
Not so practical multicore
programming

A simple model for sequential
consistency, extended. . .

Luc Maranget Luc.Maranget@inria.fr

1

Part 1.

Axiomatic Sequential Consistency

2

Shared memory computer

Shared Memory

Thread1 Threadn

W R RW

3

Sequential consistency

Original definition: (Leslie Lamport)

[. . .] The result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.

(And stores take effect immediately).

Interleaving semantics: This is “interleaving semantics” as “some
sequential order” results from interleaving “the order specified by the
program of all individual processors”.

At first, one expect shared multiprocessors to behave that way, which of
course they don’t.

4

Formalism: events

The effect of “operations executed by the processors” are represented by
events.

Operations we consider are the memory accesses. Hence, we define
memory events (a):d[`]v , where:

I Unique label typically (a), (b), etc.

I Direction d , that is read (R) or write (W)

I Memory location `, typically x , y , etc.

I Value v , typically 0, 1 etc.

I Originating thread: T0, T1 (usually omitted)

5

Formalism: program order

The program order
po−→ is a total strict order amongst the events

originating from the same processor.

Relation
po−→ represents the sequential execution of events by one

processor that follows the usual processor execution model, where
instructions are executed by following the order given in program.

Example

/* x,t and y are (shared) memory locations, t = { 2, 3, } */
int r1,r2=0 ; // non-shared locations (e.g. registers)
x = 1 ;
for (int k = 0 ; k < 2 ; k++) { r1 = t[k] ; r2 += r1 ; }
y = r2 ;

Events and program order :

(a):W[x]1
po−→ (b):R[t + 0]2

po−→ (c):R[t + 4]3
po−→ (d):W[y]5

6

A definition of SC

A transcription of L. Lamport’s definition.

Definition (SC 1)

An execution is SC when there exists a total strict order on events <,
such that:

1 Order < is compatible with program order:

e1
po−→ e2 =⇒ e1 < e2.

2 Reads read from the closest write upwards (a.k.a. “most recent”):

rf<−→ Def
=

{
(w , r)|w = max

<
(w ′, loc(w ′) = loc(r) ∧ w ′ < r)

}
.

7

Example of a question on SC
R

T0 T1

(a) x← 1 (c) y← 2

(b) y← 1 (d) r0← x

Observed? y=2; r0=0

How do we know? Let us enumerate all interleavings:

a, b, c , d y=2; r0=1;

a, c , b, d y=1; r0=1;

a, c , d , b y=1; r0=1;

c , d , a, b y=1; r0=0;

c , a, b, d y=1; r0=1;

c , a, d , b y=1; r0=1;

Remark: if b < c then y=2, if a < d then r0=1.

8

Let us be a bit more clever
R

T0 T1

(a) x← 1 (c) y← 2

(b) y← 1 (d) r0← x

Observed? y=2; r0=0

Collecting constraints on the scheduling order <:

We respect program order, thus a < b, c < d .
We observe r0=0, thus d < a, as d reads initial value, which is
overwritten by a.
We observe y=2, thus b < c .

Hence we have a cycle in <, which prevents it from being an order!

a < b < c < d < a · · ·

Conclusion: No SC execution would ever yield the output “y=2; r0=0;”.

9

Systematic approach

At the moment, an “execution” (candidate) consists in assuming some
events and a program order relation.

We assume two additional relations:

Read-from (
rf−→): Relates write events to read events that read the

stored value (initial writes left implicit in diagrams).

∀r , ∃!w , w
rf−→ r

(Notice: w and r have identical location and value.)

Coherence (
co−→): Relates write events to the same location.

For any location `, the restriction of
co−→ to write events to

location ` (W`) is a total strict order.

10

Coherence as a characteristics of shared memory

The very existence of
co−→ is implied by the existence of a shared,

coherent, memory — Given location x , there is exactly one memory cell
whose location is x .

Wx0
co−→Wx1

co−→ x = 2
co−→Wx3

co−→ · · ·

Of course, in reality, there caches, buffers etc. But the system will
behave “as if”.

11

Example of
rf−→ LB

T0 T1

(a) r0← x (c) r1← y

(b) y← 1 (d) x← 1

Observe: r0; r1;

There are 4 possible
rf−→ relations (initial value is 0).

r0=1; r1=1; r0=1; r1=0;

a: Rx=1

b: Wy=1

c: Ry=1

d: Wx=1
po

rf

porf

a: Rx=1

b: Wy=1

c: Ry=0

d: Wx=1

po porf

rf

r0=0; r1=1; r0=0; r1=0;

a: Rx=0

b: Wy=1

c: Ry=1

d: Wx=1

po rf po

rf

a: Rx=0

b: Wy=1

c: Ry=0

d: Wx=1
po po

rf rf

12

Example of
co−→

2+2W

T0 T1

(a) x← 2 (c) y← 2

(b) y← 1 (d) x← 1

Observed? x=2; y=2;

x=1; y=2; x=1; y=1;

a: Wx=2

b: Wy=1 d: Wx=1

c: Wy=2

po co

co

po

a: Wx=2

b: Wy=1 d: Wx=1

c: Wy=2

po co

co

po

x=2; y=2; x=2; y=1;

a: Wx=2

b: Wy=1

c: Wy=2

d: Wx=1
po co po

co
a: Wx=2

b: Wy=1

c: Wy=2

d: Wx=1
po co po

co

Notice: In this simple case of two stores, the value finally observed in
locations determines

co−→ for them.
13

One more relation:
fr−→

The new relation
fr−→ (from read) relates reads to “younger writes”

(younger w.r.t.
co−→).

r
fr−→ w

Def
= w ′

rf−→ r ∧ w ′
co−→ w

This amounts to place a read into the coherence order of its location:
Given

co co co

rf

w0 wn...w1

r

We have

w0 wn...w1

r

(Or:
fr−→Def

=
(

rf−→
)−1

;
co−→)

14

Playing with
fr−→

Particular, easy, case: a read from the initial state is in
fr−→ with writes

by the program.

MP

T0 T1

(a) x← 1 (c) r0← y

(b) y← 1 (d) r1← x

Observed? r0=1; r1=0

SB

T0 T1

(a) x← 1 (c) y← 1

(b) r0← y (d) r1← x

Observed? r0=0; r1=0

a: Wx=1

b: Wy=1

c: Ry=1

d: Rx=0

po rf po

fr
co

rf

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0
po

fr

pofr

rf

coco

rf

15

Second definition of SC

Definition (SC 2)

An execution is SC when:

Acyclic
(

rf−→∪ co−→∪ fr−→∪ po−→
)

And of course:

Theorem
The two definitions of SC are equivalent.

16

SC 1 =⇒ SC 2

Assume the existence of the total order “<”.
Define:

co−→Def
= {(w1,w2)|loc(w1) = loc(w2) ∧ w1 < w1},

Notice that
rf−→ is already defined:

rf−→ Def
=

rf<−→. Also notice
po−→ ⊆ <,

co−→ ⊆ < and
rf−→ ⊆ <.

Proof:

Define
fr−→Def

=
rf−→
−1

;
co−→, and prove

fr−→ ⊆ <.

Let r
fr−→ w . Let further w0

rf<−→ r , then, by definition of
fr−→, we have

w0
co−→ w and thus w0 < w .

