows spurious wakeups.
May facilitate implementation:

Interruption/signal handling?
Or, signal_cond may awake more then one waiter. . .

Program logic (see FIFO later) often commands a loop around
wait_cond anyway.

I did not observed them,

but we have to program according to the standard.
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get in presence of spurious wakeups

The function get must be written as follows:

int get(cell_t *p) {
int r ;
lock_mutex(p->mutex) ;
// If no spurious wakeup, loop will run at most once
while (!something) wait_cond(p->cond,mutex) ;
r = p->v ;
unlock_mutex(p->mutex) ;
return r ;

}
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Exercise II with a condition variable, part A

typedef struct {
pthread mutex t *mutex ;
pthread cond t *cond ;
volati le int nret,ntasks ; // Notice ntasks kept inside

} wait_t ;

wait_t *alloc_wait(void) {
wait_t *r = malloc_check(sizeof(*r)) ;
r->nret = 0 ;
r->ntasks = 0 ;
r->mutex = alloc_mutex() ;
r->cond = alloc_cond() ;
return r ;

}

void tick(wait_t *p) ; // To be written
void wait_done(wait_t *p, int ntasks) ; // To be written
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Solution II with a condition variable

void wait_done(wait_t *p, int ntasks) {

lock_mutex(p->mutex) ;
p->ntasks = ntasks ;
while (p->nret < p->ntasks)
wait_cond(p->cond,p->mutex) ;

unlock_mutex(p->mutex) ;
}

void tick(wait_t *p) {
lock_mutex(p->mutex) ;
p->nret++ ;
i f (p->ntasks > 0 && p->nret >= p->ntasks)
signal_cond(p->cond) ;

unlock_mutex(p->mutex) ;
}
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Solution II with a condition variable
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Controlled parallelism

Remember, using make -j N (or parallel -j N) we could limit
computing processes to N instances.

We want the same for threads.

Idea:

Have N computing threads,

which execute available subtasks one after the other, sequentially.

Sometimes called “a processor farm”, computing threads are “slaves”.
A “master” allocates subtasks to slaves.
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Master and slaves

Assume a (concurrent, blocking, bounded) FIFO component:

Slaves get subtasks from the FIFO:

static fifo_t *fifo ;
static count_t sum ;
static pthread t *mutex ;

void *slave(void *) {
for ( ; ; ) {
subtask_t *z = get(fifo) ; // Will block if fifo is empty
count_t c = run_subtask(z) ;
free_arg(z) ;
lock_mutex(mutex) ;
sum += c ;
unlock_mutex(mutex) ;

}
}
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Master and slaves

While the master (main thread) put subtasks into the fifo.

void emit_fifo(subtask_t *z) {
// Will block if fifo is full
put(fifo,copy_arg(z)) ;

}
int master( int n, int depth) {
return generate_subtasks(n, depth, emit_fifo) ;

}

Code sketch

count_t run( int n, int depth, int nprocs, int fsz) {
sum = 0 ;
//Initialise
fifo = create_fifo(fsz) ;
// Fork slaves
pthread t th[nprocs] ;
for ( int k = 0 ; k < nprocs ; k++)
create_thread(&th[k],slave,NULL) ;

// Act as master
int ntasks = master(n,depth) ;
// Shall see master termination later
. . .

}
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Let us write the fifo

Starting from a non-concurrent, non-blocking, bounded fifo.

typedef struct {
int sz ;
int fst,lst,nitems ;
subtask_t **t ; // Array of (subtask_t *)

} fifo_t ;

typedef enum {OK,NO} ret_val ; // Return value for put below

int put(fifo_t *f,subtask_t *z) {
i f (f->nitems == f->sz) return NO ;
f->t[f->lst] = z ;
f->lst++ ; f->lst %= f->sz ; f->nitems++ ;
return OK ;

}

subtask_t *get(fifo_t *f) {
subtask_t *r ;
i f (f->nitems == 0) return NULL ; // special value
r = f->t[f->fst] ;
f->fst++ ; f->fst %= f->sz ; f->nitems-- ;

}
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Concurrent fifo, definition

typedef struct {
pthread mutex t *mutex ;
pthread cond t *is_empty, *is_full ;

int sz ;
int fst,lst,nitems ;
subtask_t **t ;

