Exercises, mostly on pthread

1 Semaphores

A semaphore is an old fashioned synchronisation primitives that generalises the mutex: the semaphore is
given a capacity and at most capacity threads can be in critical section simultaneously. Hence, a mutex is a
semaphore with capacity 1.
For historical reasons semaphore lock is called “wait” and semaphore unlock is called “post”.
Important: Code template for this exercice is available in directory semaphore from the companion
archive.

1.1 Coding a semaphore

Given a semaphore s initialised to capacity ¢, critical sections are defined from a call to wait_semaphore (s)
(analog of lock_mutex) to post_semaphore (s) (analog of unlock_mutex). The semaphore uses an inter-
nal counter nfree to count the number of threads allowed to enter critical section. The counter is initialised
to ¢ at semaphore creation time, then:

e wait_semaphore (s) checks that nfree is non-null and decrements it. If nfree is null, the thread
suspends.

e post_semaphore (s) increments nfree and release waiting threads.

One may write a semaphore with a mutex (to protect the modifications of nfree) and a condition variable
(to wait on). Complete the following code:

/* Stgnature of mutexr and condition wvartable primitives */

pthread_mutex_t *alloc_mutex(void) ;
void free_mutex(pthread_mutex_t *p) ;
void lock_mutex(pthread_mutex_t *p) ;
void unlock_mutex(pthread_mutex_t *p) ;

pthread_cond_t *alloc_cond(void) ;

void free_cond(pthread_cond_t *p) ;

void wait_cond(pthread_cond_t *c, pthread_mutex_t *m) ;
void signal_cond(pthread_cond_t *c) ;

void broadcast_cond(pthread_cond_t *c) ;

/* Semaphore structure */
typedef struct {
volatile int nfree ;
pthread _mutex_t *mutex ;
pthread_cond_t *cond ;
} semaphore_t ;

semaphore_t *alloc_semaphore(int capacity) { ... }

void free_semaphore(semaphore_t *p) { ... }
void wait_semaphore(semaphore_t *p) { ... }

void post_semaphore(semaphore_t *p) { ... }

1.2 Semaphore usage

We consider nprocs threads running function T1 below, with argument described by ctx_t below:

typedef struct {
int size ;
pthread_barrier_t *b ;
semaphore_t *sem ;

} common_t ;

typedef struct {

int id ;

common_t *common ;
} ctx_t ;

void *T1(void *_p) {

ctx_t *p = _p ;

common_t *q = p->common ;

for (int k = g->size-1 ; k >= 0 ; k--) {
wait_semaphore(q->sem) ;
printf ("+") ;
printf("-")
post_semaphore (q->sem) ;
wait_barrier(q->b) ;
if (p->id == 0) printf("\n")
wait_barrier(q->b) ;

}
return NULL ;

}

With a semaphore of capacity 2, g->size = 1 and nprocs == 4. Classify the following outputs as legal
or illegal, giving a short explanation in each case:

1. ++——+—+-
2. +++—+——-
3. —+—+—+—+
4. +—+—+-+-

5. ++++++++

1.3 C11 coding
Write the same program using C11 standard primitives. To that aim, you may need:

e Documentation, see for instance https://en.cppreference.com/w/c/atomicland https://en.cppreference.
com/w/c/thread.

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/thread
https://en.cppreference.com/w/c/thread

e A C11 compiler and standard library. On Linux, if your distribution defaults are not sufficient (as it
is the case on Ubuntu 18.04 LTS for instance), you can install the musl-tools package and use the
musl-gcc compiler.

The companion archive contains a template sem11.c, with missing parts shighlighted by TODO comments.

2 Sequentially consistent or not?
The following small programs are written in pseudo-C. Following our usual conventions x and y are shared

memory locations, while rO and r1 are registers. Moreover, *x = 1 is a store; while rO = *x is a load.
Shared locations and registers hold zero as initial value. By definition, a behaviour is a choice of final values

Figure 1: Four small programs

Test 1 Test 2
_________ P U,
TO | T1 TO | T1
_________ JPI e
*x = | 0 = *y xx = 2 | xx =1
xy =1 | *xx =1 xy = 1 | r0 = %y
_________ P e
Observe x,r0 Observe: x,r0
Test 3 Test 4
_________ JPI e
TO | T1 TO | T1
_________ o ———_—— —————————e e
*x =1 | xy =1 xx = 1 | xy =1
r0 = *xy | rl = *x r0 = *x | rl = %y
_________ P e

Observe r0,rl Observe r0,rl

for some observed locations. That is, shared locations x and r0 for Test 1 and Test 2; registers rO and ri
for Test 3 and Test 4.