But, w0 is maximal amongst all w ′ < r . That is: “w < r =⇒ w ≤ w0”
or, “w0 < w =⇒ r < w” QED,

Hence, a cycle in
rf−→∪ co−→∪ fr−→∪ po−→ would be a cycle in order “<”

17

SC 2 =⇒ SC 1

Since
rf−→∪ co−→∪ fr−→∪ po−→ is a partial order, there exists a total order

< that “extends” it (no question on mathematical foundations,. . .).

From < define
rf<−→:

rf<−→ Def
=

{
(w , r)|w = max

<
(w ′, loc(w ′) = loc(r) ∧ w ′ < r)

}
.

and show
rf−→=

rf<−→.

1 Let w0
rf−→ r and let w ∈W`,w 6= w0 then (

co−→ total order on
W`):

1 Either w
co−→ w0 and w < w0 < r .

2 Or, w0
co−→ w , and r

fr−→ w , and thus r < w .

Finally w0
rf<−→ r .

2 Let w 6 rf−→ r (i.e. w ∈W`,w 6= w0), then

1 Either w
co−→ w0, and thus (

co−→ ⊆ <) w 6 rf<−→ r .

2 Or w0
co−→ w , thus r

fr−→ w , and thus (
fr−→ ⊆ <) w 6 rf<−→ r .

18

Simulating SC

Which model, SC 1 or SC 2 is the most convenient/efficient?

SC 1 Enumerate interleavings.

SC 2 Enumerate axiomatic execution candidates (i.e.
po−→,

rf−→,
co−→);

check the acyclicity of
rf−→∪ co−→∪ fr−→∪ po−→.

Answer: we view SC 2 as being more convenient, since the generated
objects usually are smaller.

19

Introducing herd, a memory model simulator

A model sc.cat:

% cat sc.cat

include "cos.cat" #define co (and fr as "rf^-1; co")

let com = rf | co | fr #communication

acyclic po | com as hb #validity condition

Running R on SC (demo in demo/herd):

% herd7 -cat sc.cat R.litmus

Test R Allowed

States 3

1:EAX=0; y=1;

1:EAX=1; y=1;

1:EAX=1; y=2;

No

Witnesses

Positive: 0 Negative: 3

Condition exists (y=2 /\ 1:EAX=0)

Observation R Never 0 3

Notice: Outcome 1:EAX=0; y=2; is forbidden by SC.
20

Herd structure

Generate all candidate executions, i.e. all possible
po−→,

rf−→ and
co−→

(
fr−→ deduced):

a: Wx=1

b: Wy=1 d: Rx=1

c: Wy=2

po

rf

co po

a: Wx=1

b: Wy=1 d: Rx=1

c: Wy=2

po

rf

co po

Ok Ok

a: Wx=1

b: Wy=1

c: Wy=2

d: Rx=0
po co po

fr
a: Wx=1

b: Wy=1

c: Wy=2

d: Rx=0
po co po

fr

No Ok

Apply model checks to each candidate execution.

21

Part 2.

Studying Non-Sequentially Consistent
Executions.

22

Violations of SC

A cycle of
po−→,

rf−→,
co−→,

fr−→ describes a violation of SC.
From such a cycle, one may easily generate programs that potentially
violate SC, and run them on actual machines.

However, the cycle does not describe:

I How many threads are involved.

I How many memory locations are involved.

We now aim at:

I Extract a subset of significant cycles.

I Generate one program out of one cycle.

23

Simplifying cycles:
po−→ and

ĉom−→ steps alternate

A cycle in
com−→∪ po−→ is a cycle in (

po−→
+

;
com−→

+
) (group

po−→ and
com−→

steps together). Then:
po−→ is transitive

po−→
+
⊆ po−→.

com−→
+

is the union of the five following relations:

ĉom−→=
rf−→∪ co−→∪ fr−→∪

(
co−→;

rf−→
)
∪
(

fr−→;
rf−→
)
.

Because (
co−→;

co−→) ⊆ co−→, (
fr−→;

co−→) ⊆ fr−→, and

(
rf−→;

fr−→) ⊆ co−→.

Conclusion: Any cyclic
com−→∪ po−→ includes a cycle in (

po−→;
ĉom−→) — i.e.

that alternates
po−→ steps and

ĉom−→ steps.

24

Simplifying cycles: all
com−→ steps are external

Given a cycle, we consider that all
com−→ and

ĉom−→ steps are external, (i.e.
source and target events are from pairwise distinct threads).

Given e1
ĉom−→ e2, s.t. e1 and e2 are from the same thread:

Either e1
po−→ e2 and we consider this

po−→ step in the cycle, in place

of the
ĉom−→ step (further merging

po−→ steps to get a smaller cycle).

Or e2
po−→ e1, then we have a very simple cycle e2

po−→ e1
ĉom−→ e2.

Such cycles are “violations of coherence” (more on them later).

Case e1 = e2 is impossible (
com−→ is acyclic, see later)

Notice: A similar reasoning applies to individual
com−→ steps in

composite
ĉom−→.

25

Simplifying cycles – Threads

Assume a cycle with two
po−→ steps on the same thread:

e1
po−→ e2(

ĉom−→;
po−→)∗;

ĉom−→ e3
po−→ e4 (

ĉom−→;
po−→)∗;

ĉom−→ e1

Assuming for instance, e1
po−→ e3 then we have a “simpler” cycle:

e1
po−→ e3

po−→ e4 (
ĉom−→;

po−→)∗;
ĉom−→ e1

(Conclude with
po−→ being transitive)

If e1 = e3, we also have a simpler cycle:

e1
po−→ e2(

ĉom−→;
po−→)∗;

ĉom−→ e3 = e1

Conclusion: Cycle visit a thread at most once.

26

Test from cycles — Threads

Cycle: R
po−→W

rf−→ R
po−→W

rf−→ R
po−→W

rf−→ R
po−→W

rf−→
Consider a test execution on two threads:
The test execution features a smaller cycle

a: Rx=1

b: Wy=1

c: Rz=1

e: Ry=1

d: Wa=1

g: Ra=1

f: Wz=1

h: Wx=1

po

po

rf

po rf

po

rf po

po

rf

a: Rx=1

b: Wy=1

d: Wa=1

c: Rz=1

e: Ry=1

g: Ra=1

f: Wz=1

h: Wx=1

po

po

po

rf

po rf

po

rf po

po

rf

Generally: one passage per thread

27

Test from cycles — Locations

Cycle: R
po−→W

rf−→ R
po−→W

rf−→ R
po−→W

rf−→ R
po−→W

rf−→
One interpretation (four locations):

a: Rx=1

b: Wy=1 h: Wx=1

c: Ry=1

d: Wz=1

e: Rz=1

f: Wa=1

g: Ra=1
po rfrf po

rf

po rf po

Another interpretation (two locations):

a: Rx=2

b: Wy=1 h: Wx=2

c: Ry=1

d: Wx=1

e: Rx=1

f: Wy=2

g: Ry=2
po rfrf po

rf

po rf po

28

The second interpretation is not “minimal”

Reminding the interpretation with two locations:

a: Rx=2

b: Wy=1 h: Wx=2

c: Ry=1

d: Wx=1

e: Rx=1

f: Wy=2

g: Ry=2
po rfrf po

rf

po rf po

But, coherence
co−→ totally orders write events to a given location.