} fifo_t ;
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Concurrent fifo, creation

fifo_t *alloc_fifo( int sz) {
fifo_t *r = malloc_check(sizeof(*r)) ;
r->fst = r->lst = r->nitems = 0 ;
r->sz = sz ;
r->t = calloc(sz,sizeof(*r->t)) ;
i f (!r->t) {
perror("calloc") ;
exit(2) ;

}
r->mutex = alloc_mutex() ;
r->is_empty = alloc_cond() ;
r->is_full = alloc_cond() ;
return r ;

}
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Concurrent fifo, put

void put(fifo_t *f,subtask_t *z) {

lock_mutex(f->mutex) ;
// If full ?
while (f->nitems == f->sz) {
wait_cond(f->is_full,f->mutex) ;

}
// Now store z
int was_empty = f->nitems == 0 ;
f->t[f->lst] = z ;
f->lst++ ; f->lst %= f->sz ; f->nitems++ ;
// If was empty?
i f (was_empty) {
broadcast_cond(f->is_empty) ; // Why not signal?

}
unlock_mutex(f->mutex) ;

}
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Concurrent fifo, put
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Concurrent fifo, get

Exercise III!

subtask_t *get(fifo_t *f) {

subtask_t *r ;
lock_mutex(f->mutex) ;
// If empty?
while (f->nitems == 0) {
wait_cond(f->is_empty,f->mutex) ;

}
// Retrieve value
int was_full = f->nitems == f->sz ;
r = f->t[f->fst] ;
f->fst++ ; f->fst %= f->sz ; f->nitems-- ;
// If was full
i f (was_full) {
broadcast_cond(f->is_full) ;

}
unlock_mutex(f->mutex) ;
return r ;

}
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Why not signal (instead of broadcast) in put and get?

If you do not see, try ex3/bad.out -v 18 (code with signal in place of
broadcast).

We then see no parallelism, why?

We witness the following scenario (or a similar one):

N slaves suspend on the empty fifo,

The master fills the fifo, awaking one slave while putting the first
task.

As a result, N − 1 tasks are suspended and no one awakes them.
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How do we detect termination?

Solution (1) the wait_t component:

void *slave(void *) {
for ( ; ; ) {
subtask_t *z = get(fifo) ; // Will block if fifo is empty
count_t c = run_subtask(z) ;
. . .
tick(wait_on) ;

}
}

Problem: thread resources are not reclaimed (to that aim slave should
return. . . ).

// Shall see master termination later
wait_done(wait_on,ntasks) ;
. . .
return count ;

}

(Going further: Add a kill functionality to the fifo.)
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How do we detect termination?

Solution (2): special value NULL in fifo means that computation is over.
Master:

// Shall see master termination later
put(fifo,NULL) ;
for ( int k = 0 ; k < nprocs ; k++)
(void)pthread_join(&th[k]) ;

. . .

And slave:

void *slave(void *) {
for ( ; ; ) {
subtask_t *z = get(fifo) ; // Will block if fifo is empty
i f (z == NULL) {
put(fifo,NULL) ; // For other slaves..
return NULL ;

}
. . .

}
}

Notice: Fifo behaviour is instrumental. Demo: Efficiency
(queens/topt.out -j4 -d2 17).
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Reclaiming the fifo

count_t run( int n, int depth, int nprocs, int fsz) {
sum = 0 ;
fifo = alloc_fifo(fsz) ;
mutex = alloc_mutex() ;
. . .

// Complete master cleanup and termination
put(fifo,NULL) ;
for ( int k = 0 ; k < nprocs ; k++)
(void)pthread_join(&th[k]) ;

/*
At this point, no slave is blocked on fifo,
since all slaves returned. We can reclaim the fifo

*/
free_fifo(fifo) ;
free_mutex(mutex) ; // Reclaim mutex
return 2*sum ; // By symetry

}
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Practical multicore programming

Threads vs. Processes,
the n-queens experiment
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Performance on some 2 cores, ×2 machine
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Performance on a 8 cores, ×2 machine
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Performance on a 12 cores, ×2 machine
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Performance on a 40 cores, ×2 machine
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Speedup on a 40 cores, ×2 machine
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