We consider valid behaviours, i.e. behaviours that result from executions such that each load of a memory
cell reads a value written by a store to the same memory cell or the initial value zero. List all valid behavours
of the four tests, identifying sequentially consistent (SC) behaviours.

3 A concurrent component

We aim at building a concurrent component on top of POSIX threads. The component and_t operates for
nprocs participant threads, the number of participant threads being fixed at component allocation time:

and_t *alloc_and(int nprocs) ;

Each thread will call the following function:

int wait_and(and_t *p,int b) ;

where b is some integer encoding a boolean (i.e. 0 is false, while 1 is true). The call wait_and returns
only when all participants have submitted their boolean and returns the conjunction (and) of all submitted
booleans. Hence the and_t component looks very much like a synchronisation barrier that additionally
returns a boolean.

It is important to notice that participants can call wait_and several times, just as they can call a POSIX
synchronisation barrier several times.

3.1 Barrier encoding

We first write the component by the means of a POSIX synchronisation barrier (described in slides 8-9 of
lesson 2). Here is the type of component and the alloc_and function:

typedef struct {

pthread_barrier_t *b ; // Posiz synchronisation barrier

int v ; // You’ll need that field to compute result
} and_t ;

and_t *alloc_and(int nprocs) {
and_t *p = malloc_check(sizeof (¥p)) ;

p—>v =1 ; // This ts the conjunction of zero boolean.
p->b = alloc_barrier(nprocs) ;
return p ;

3

Write the wait_and function. You’ll probably have to call wait_barrier (p->b) several times.

3.2 Direct coding

We now write the component by the means of the basic POSIX synchronisation primitives: locks and
condition variables.
Here is an incomplete definition of type and_t and an incomplete alloc_and function:

typedef struct {
pthread_cond_t *cond ;
pthread _mutex_t *mutex ;
/* Hum the following should remind you of something... */
int nprocs,count ;
int turn ;

} and_t ;

and_t *alloc_and(int nprocs) {
and_t *p = malloc_check(sizeof (x¥p)) ;
p->cond = alloc_cond();
p->mutex = alloc_mutex() ;
p->nprocs = p->count = nprocs ;
p->turn = 0 ;
return p ;

}

Complete the above definitions and write the wait_and function. You can start from the code of wait_barrier
on slide 18 of lesson 2.

4 A process farm

We aim at building a simple “process farm” framework:

e A worker will perform a computation. More precisely given a task x, a worker computes y = F'(z) and
accumulate in a “running” result r by calling a function C' (r = C(y,r)).

o A master will allocate some tasks to workers and control their execution.

Additionally there cannot be more than nprocs workers running concurrently.

We have already seen such a framework in class 01 based upon a FIFO. Here we aim at another solution
based upon two components: a pool that will manage worker allocation, checking that no more than nprocs
are running concurrently, and a monitor that will manage computation of partial results and termination.
Notice that our process farm will create one (POSIX) thread per taskﬂ

In practice, you have to write C code for those two components from the templates in directory pool.
The pool directory also contains two examples the simple tst.c example and the more sophisticated run.c
example: The associated Makefile builds the executables tst.out and run.out.

e The tst example computes the sum of the first n integers (i.e. F(x) =« and C(y,r) =y +).

e The run example computes the number of polyominoes of size n, using the code presented in class 01.
That is, given x the description of a partial polyomino of size n—d, F' returns the number of polyominoes
of size n that contain z; and C(y,r) = y + r again.

Important: You have to complete the source files pool.c and monitor.c. Once you are done, you can test
your components as follows:

% make

% ./tst.out
5050

% ./run.out
27394666

You can also try . /tst.out nprocs n, to sum the n first integers using nprocs cores; or . /run.out -j nprocs n
to compute the number of polyominoes of size n using nprocs cores. Both examples will output some
information on what happens if you give them the command-line option -v, which can be repeated for more
diagnostics.

We now describe the simple example tst.out, so as to demonstrate the pool and monitor components
usage.