Let us choose: Wx1
co−→Wx2:

a: Rx=2

b: Wy=1 h: Wx=2

c: Ry=1

d: Wx=1

e: Rx=1

f: Wy=2

g: Ry=2
po rfrf po

rf

co

po rf po

We have a smaller cycle: d
co−→ h

rf−→ a
po−→ b

rf−→ c
po−→ d .

Choosing Wx2
co−→Wx1 would yield another smaller cycle.

Generally: do not repeat locations in cycles.

29

Simplifying cycles, a lemma

Lemma (Identical locations)

Let e1, e2 two different events with the same location,

1 either e1
ĉom−→ e2,

2 or e2
ĉom−→ e1,

3 or w
rf−→ e1 and w

rf−→ e2.

Case analysis:

w1,w2, then either w1
co−→ w2 or w2

co−→ w1 (total order).

r1, r2, let w1
rf−→ r1 and w2

rf−→ r2. Then, either w1 = w2 and we are

in case 3; or (for instance) w1
co−→ w2 and we have r1

fr−→ w2
rf−→ r2.

r1,w2, let w1
rf−→ r1. Then, either w1 = w2 and w2

rf−→ r1; or

w1
co−→ w2 and r1

fr−→ w2; or w2
co−→ w1 and w2

co−→ rf−→ r1.

Corollary:
com−→ is acyclic.

30

Simplifying cycles – Identical Locations

We show that we can restrict cycles to those where events with identical
locations are related by

com−→ steps.
Assume a cycle including e1 and e2 with the same location.

If e1 and e2 are from different threads. By hypothesis, e1 and e2 are

related by complex steps (i.e. at least one
po−→ and one

ĉom−→) in both
directions. By the identical locations lemma:

Either, e1
ĉom−→ e2 or e2

ĉom−→ e1, and we have a simpler cycle.

or, w
rf−→ e1 and w

rf−→ e2, — see next page!.

If e1 and e2 are from the same thread, i.e. for instance e1
po−→ e2,

while e2 relates to e1 by complex steps:

either e1
ĉom−→ e2 and we replace the

po−→ step in cycle, yielding a

simpler cycle (one (
po−→;

ĉom−→) step less)

or e2
ĉom−→ e2 and we have a very simple cycle e1

po−→ e2
ĉom−→ e1.

Or w
rf−→ e1 and w

rf−→ e2, we short-circuit the cycle — as the cycle

must be · · ·w rf−→ e1
po−→ e2 · · · , which we reduce into

· · ·w rf−→ e2 · · · .

31

Next page

So let us assume a cycle that includes r1 and r2, related in both directions

by complex steps and such that w
rf−→ r1 and w

rf−→ r2. We consider:

If w
rf−→ r1 is in cycle, then there is an obvious short-circuit: replace

rf−→ followed by the complex steps from r1 to r2 by a single w
rf−→ r2

step.

If w
rf−→ r2 is in cycle, symmetrical case.

Otherwise, it must be that both r1 and r2 are the target of
po−→ steps

and the source of
fr−→ steps: let w1 and w2 be the targets of those

steps.
Then, in all possible three situations: w1 = w2, w1

co−→ w2 and
w2

co−→ w1 we construct a simpler cycle that does not contain r1
or r2.

32

. . . Simplifying cycles — Conclusion

In a non SC execution we find:

A violation of coherence, that is a cycle e1
po−→ e2

ĉom−→ e1.

Or a critical cycle that is:

The cycle alternates
po−→ steps and external

ĉom−→ steps.
The cycle passes through a given thread at most once.

All
ĉom−→ steps have pairwise different locations.

The source and target of one given
po−→ steps have different

locations.

Notice: By the last condition, such cycles have four steps or more
and pass through two threads or more.

For a more formal presentation see D. Shasha and M. Snir Toplas 88
article, which introduced critical cycles.

33

Violations of coherence

A violation of coherence is a cycle e1
po−→ e2

ĉom−→ e1.

Given the definition of
ĉom−→, there are five such cycles, which can occur as

the following executions:
po−→ contradicts

co−→,
rf−→,

fr−→, “
co−→;

rf−→”,

“
fr−→;

rf−→”.

CoWW

a: Wx=1

b: Wx=2
po

co

CoRW1

a: Rx=1

b: Wx=1

rf
po

CoWR

a: Wx=1

b: Rx=0
po

fr

rf

CoRW2

a: Rx=2

b: Wx=1

c: Wx=2

po
co

rf

CoRR

a: Rx=1

b: Rx=0

c: Wx=1

po
fr

rf

rf

34

Application, all possible SC violations on two threads

Simply list all (critical) cycles for 2 threads, we have six cycles:

2+2W
po−→ co−→ po−→ co−→

LB
po−→ rf−→ po−→ rf−→

MP
po−→ rf−→ po−→ fr−→

R
po−→ co−→ po−→ fr−→

S
po−→ rf−→ po−→ co−→

SB
po−→ fr−→ po−→ fr−→

Any non-SC execution on two threads includes one of the above six
cycles.

Notice: up to coherence violations (previous slide).

35

Generating two-threads SC violations

The tool diy generates cycles (and tests) from a vocabulary of “edges”.
It can be configured for the two threads case as follows:

-arch X86 # target architecture

-safe Pod**,Rfe,Fre,Wse # vocabulary

-nprocs 2 # 2 procs

-size 4 # max size of cycle (2 X nprocs)

-num false # for naming tests

Demo in demo/diy.

% diy7 -conf 2.conf

Generator produced 6 tests

% ls

2+2W.litmus 2.conf @all LB.litmus

MP.litmus R.litmus SB.litmus S.litmus

% diy7 -conf 4.conf

Generator produced 68 tests...

36

Three violations of SC

2+2W

T0 T1

(a) x← 2 (c) y← 2

(b) y← 1 (d) x← 1

Observed? x=2; y=2;

a: Wx=2

b: Wy=1

c: Wy=2

d: Wx=1

po

co

po

co

LB

T0 T1

(a) r0← x (c) r1← y

(b) y← 1 (d) x← 1

Observe: r0=1; r1=1;

a: Rx=1

b: Wy=1

c: Ry=1

d: Wx=1

po

rf

porf

MP

T0 T1

(a) x← 1 (c) r0← y

(b) y← 1 (d) r1← x

Observed? r0=1; r1=0

a: Wx=1

b: Wy=1

c: Ry=1

d: Rx=0

po

rf

pofr

37

Three more violations of SC

R

T0 T1

(a) x← 1 (c) y← 2

(b) y← 1 (d) r0← x

Observed? y=2; r0=0

a: Wx=1

b: Wy=1

c: Wy=2

d: Rx=0

po

co

po

fr

S

T0 T1

(a) x← 2 (c) r0← y

(b) y← 1 (d) x← 1

Observed? x=2; r0=1

a: Wx=2

b: Wy=1

c: Ry=1

d: Wx=1

po

rf

poco

SB

T0 T1

(a) x← 1 (c) y← 1

(b) r0← y (d) r1← x

Observed? r0=0; r1=0

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po

fr

pofr

38

Application

We assume the following on modern shared memory architectures:

No valid execution includes a violation of coherence.
No valid execution includes a cycle whose

po−→ steps include the
adequate fence instruction between source and target instructions.
The full memory barrier is always adequate.

To guarantee SC:

Find all possible critical cycles of all possible executions on the
architecture.
Insert a fence in every

po−→ step of those.

Simplification:

Insert fences between all pairs of racy accesses with different locations

(notice that
ĉom−→ always includes a write).

Optimisation

Forbid specific (critical) cycles by specific means (lightweight barriers,
dependencies).

39

A semi realistic example

for (int k = N ; k >= 0 ; k--) {
a: x = k ;
b: go = 1 ;
c: while (go == 1) ;
}

int sum = 0 ;
for (int k = N ; k >= 0 ; k--) {
d: while (go == 0) ;
e: sum += x ;
f: go = 0 ;
}

To insert fence, consider separating accesses to go and x.

for (int k = N ; k >= 0 ; k--) {
a: x = k ;

sync() ;
b: go = 1 ;
c: while (go == 1) ;

sync() ;
}

int sum = 0 ;
for (int k = N ; k >= 0 ; k--) {
d: while (go == 0) ;

sync() ;
e: int t = x; sum += t;

sync() ;
f: go = 0 ;
}

40

A semi realistic example, more precise fencing

for (int k = N ; k >= 0 ; k--) {
a: x = k ;
b: go = 1 ;
c: while (go == 1) ;
}

int sum = 0 ;
for (int k = N ; k >= 0 ; k--) {
d: while (go == 0) ;
e: sum += x ;
f: go = 0 ;
}

The resulting static
po−→ relation is as follows.

a: W[x]=v

b: W[go]=1
po

c: R[go]=0

po

d: R[go]=1

e: R[x]=w
po

f: W[go]=0

po

41

Cycle 1

a: W[x]=v

b: W[go]=1
po

c: R[go]=0

po

d: R[go]=1
rf

e: R[x]=w
pofr

f: W[go]=0

po

Analysis based upon Sekar et al. Power model (PLDI’11). Test MP

a
lwsync−→ b, d

ctrlisync−→ e

X86: no fence needed.

42

Cycle 2

a: W[x]=v

b: W[go]=1
po

c: R[go]=0

po

f: W[go]=0

co

d: R[go]=1

e: R[x]=w
po

fr

po

Analysis based upon Sekar et al. Power model (PLDI’11). Test R

a
sync−→ b, f

sync−→ e

X86: f
mfence−→ e

43

Cycle 3

a: W[x]=v

b: W[go]=1
po

c: R[go]=0

po

f: W[go]=0fr

d: R[go]=1

e: R[x]=w
po

fr

po

Analysis based upon Sekar et al. Power model (PLDI’11). Test SB

a
sync−→ c , f

sync−→ e

X86: a
mfence−→ c , f

mfence−→ e

44

Cycle 4

a: W[x]=v

b: W[go]=1
po

e: R[x]=w

rf

c: R[go]=0

po

d: R[go]=1

fr po

f: W[go]=0

po

Analysis based upon Sekar et al. Power model (PLDI’11). Test MP

b
lwsync−→ a, e

ctrlisync−→ d

X86: no fence needed.

45

Cycle 5

a: W[x]=v

b: W[go]=1
po

e: R[x]=w

rf

c: R[go]=0

po

d: R[go]=1

po

f: W[go]=0

poco

Analysis based upon Sekar et al. Power model (PLDI’11). Test S

b
lwsync−→ a, e

ctrl−→ f

X86: no fence needed.

46

Cycle 6

a: W[x]=v

b: W[go]=1
po

e: R[x]=w

rf

c: R[go]=0

po

d: R[go]=1

po

f: W[go]=0

po

rf

Analysis based upon Sekar et al. Power model (PLDI’11). Test LB

c
ctrl−→ a, e

ctrl−→ f

X86: no fence needed.

47

Sufficient fencing, X86

f
mfence−→ e,

a
mfence−→ c , f

mfence−→ e

for (int k = N ; k >= 0 ; k--) {
a: x = k ;

mfence() ;
b: go = 1 ;
c: while (go == 1) ;
}

int sum = 0 ;
for (int k = N ; k >= 0 ; k--) {
d: while (go == 0) ;
e: int t = x; sum += t;
f: go = 0 ;

mfence() ;
}

Notice: Inserting full memory fence between racy writes gives the same
result.

48

Sufficient fencing, Power

a
lwsync−→ b, d

ctrlisync−→ e,
a

sync−→ b, f
sync−→ e,

a
sync−→ c , f

sync−→ e,
b

lwsync−→ a, e
ctrlisync−→ d ,

b
lwsync−→ a, e

ctrl−→ f ,

c
ctrl−→ a, e

ctrl−→ f

for (int k = N ; k >= 0 ; k--) {
a: x = k ;

sync() ;
b: go = 1 ;
c: while (go == 1) ;

lwsync() ;
}

int sum = 0 ;
for (int k = N ; k >= 0 ; k--) {
d: while (go == 0) ;

sync() ;
e: int t = x; sum += t;

ctrlisync(t) ;
f: go = 0 ;
}

49

Inline assembler for fences and ctrlisync

in l ine static void sync() {
asm __volatile__ ("sync" ::: "memory") ;

}

in l ine static void lwsync() {
asm __volatile__ ("lwsync" ::: "memory") ;

}

in l ine static void ctrlisync(int t) {
asm __volatile__ (
"cmpwi %[t],0\n\t"
"beq 0f\n\t"
"0:\n\t"
"isync\n\t"
:: [t] "r" (t) : "memory") ;

}

Notice: Inserting full memory fence between racy accesses is much more
simple.

50

Part 3.

Axiomatic TSO

51

TSO — The Model of X86 machines

Shared Memory

ThreadnThread1

W
rite

B
uff

er1

W
rite

B
uff

ern

Lock

W W

WW

R RR R

The write buffer explains how “reads can pass over writes”.

52

An experimental study of x86

Demo: (in demo/TSO1) Compiling:

% litmus7 -mach ./x86 ../diy/src2/@all -o run

% make -C run -j 4

Running:

% cd run

% sh run.sh > X.00

Analysis:

% grep Observation X.00

Observation R Sometimes 79 1999921

Observation MP Never 0 2000000

Observation 2+2W Never 0 2000000

Observation S Never 0 2000000

Observation SB Sometimes 1194 1998806

Observation LB Never 0 2000000

53

Results for running the six test on this machine

a: Wx=1

b: Wy=1

c: Wy=2

d: Rx=0

po

cofr

po

a: Wx=2

b: Wy=1

c: Ry=1

d: Wx=1

po

rf

poco

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po

frfr

po

R: Ok S: No SB: Ok

a: Wx=1

b: Wy=1

c: Ry=1

d: Rx=0

po

rf

pofr
a: Rx=1

b: Wy=1

c: Ry=1

d: Wx=1

po

rf

porf
a: Wx=2

b: Wy=1

c: Wy=2

d: Wx=1

po

co

po

co

MP: No LB: No 2+2W: No

54

Axiomatic TSO, model TSO 1

Remember SC:

Acyclic
(

rf−→∪ co−→∪ fr−→∪ po−→
)

A model for herd, our generic simulator:

let ppo = po # ppo stands for ’preserved program-order’

let com-hb = fr | rf | co # All comunications create order

acyclic (ppo | com-hb)

In TSO:

Write-to-read does not create order:

let ppo = (R*M | W*W) & po # All pairs except W*R pairs

Communication create order

let com-hb = rf | co | fr

TSO “happens-before” (hb) check:

acyclic (ppo | com-hb | mfence) as hb

Notice: Relations can be interpreted as being between the points in time
where a load binds its value and where a written value reaches memory.