Pool

The master simply executes a loop from 1 to n, spawning a worker for each loop indice value:

typedef struct {
pool_t *pool ;
monitor_t *monitor ;
} common_t ;

void master(int nprocs, int n) {
common_t c ;

c.pool = alloc_pool(nprocs) ;

for (int kX =1 ; k <= n ; k++) {
look_pool(c.pool) ;
spawn_worker (k,&c) ;

}

More precisely 1look_pool will suspend if nprocs or more workers are already running. Otherwise, look_pool
returns immediately having altered the pool structure that will remember that a worker is running.

It will be the worker responsibility to inform the pool when it becomes available again. In the simple
example, it works as follows:

1Threads can be cached by another component so as to amortised thread creation costs. We neglect this issue.

typedef struct {
int arg ;
common_t *xcommon ;
} worker_t ;

void *worker (void *p) {
worker_t *w = (worker_t *)p ;
common_t *c w—->common ;

leave_pool(c->pool) ;
return NULL ;
}

void spawn_worker(int arg, common_t *c) {
worker_t *w = alloc_worker_t(arg,c) ;
create_thread_detached (worker,w) ;

}

That is, the worker thread is created detached (i.e. we shall not join on it) to execute worker with the
appropriate argument that includes the task (here arg) and a pointer to common that in turn records pointers
to the pool and monitor components. The worker code performs the allocated work (not shown yet...),
and finally informs the pool that a new worker gets available by calling leave_pool just before exiting. In
case the master is suspended, leave_pool should awake it.

Here are the signatures of the two functions you have to write:

typedef struct {
int maxrun,nrun ; /* Maz number of running workers, running workers */
int waiting ; /* flag, true when master is waiting */
pthread _mutex_t *lock ;
pthread_cond_t *cond ;
} pool_t ;

/* To be called by worker: tell pool a worker s free, should awake master if suspended */
void leave_pool(pool_t *p) ;

/* To be called by master: allocate a worker, suspend when none s avatlable */
void look_pool(pool_t *p) ;

Monitor

The monitor component manages result computation and program termination. Result computation is
performed incrementally by accumulating partial results by the mean of the C function that will be hidden
in the monitor.

We first examine its interface with the worker:
void *worker (void *p) {

worker_t *w = (worker_t *)p ;

common_t *c = w->common ;

int arg = w->arg ;

int y = compute(arg) ;

leave_monitor (c->monitor,y) ;
return NULL ;

Hence, the worker computes. It then passes the partial result y to the monitor, for it to accumulate partial
results into the final result.
The interface with the master is as follows:

uintmax_t add(uintmax_t y,uintmax_t r) { return y+r; }

void master(int nprocs, int n) {

common_t c ;

c.monitor = alloc_monitor(add,0) ;

c.pool = alloc_pool(nprocs) ;

for (int k =1 ; k <=n ; k++) {
look_pool(c.pool) ;
enter_monitor (c.monitor) ;
spawn_worker (k,&c) ;

}

int r = wait_monitor(c.monitor,n) ;

)

The master first creates the monitor with alloc_monitor (add,0), arguments are the C' function (here a
simple addition function) and the initial value of result (here 0). Then, the master create all tasks (and
spawn all workers) with the for loop.

Observe that the master calls enter_monitor before spawning the worker. It does so to inform the
monitor that a new task is being computed. In practice, the monitor will record the number of tasks
being computed with some internal counter. Of course leave_monitor (called by workers) should now also
decrease this internal counter.

Finally the master wait on the monitor, passing it the number of generated tasks as an argument. The
function wait_monitor should behave as follows:

e If n tasks are completed then return the accumulated result.
e Otherwise suspend.

Hence, if the master suspends, someone should awake it. This will be the responsibility of the last worker
that calls leave_monitor . The internal counter of tasks being computed may help workers to know when
they are this last worker.