55

Restoring SC with mfence

Replace “relaxed” (not in hb) WR(
po−→) by

mfence−→ (in hb).
R+po+mfence

T0 T1

(a) x← 1 (c) y← 2

(b) y← 1 mfence

(d) r0← x

Observed? y=2; r0=0

a: Wx=1

b: Wy=1

c: Wy=2

d: Rx=0

po

co fr

mfence
No

SB+mfences

T0 T1

(a) x← 1 (c) y← 1

mfence mfence

(b) r0← y (d) r1← x

Observed? r0=0; r1=0

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

mfence

fr

fr mfence
No

56

Our TSO 1 model is wrong!

Consider:

SB+rfi-pos

T0 T1

(a) x← 1 (d) y← 1

(b) r0← x (e) r2← y

(c) r1← y (f) r3← x

Observed? r0=1; r1=0; r2=1; r3=0;

a: Wx=1

b: Rx=1

c: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf

po

fr

rf

pofr

According to model ? No. As we have the hb cycle:

a
rf−→ b

po−→RR c
fr−→ d

rf−→ e
po−→RR f

fr−→ a

According to experiments ? Ok. Hence TSO 1 is invalidated by hardware.

The effect originates from “store forwarding”: A thread can read its own
writes from its store buffer, i.e. before they reach memory.

57

Observation of SB+rfi-pos

Demo in demo/TSO2.

Create test from cycle:

% diyone7 -norm -arch X86 Rfi PodRR Fre Rfi PodRR Fre

% ls

SB+rfi-pos.litmus

Run test:
% litmus7 -mach x86.cfg src/SB+rfi-pos.litmus

...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for src/SB+rfi-pos.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB+rfi-pos

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

MOV EBX,[y] | MOV EBX,[x] ;

exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0)

...

Test SB+rfi-pos Allowed

Histogram (4 states)

12440 *>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=0;

3992819:>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

3994289:>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

452 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=1;

Ok

...

58

Corrected model: TSO 2

Internal
rf−→ (

rfi−→) does not create order, external
rf−→ (

rfe−→) does:

let com-hb = rfe | fr | co #rfi not in hb

acyclic ppo | com-hb | mfence

The new hb is no longer cyclic:

a: Wx=1

b: Rx=1

c: Ry=0

d: Wy=1

f: Rx=0

e: Ry=1

rf

popo

fr po

rf

po

fr

(Also consider that a
po−→WR c and d

po−→WR f are non-global.)

59

This is not over yet. . .

Our TSO 2 model:

let ppo = (R*M | W*W) & po # (W*R) & po absent

let com-hb = rfe | fr | co # rfi absent

acyclic (ppo | com-hb | mfence) as hb

Allows two violations of coherence:

CoRW1

a: Rx=1

b: Wx=1

rf
po

CoWR

a: Wx=1

b: Rx=0
po

fr

rf

rfi−→ not in
hb−→ W

po−→ R not in
hb−→

Although TSO2 is not invalidated by hardware. Those “surprising”
behaviours must be rejected by our TSO model.

60

A new check: uniproc

We add a specific uniproc check to rule out coherence violations:

Irreflexive

(
po-loc−→ ;

ĉom−→
)

Where
po-loc−→ is

po−→ between accesses to the same memory location.

let complus = rf | fr | co | (co;rf) | (fr;rf)

irreflexive (po-loc; complus) as uniproc

...

In the TSO case we can “optimise”:

irreflexive rf;RW(po-loc)

irreflexive fr;WR(po-loc)

because the other coherence violations are rejected by the hb check.

61

Our final TSO model

TSO3

let comhat = rf | fr | co | (co;rf) | (fr;rf)

irreflexive (po-loc; comhat) as uniproc

let ppo = (R*M | W*W) & po # (W*R) & po absent

let com-hb = rfe | fr | co # rfi absent

acyclic ppo | mfence | com-hb as hb

Notice: There are two checks. . . The axiomatic frameworks defines
principles that the operational model/hardware implement.

For instead, we do not explain how uniproc is implemented. Instead, we
specify admissible behaviours.

62

A word on uniproc

An alternative definitions of “coherence” amounts to “SC per location”’.
(Jason F. Cantin, Mikko H. Lipasti, James E. Smith ACM Symposium on
Parallel Algorithms and Architectures 2004).

Definition (Uniproc 1)

Acyclic
(

po-loc−→ ∪ com−→
)

with
com−→ =

rf−→∪ co−→∪ fr−→.

From cycle analysis, we have the more attractive definition (since relying
on local action of the core and on the existence of coherence orders):

Definition (Uniproc 2)

Irreflexive

(
po-loc−→ ;

ĉom−→
)

Definitions are equivalent.

63

Equivalence of uniproc definitions

Uniproc 1 =⇒ Uniproc 2 is obvious, as
po-loc−→ ;

ĉom−→ is included in(
po-loc−→ ∪ com−→

)+

(since
ĉom−→= (

com−→)+).

Conversely, we use the “Identical locations” lemma.

Consider a cycle in
po-loc−→ ∪ com−→, s.t. for all e1

po−→ e2 steps we do not have

e2
ĉom−→ e1. Then, for a given e1

po−→ e2 step:

Either, r1
po−→ r2 , with w

rf−→ r1 and w
rf−→ r2. We short-circuit the

po−→ step, replacing w
rf−→ r1

po−→ r2 by w
rf−→ r2.

Or, e1
ĉom−→ e2. We replace the

po−→ step by
com−→ steps.

As a result we have a cycle in
com−→, which is impossible.

64

From TSO to x86-TSO: locked instructions

Those instructions perform a load then a store to the same location: they
generate an atomic pair r

rmw−→ w . Additionally, r and w are tagged
“atomic”.
Example: xchgl r,x .

We further enforce:

Writes w ′ to the location are either before the pair or after it:(
r

rmw−→ w
)

=⇒
(
w ′

rf−→ r ∨ w ′
co−→ rf−→ r ∨ w

co−→ w ′
)

Or more concisely, we forbid r
fr−→ w ′

co−→ w , that is no w ′

in-between.
rmw−→∩ (

fr−→;
co−→) = ∅

“Fence semantics”: locked instructions act as fences.

65

atom check

The atom check forbids this execution:

EXCH

T0 T1

(a) x← 1 r← 2

(b/c) r1↔ x

Observed? r=0; y=2

a: Wx=1

c: Wx*=2

b: Rx*=0

co

fr

fr rmw

66

Implied fences

Implied fences forbid this execution

SB+EXCH

T0 T1

r← 1 r← 1

(a/b) r↔ x (d/e) r↔ y

(c) r0← y (f) r1← x

Observed? r0=0; r1=0

a: Rx*=0

b: Wx*=1

c: Ry=0

e: Wy*=1

d: Ry*=0

f: Rx=0

rmwfr

implied fr

rmw fr

fr implied

Cycle: b
implied−→ c

fr−→ e
implied−→ f

fr−→.

67

x86-TSO model for herd

Predefined sets: W, R, M (any memory event), A (“atomic” memory
event).

(* Uniproc *)

let comhat = rf | fr | co | (co;rf) | (fr;rf) # or (rf|fr|co)+

irreflexive po; comhat as uniproc

(* Atomic pairs *)

empty rmw & (fre;coe) as atom

(* Implied fences (restricted to WR pairs) *)

let poWR = (W*R) & po

let implied = (M*A | A*M) & poWR

(* Happens-before *)

let ppo = (R*M | W*W) & po # W*R pairs omitted

let com-hb = rfe | fr | co # rfi omitted

acyclic ppo | mfence | implied | com-hb as hb

68

Alternative formulation, or constrained domains and
codomains

Given set S , [S] is identity on S .
As a consequence, [S1] ; r; [S2] and r&(S1*S2) are equal.

s1 s2r

Then, for instance, we may reformulate TSO preserved program order as:

...

(* let ppo = (R*M|W*W) & po *)

let ppo = [R];po;[M] | [W];po;[W]

...

69

Part 4.

Axiomatic ARM/Power

70

A relaxed shared memory computer

RW

W

W

W

W

R

R

R

R W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Thread1

Memory1

M
em

ory
2

Memory3Memory
4

M
em

or
y 5

T
hread

2

Thread3Thread4
T

hr
ea

d 5

More or less visible to user
code:

Cores:

Out of order
execution
Branch speculation
Write buffers

Memory

Physically distributed
Caches

71

Situation of (our) ARM/Power models

Architecture public reference Informal, cannot clearly explain how
fences restore SC for instance.

Operational model: (PLDI’11) more precise, developped with IBM
experts. It is quite complex, and the simulator is very slow.

Multi-event axiomatic model: (CAV’12) more precise (equivalent
to PLDI’11), uses several events per access.

Single-event axiomatic model: (. . .)

(TOPLAS’14) ARMv7 (ARM) and Power (PPC), more precise (proved
to be more relaxed than PLDI’11, experimentally equivalent). A
more simple axiomatic model.
ARMv8 (AArch64), official model, endorsed by ARM Ltd.

Joint work with (in order of appearance) Jade Alglave, Susmit Sarkar,
Peter Sewell, Derek Williams, Kayvan Memarian, Scott Owens, Mark
Batty, Sela Mador-Haim, Rajeev Alur, Milo M. K. Martin and Michael
Tautschnig.

72

Some issues for ARM/Power

No simple preserved-program-order. More precisely,
ppo−→ will now

account for core constraints, such as dependencies.

Communication relations alone do not define happen-before steps.

A variety of memory fences: lightweight (Power lwsync) and full
(Power sync).

73

Two-threads SC violation for ARM

Generating tests is as simple as:

% diy -conf 2.conf -arch ARM

With the same configuration file 2.conf as for X86.
Then, compile (in two steps, generate C locally, compile it on target
machine), run and. . .

Observation R Sometimes 5722 1994278

Observation MP Sometimes 3571 1996429

Observation 2+2W Sometimes 17439 1982561

Observation S Sometimes 7270 1992730

Observation SB Sometimes 9788 1990212

Observation LB Sometimes 4782 1995218

All Non-SC behaviours observed!

No hope to define
ppo−→ as simply as for TSO.

74

An experiment on ARM/Power

Consider test MP:

MP

T0 T1

(a) x← 1 (c) r0← y

(b) y← 1 (d) r1← x

Observed? r0=1; r1=0

a: Wx=1

b: Wy=1

c: Ry=1

d: Rx=0

po

rf

pofr

We know that the test is Ok (observed, valid) on ARM/Power, what
does it take (amongst fences, dependencies,) to make the test No
(unobserved, invalid)?

I Fences: dsb, dmb, isb (ARM); sync, lwsync, isync (Power).

I Dependencies: address, data, control, control+isb/isync.

75

Dependencies (Power)

Address dependency:

r1← x

r2← t[r1]

lwz r1,0(r8) # r8 contains the address of ’x’

slwi r7,r1,2 # sizeof(int) = 4

lwzx r2,r7,r9 # r9 contains the address of ’t’

Data dependency:

r1← x

y← r1+1

lwz r1,0(r8) # r8 contains the address of ’x’

addi r2,r1,1

stw r2,0(r9) # r9 contains the address of ’y’

Control dependency: (+isync)

r1← x

if r1=0 then
(isync)
y← 1

lwz r1,0(r8)

cmpwi r1,0

bne L1

(isync)

li r2,1

stw r2,0(r9)

L1:

76

Generating tests (ARM), yet another tool: diycross

Generating tests with diycross (demo in demo/diycross):

% diycross -arch ARM\

PodWW,DMBdWW,DSBdWW,ISBdWW\

Rfe\

PodRR,DpCtrldR,DpCtrlIsbdR,DpAddrdR,DMBdRR,DSBdRR,ISBdRR\

Fre

Generator produced 28 tests

I One generates MP as diyone PodWW Rfe PodRR Fre

I diycross r1
1 , . . . , r

1
N1
· · · rM , . . . , rMNM

, generates the N1 × · · · × NM

cycles r1
k1
· · · r `k` · · · r

M
kM

by cross-producting the given edge list
arguments.

This generates some variations in the MP family.

We then compile and run, and. . .

77

Optimal fencing/dependencies for MP

MP+po+isb

MP+po+dmb

MP+dmb+isb

MP+po+ctrl

MP+dmb+ctrl

MP+isbs

MP+isb+dmb

MP+isb+po

MP+isb+ctrlisb MP+isb+addrMP+dmb+po

MP+isb+ctrl MP

MP+po+ctrlisb MP+po+addr

MP+po+dsb

MP+dmb+dsb

MP+isb+dsbMP+dmbs

MP+dmb+ctrlisb MP+dmb+addrMP+dsb+po

MP+dsb+ctrlisb MP+dsb+addr

MP+dsb+isb

MP+dsb+dmb

MP+dsb+ctrl

MP+dsbs

78

Optimal fencing for the 6 two-threads tests (Power)

R+syncs

a: Wx=1

b: Wy=1

c: Wy=2

d: Rx=0
sync co

fr

sync

S+lwsync+addr

a: Wx=2

b: Wy=1

c: Ry=1

d: Wx=1
lwsync

rf

co addr

SB+syncs

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0
sync

fr fr

sync

MP+lwsync+addr

a: Wx=1

b: Wy=1

c: Ry=1

d: Rx=0
lwsync

rf fr

addr

LB+addrs

a: Rx=1

b: Wy=1

c: Ry=1

d: Wx=1
addr

rf rf

addr

2+2W+lwsyncs

a: Wx=2

b: Wy=1

c: Wy=2

d: Wx=1
lwsync co

co

lwsync

79

Some observations

In the previous slide we considered increasing power (and cost):

addr < lwsync < sync

Then:

Dependencies (address) are sufficient to restore order from reads to
writes and reads in two-threads examples (but. . .)