Here are the signatures of the three functions you have to write:

typedef struct {

int nrun ; /* number of tasks being exzecuted */
int ncompleted ; /* number 4if tasks being completed */
int waiting ; /* flag set if master ts waiting */

pthread _mutex_t *lock;

pthread_cond_t *cond ;

compose_t compose ; /* compose function */
uintmax_t r ; /* result of computation */

} monitor_t ;

To be called by worker :
1. Pass partial result y, so as to update result of computation
[m->r = m->compose (y,m->r)]
2. Signals a task ts completed
*/

void leave_monitor(monitor_t *m,uintmax_t y) ;

/* To be called by master to signal a task is being executed */
void enter_monitor(monitor_t *m) ;

/* To be called by master to wait for ntasks being completed.
returns computation result */
uintmax_t wait_monitor(monitor_t *m,int ntasks) ;

5 Controlling workers with a stack

We aim at controlling a set of nprocs worker threads by the mean of a stack. The stack will be a concurrent,
bounded, blocking stack. This means (“bounded”) that the stack is of limited capacity (from now sz)
and (“blocking”) that attempting to push on a full stack or to pop from an empty stack will block the
calling thread.

The exercise has two steps: first write push and pop operations that are blocking; and second
write a kill functionality that controls termination.

We provide a starting point for you to write the code, in sub-directory stack, with two testing applications
tst.out and run.out. The former application tst.out is a simple test than spawn nprocs “popper”
threads:

void *popper(void *p) {
// Various initialisation from p

void *item ;
while ((item = pop(c->stack)) !'= NULL) {
boxed_int_t *q = item ;
int v = qg->v ;
free_boxed_int(q) ;
(void) __sync_fetch_and_add (&c->sum,v) ;
if (verbose) fprintf (stderr, "POPPER</7i>,GOT,/i\n",id,v) ;
}
if (verbose) fprintf(stderr, "POPPER<}%>,0UT\n",id) ;
return NULL ;
}

Hence, a popper pops items from the stack, until NULL is returned. The popped item is a boxed integer,
whose contents is added atomically to a running sum, which is common to all poppers.
Moreover there are nprocs “pusher” threads that will push items on the stack:

void *pusher(void *p) {
// Various initialisations from p

// push 1 id+1 times, td ts pushed id in O0,...,nprocs-1
for (int kX = 0 ; k <= id ; k++) {
if (verbose) fprintf(stderr, "PUSHER<}i> ,PUT, %i\n",id,1) ;
push(c->stack,alloc_boxed_int (1)) ;

}
return NULL ;
}

Hence, the nprocs pushers will push the integer “1” 14+ 2 4 -+ 4 nprocs times. As a result, reading the
accumulating sum once all pushers and poppers have finished, should yield the value 1 + 2 + - -- + nprocs.
For instance, with default value 2 for nprocs and 100 for sz the size of the stack, we should get:

% ./tst.out -v
nprocs=2, sz=100
PUSHER<1> PUT 1

PUSHER<0> PUT
PUSHER<1> PUT
POPPER<O> GOT
POPPER<0O> GOT
POPPER<0O> GOT
POPPER<0O> 0QUT
SUM=3, O0K=3

POPPER<1> 0OUT

N

The second test computes the number of polyominoes of size p, as we have seen in the first class. With
default value of 15 for p, we get:

% ./run.out
27394666

Running “./run.out -v” gives additional information.

5.1 Concurrent push and pop

Write blocking push and pop function.

The testing source (sub-directory stack) includes starting code for the stack (files stack.h and incomplete
stack.c), our wrappers around POSIX thread operations (basic.h and basic.c), and complete code for
the test applications tst.c and run.c.

The starting code in stack.c contains complete alloc_stack and free_stack functions, and wrong
attempts for push and pop. As a result attempting to run ./tst.out (or ./run.out) may fail:

% ./tst.out
Segmentation fault (core dumped)

Here is for instance the wrong code for push:

void #*pop(stack_t #*p) {

void *r ;

while (p->sp <= 0) ;
p->sp-- ; r = p->t[p->sp]l ;
return r ;

}

Notice that the stack includes an array p->t of size p—>sz and that p->sp is the stack pointer. As usual,
p—>sp is the indice of the next free position in the stack.

Correct code will probably use the mutex p->1ock and the two condition variables is_empty and is_full
that are already present in the stack structure definition (defined in stack.h) and properly initialised by
allocate_stack (defined in stack.c). You may draw inspiration from the bounded FIFO of class 01.