Fences restore order from writes to write and reads.

Full fence (sync) is required from write to read.

When to use the lightweight fence between writes is complex:
2+2W+lwsyncs vs. R+lwsync+sync.

2+2W+lwsyncs

a: Wx=2

b: Wy=1

c: Wy=2

d: Wx=1
lwsync co

co

lwsync

R+lwsync+sync

a: Wx=1

b: Wy=1

c: Wy=2

d: Rx=0
lwsync co

fr

sync

No Ok

80

Dependencies are enough

CAUSAL

T0 T1

(a) r0← x (c) r1← y

(b) y← r0 (d) x← r1

Observed? r0=42; r1=42;

LB+datas

a: Rx=42

b: Wy=42

c: Ry=42

d: Wx=42
data rf

rf

data

Of course we never observe this behaviour (values out of thin air) and
any (hardware) model should forbid it.
Happens-before If we order: (1) stores: the point in time when the
value is made available to other threads (2) loads: the point when the
value is read by core.

81

Dependencies from reads not always enough!

Consider test WRC+data+addr:

WRC+data+addr

T0 T1 T2

(a) x[0]← 1 (b) r0← x (d) r1← y

(c) y← r0 t← r1&4

(e) r2← x[t]

Observed? r0=1; r2=0;

WRC+data+addr

a: Wx[0]=1 b: Rx[0]=1

c: Wy[0]=1

d: Ry[0]=1

e: Rx[0]=0

rf

data rf
fr

addr

Behaviour is legal on Power 6,7 (observed) and ARMv7 (non observed).

Stores are not “multi-copy atomic” T0 and T1 share a private
buffer/cache/memory (e.g. a cache in SMT context). T2 “does not see”
the store by T0, when T1 does.

82

Restoring SC for WRC

Use a lightweight fence on T1:

WRC+lwsync+addr

T0

a: Wx=1 b: Rx=1

T1

c: Wy=1

d: Ry=1

T2

e: Rx=0

rf

lwsync rf
fr

addr

Observation: The fence orders the writes a (by T0) and c (by T1) for
any observer (here T2). Similar to more simple MP

MP+lwsync+addr

a: Wx=1

b: Wy=1

c: Ry=1

d: Rx=0
lwsync

rf fr

addr

83

Another, symetric, case of insufficient dependencies

Consider test IRIW+addrs:

IRIW

T0 T1 T2 T3

(a) x[0]← 1 (b) r0← x[0] (d) y[0]← 1 (e) r2← y[0]

t← r0^r0 t← r2^r2

(c) r1← y[t] (f) r3← x[t]

Observed? r0=1; r1=0; r2=1; r3=0;

IRIW+addrs

a: Wx[0]=1 b: Rx[0]=1

f: Rx[0]=0c: Ry[0]=0

d: Wy[0]=1 e: Ry[0]=1
rf

fr
addr

fr

rf

addr

Behaviour observed on Power (not on ARM, but documentation allows
it).
Stores are not “multi-copy atomic”: T0 and T1 have a private
buffer/cache/memory, T2 and T3 also have one.

84

Restoring SC for IRIW

Use a full fence on T1 and T2:

IRIW+syncs

T0

a: Wx=1 b: Rx=1

f: Rx=0

T1

c: Ry=0

d: Wy=1

T2

e: Ry=1

T3
rf

fr

sync fr

rf

sync

Propagation: Full fences order all communications.

85

Relation summary

Communication relations:

I Read-from: w
rf−→ r , with loc(w) = loc(r), val(w) = val(r).

I Coherence: w
co−→ w ′, with loc(w) = loc(w ′) = x . Total order for

given x : hence “coherence orders”.

I We deduce from-read: r
fr−→ w , i.e w ′

rf−→ r and w ′
co−→ w .

I We distinguish internal (same proc,
rfi−→,

coi−→,
fri−→) and external

(different procs,
rfe−→,

coe−→,
fre−→) communications.

“Execution” relations

I Program order: e1
po−→ e2, with proc(e1) = proc(e2).

I Same location program order: e1
po-loc−→ e2.

I Preserved program order: e1
ppo−→ e2, with

ppo−→⊆ po−→. Computed
from other relations, includes (effective) dependencies (control
dependency from read to read is not effective)

I Fences: effective strong and lightweight fences in between

events
strong−→ and

light−→. Effective means that for instance w
lwsync−→ r

does not implies w
light−→ r .

86

A model in four checks (TOPLAS’14)

uniproc

acyclic poloc | com as uniproc

no-thin-air

let fence = strong | light and hb = ppo | fence | rfe

acyclic hb as no-thin-air

observation Fences (any fences) order writes:

let propbase = (((W*W) & fence)|(rfe; ((R*W) & fence)));hb*

irreflexive fre;propbase as observation

propagation Strong fences order all communications. Simple
formulation:

let com = rf|fr|co

acyclic com|strong as propagation

In actual model, a more strict condition:

let prop = (W*W)&propbase|(com*;propbase*;strong;hb*)

acyclic co | prop as propagation

87

ARM/Power preserved program order

Rather complex, results from a two events per access analysis (cf.
CAV’12).

(* Utilities *)

let dd = addr | data let rdw = po-loc & (fre;rfe)

let detour = po-loc & (coe ; rfe) let addrpo = addr;po

(* Initial value *)

let ci0 = ctrlisync | detour

let ii0 = dd | rfi | rdw

let cc0 = dd | po-loc | ctrl | addrpo

let ic0 = 0

(* Fixpoint from i -> c in instructions and transitivity *)

let rec ci = ci0 | (ci;ii) | (cc;ci)

and ii = ii0 | ci | (ic;ci) | (ii;ii)

and cc = cc0 | ci | (ci;ic) | (cc;cc)

and ic = ic0 | ii | cc | (ic;cc) | (ii ; ic)

let ppo = [R]; ic; [W] | [R]; ii; [R]

Can be limited to dependencies. . .
88

ARMv8 model

ARMv8 is an “other multicopy atomic” architecture.

That is, writes are “performed” for all participants, as soon as
“performed” for one (external) participant.

As regards tests, this means that, say WRC+data+addr and
IRIW+addrs are forbidden (but SB+rfi-addrs, cf. slide 57, is still
allowed).

From the axiomatic point of view, rfe (as well as fr and co) is part of
happens-before. And the Cat model is simplified.

In effect, no-thin-air, observation and propagation can be
performed by one single check, here called “external”.

89

ARMv8 model: aarch64.cat from herd distribution.

irreflexive po;com+ as internal

empty rmw & (fre;coe) as atomic

let lob = # localy ordered before, aka inclusive ppo

...

| [M];po-loc;[W] # same as fri|coi

let obs = # ’external’ observation

rfe|fre|coe

let rec ob = # ordered-before, aka happens-before

obs

| lob

| ob; ob # Recursive forumulation for transitive closure

irreflexive ob as external

90

A few details

Armv8 features load-acquire instructions — two of them, Acquire
(LDAR) and AcquirePC (LDAPR), events A and Q; and store-release
instructions — STLR, events L.

(* Barrier-ordered-before *)

let bob = ... # Fences left out

| [A | Q]; po # Acquire

| po; [L] # Release

| [L]; po; [A] #

let lob = ... | bob | ...

let ob = rfe | fre | coe | ... | lob | ...

Those rules, plus external communication being part of ordered-before
entails that using load-acquire and store-releases restores SC.

91

Bug or feature?

Once we have a model or while looking for it. . .
The following execution: is observed on all (tested) ARMv7 machines.

a: Wz=1

b: Ry=0

d: Rz=1

e: Wz=2

c: Rz=2

po

rf

co

addr

po
fr

rf

It features a CoRR-style coherence violation (i.e.
po−→ contradicts

fr−→;
rf−→). Notice: CoRR is not observed as easily.

I Definitively a hardware anomaly.

I Not observed on ARMv8

92

Part 5.

Axiomatic C11

93

The C11, memory model, quick starter

C11 features “atomic” scalar types atomic int, etc. and “atomic”
operations atomic store explicit(p,v,m),
atomic load explicit(p,m) (and more. . .).

It also feature fences atomic thread fence(m).

Where m is a “memory-order”, relaxed, acquire, release, sequential
consistent (and consume, neglected), with annoyingly long names
memory order relaxed, . . . , memory order seq cst.

In Cat memory-order specifications result in sets of events RLX, ACQ,
. . . , SC. Those events can be reads or writes (sets R and W) but also
fences (set F).

94

Significant differences, w.r.t. hardware models

I No real preserved-program-order, as po is part of happens-before hb.
Defining dependencies is impossible for the sake of compiler
optimisations.

I As a result, general communications cannot be part of hb. If so we
define SC!

I C favors atomic accesses overs fences. This resulted in (initial) weak
semantics of SC fences.

I In case of data-race: undefined behaviour:
let conflict = ((W * _) | (_ * W)) & loc & ext

let dr = conflict \ (hb | hb^-1 | A * A)

A = atomic access

flag ~empty dr as DataRace

I The C11 model have evolved since first release, some points
(essentially no-thin-air) still debated.

We present “Repaired C11”

“Repairing Sequential Consistency in C/C++11” Ori Lahav,
Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur and Derek
Dreyer: PLDI 2017.

95

(Repaired) C11 model. happens-before

The happens-before, hb relation is build from sb (sequenced-before,
C-style program-order). and sw (synchronize-with).

Mx
1

sb

WRel

RAcq

rf

WRel

hb

RAcq

rf

sb

M2
y

(* rf from write release

to read acquire *)

let sw = [REL];rf;[ACQ]

(* hb is a sequence of

(alternating)

sw and sb steps *)

let hb = (sb | sw)+

We present a simplified view of actual synchronised-with. . . Notice that
this sequence is similar to critical sections ordering: Lock is akin to
load-acquire, UnLock to store-release.

96

RC11 happens-before, the full story

We have relase-sequence, rs:

let RLX-OR-MORE = RLX|REL|ACQ_REL|ACQ|SC

let sb-loc = sb & loc

let rs = [W]; sb-loc?; [W & RLX-OR-MORE];(rf;rmw)*

Notice that rs includes [W & REL], the most simple “release sequence”.

Then, full synchronise-with:

let REL-OR-MORE = REL | ACQ_REL | SC

and ACQ-OR-MORE = ACQ | ACQ_REL | SC

let sw =

[REL-OR-MORE]; ([F]; sb)?; rs;

rf;

[R & RLX-OR-MORE]; (sb; [F])?; [ACQ-OR-MORE]

let hb = (sb | sw)+

97

RC11,“coherence” check

let eco = (rf|fr|co)+ // Our old friend
ĉom−→

irreflexive hb; eco? as coherence

Interestingly, “coherence” above regroups both uniproc (sb included
in hb) and generalised observation (communication vs. hb).

Mx
1

sb

WRel

RAcq

rf

WRel

hb

RAcq

rf

sb

M2
x

eco

98

Out of thin-air values cannot be neglected

I If any value can pop-up at any time no program proof is possible.

I Allowing LB+datas over non-atomics (for instance) hinders the
DRF theorem.

I Out-of-thin-air values are not precisely defined, partly because
dependencies are difficult to define in a (optimised) programming
language.

int r0 = atomic load explicit(x,memory order relaxed) ;
int r1 = 0 ;
i f (r0 == 42) { r1 = 42; } else { r1 = 42; }
atomic store explicit(y,r1,memory order relaxed) ;

int r2 = atomic load explicit(y,memory order relaxed) ;
atomic store explicit(x,r2,memory order relaxed) ;

Allow x=42, y=42? (include sophisticated, a.k.a “semantical”
control dependencies definition in hb) Forbid? (hinders
optimisation?)

99

RC11 radical stance against out-of-thin-air

Forbid any “LB” shape.

acyclic sb | rfe as no-thin-air

To be compared with machine level no-thin-air

acyclic ppo | fence | rfe as no-thin-air

As a result, “causality” cycles are radically excluded.

Still in discussion, because such a solution entails a (light in our opinion)
runtime penalty.

At present, alternative solutions are complex, roughly in operational
semantics terms: they rely on forging values for reads (promises), and
then checking that promises are fulfilled by any possible reduction in any
context.

100

Restoring SC: the big deal of RC11

For SC atomics:

let sb-xy = sb \ loc # sb, different locations

SC-before

let scb = sb | sb-xy; hb; sb-xy | hb&loc | co | fr

let pscb = ([SC] | [F & SC]; hb?); scb; ([SC] | hb? ; [F & SC])

let pscf = [F & SC]; (hb | hb; eco; hb); [F & SC]

acyclic pscb | pscf as sc

Given for completeness, some points

I Acyclicity of pscf entails “simple” strong fence SC-preserving
condition

acyclic [F]; hb; eco ; sb; [F] # or acyclic eco; sb; [F]; hb

I C11 fence semantics significantly strengthened w.r.t. previous
models.

I Complex definition of scb. Weaker than simply including hb in scb.
But then, SC atomics can be compiled by using hardware fences.

101

How good are our models?

Are they sound?

I Proofs of equivalence or at least of axiomatic models being weaker
than operational ones.

I Proof of compilation correcteness (from RC11 to. . .).

I Experiments
. Soundness w.r.t. hardware (ARMv7 being a bit problematic

because of acknowledged read-after-read hazard).
. Experimental equivalence with our previous models.

Above all:

I Vendor approval (ARM Ltd. for ARMv8).

I Comitee acceptance (almost for RC11).

In any case:

I Simulation is fast.

I The existence of four checks uniproc, hb observation and
propagation stand on firm bases.

I The semantics of strong fences also does.

I The model and simulator (i.e. herd) are flexible, one easily change a

few relations (e.g.
ppo−→, or the semantics of weak fences).

102

Some valuable readings

“A diy “Seven” tutorial” Jade Alglave, Luc Maranget. Sofware
and documentation,
http://diy.inria.fr/doc/index.html.

“Herding Cats: Modelling, Simulation, Testing, and Data
Mining for Weak Memory” Jade Alglave, Luc Maranget,
Michael Tautschnig: ACM Trans. Program. Lang. Syst. 36(2):
7:1-7:74 (2014)

“Repairing Sequential Consistency in C/C++11” Ori Lahav,
Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur and Derek
Dreyer: PLDI 2017.

103