Once you have written correct push and pop functions, you still may get wrong sums, as termination is
not handled properly yet:

% ./tst.out -v

nprocs=2, sz=100

PUSHER<0> PUT 1

PUSHER<1> PUT 1

PUSHER<1> PUT 1

POPPER<O> GOT 1

SUM=1, OK=3

pthread_mutex_destroy: Device or resource busy

You may have to run the experiment more than once to get a wrong result (i.e. SUM different from 0K=3).
Also notice that the de-allocation of resources is not properly performed.

5.2 Controlling termination

She shall now enrich our stack with a “kill” functionality that behaves as follows:

e kill (stack.t =*p, int nprocs) should be called at most once and “kills” the stack. The call to kill
is blocking and will return once the kill has been acknowledged nprocs times (see pop below).

e Once kill has been called, calling push is an error.

e Attempting to pop a stack that is both killed and empty should return NULL and acknowledge the
kill once.

Hence, you should alter your working push and pop functions from and write the kill function. To
that aim, you may use new fields for the stack structure: the flag killed (to register the kill), the inte-
ger seen (to count acknowledgements), and the condition variable wait (for the killer to suspend on, waiting
for acknowledgements).

So as to describe the kill functionality in greater detail, here are the relevant code snippets from tst.c.
First we recall that poppers exit when pop returns NULL:

void *popper(void *p) {
// Various initialisation from p

void *item ;
while ((item = pop(c->stack)) != NULL) {

}...
if (verbose) fprintf(stderr, "POPPER<}%>,0UT\n",id) ;
return NULL ;

}

Then, here is the code that creates poppers and pushers:

/* Create n poppers */
common_popper_t *spawn_poppers(stack_t *stack, int n) {
common_popper_t *c = alloc_common_popper (stack);
for (int id = 0 ; id < n ; id++) {
popper_t *w = alloc_popper_t(id,c) ;
create_thread_detached (popper,w) ;
}

return c ;

}

/* Create n pushers */
common_pusher_t *spawn_pushers(stack_t #*stack, int n) {
common_pusher_t *c = alloc_common_pusher (stack);
pthread_t th[n] ;
for (int id = 0 ; id < n ; id++) {
pusher_t *w = alloc_pusher_t(id,c) ;
create_thread(&th[id] ,pusher,w) ;

}
for (int id = 0 ; id < n ; id++) join_thread(&th([id]);
return c ;

}

It can be noticed:

10

e Both functions allocate specific “common” arguments for poppers and pushers, noticeably to hold a
pointer to the common stack. Those arguments are returned so as to be de-allocated once termination
is ensured.

e While poppers are created detached (their termination is handled through the kill functionality), the
pushers are joined. As a result, when spawn_pushers returns, we can be sure that all pushes have
been performed.

Finally, here is the overall thread control:

void zyva(int nprocs,int sz) {
if (verbose) fprintf (stderr, "nprocs=/4i,,sz=/i\n",nprocs,sz);
// Allocate stack and start all threads
stack_t *stack = alloc_stack(sz) ;
common_popper_t *pop = spawn_poppers (stack,nprocs) ;
common_pusher_t *push = spawn_pushers(stack,nprocs) ;
// Kill stack
kill (stack,nprocs) ;
// Get and check result
int sum = __sync_fetch_and_add(&pop->sum,0) ;
int ok = 0 ;
for (int kx = 1 ; k <= nprocs ; k++) ok += k ;
printf ("SUM=}/i,, ,0K=/i\n",sum, ok) ;
// Free all data structures
free_common_popper (pop) ;
free_common_pusher (push) ;
free_stack(stack) ;

}

Observe:

e The stack is killed only after spawn_pushers has returned. As a consequence, and because we know
that all pushers have terminated before spawn_pushers returns, we know that no further push will
ever occur.

e The function kill will return only once the nprocs poppers have acknowledged the kill. As a result,
pop->sum is valid. Further notice how pop->sum is read, for greater safety — however it can be
argued that the kill/pop synchronisation suffices to allow an ordinary read of pop->sum.

e Furthermore, (see pop code), no popper will access its “common” argument, nor the stack once it has
acknowledged the kill. Hence, freeing the pop (poppers common argument) where we do is safe.

Once you have completed you kill functionality, try:

% ./tst.out -v

nprocs=2, sz=100
PUSHER<1> PUT 1

PUSHER<O> PUT
PUSHER<1> PUT
POPPER<O> GOT
POPPER<O> GOT
POPPER<O> GOT
POPPER<O> 0QUT
SUM=3, 0K=3

POPPER<1> QUT

N

And:

11

% ./run.out
27394666

% ./run.out 18
1540820542

6 Transitive visibility

One of your friends works at Intel and argues that, on processors, “stores obey transitive visibility”. As you
wonder what “transitive visibility” is, he writes the following three functions, to be executed concurrently:

int x=0, y=0 ;

void writer(void) {

x =1

}

void transmitter(void) {
int r = x ;
y=1r,

}

void reader(void) {
int ry =y ;
int rx = x ;

}
He then argues that the reader thread must see rx == 1 whenever it sees ry == 1. Said otherwise, an
execution where ry == 1 and rx == 0 is not possible.

Is your friend right? To answer, you can draw a diagram for the test, similar to the ones of lesson 03,
and consider that Intel processors are TSO.

7 A memory model zoo

Here are the definitions of the SC, TSO and PSO (Partial Store Order) memory models in the axiomatic
formalism we used in class (see class 03 slides 20 and 62):

(* SC Model *)
acyclic po | rf | fr | co

(* TSO Model *)
acyclic po-loc | rf | fr | co
acyclic (po \ (WxR)) | rfe | fr | co

(* PSO Model *)
acyclic po-loc | rf | fr | co
acyclic (po \ (WxM)) | rfe | fr | co

In the above languages expressions are either event sets (such as M) or relations (such as po, rf etc.).
Binary operators used are union “|”, difference “\” and Cartesian product “*¥”. Some sets are pre-defined:
write events “W’ read events “R” and all memory events “M” — Notice that M can be defined as R|W. Hence,
for instance, po \ (W*R) is the program-order relation minus write-to-read pairs.

Consider the four tests of Figure|2] Those tests are written in pseudo-code: x, y are memory locations,
r0, rl are registers, all locations are initialised to zero.

12

Figure 2: Four litmus tests

Test 2+2W Test MP

TO | T1 TO | T1
________ +________ ________+________
x<-2 | y<-2 x<-1]| r0<-y
y<-11]x<-1 y<-11]rl<-x
x=2/\y=2 r0=1/\r1=0

Test R Test LB

TO | T1 TO | T1
________ +________ _________+_________
x<-1| y<=2 0 <-x | rl <-y
y<-1]1r0<-x y<-11] x<-1
y=2/\r0=0 r0=1/\rl1=1

A test is valid on a model (written 0k), when the final condition of the test can be observed to be true,
once a machine that implements the model has run the test. Otherwise the test is invalid, which we write No.
Fill the cells of following table with 0k or No, depending upon the result of each test on each model.

| 2+2W MP R LB
sC
TSO
PSO

Then argue that any test valid on TSO is also valid on PSO.

13

14

Solutions

1 Semaphores

1.1

Coding a semaphore

/* Semaphore */

typedef struct {
volatile int nfree ;
pthread _mutex_t *mutex ;
pthread_cond_t *cond ;
} semaphore_t ;

semaphore_t *alloc_semaphore(int capacity) {
semaphore_t *p = malloc_check(sizeof (xp)) ;
p->nfree = capacity ;
p->mutex = alloc_mutex() ;
p—>cond = alloc_cond() ;
return p ;

}

void free_semaphore(semaphore_t *p) {
free_mutex(p->mutex) ;
free_cond(p->cond) ;
free(p) ;

}

void wait_semaphore(semaphore_t *p) {
lock_mutex (p->mutex) ;
while (p->nfree <= 0) wait_cond(p->cond,p->mutex) ;
p->nfree-- ;
unlock_mutex (p->mutex) ;

}

void post_semaphore(semaphore_t *p) {
lock_mutex (p->mutex) ;
p->nfree++ ;
broadcast_cond(p->cond) ;
unlock_mutex (p->mutex) ;

}
1.2

Semaphore usage

Without the semaphore, output will consist in q->size lines. Each line consists in nprocs “+” characters

and nprocs

“~” characters. In any prefix, there are as many “-” as “+’ characters, or less.

When the semaphore of capacity c is added output follows the additional constraint that no more than

¢ “+” will ever follow with no “~” in-between.
1. ++--+-+-is legal, cf. above.
2. +++-+--- is illegal, as there are 3 “+” in a row, hence 3 threads should be in critical section at the
same time.
3. —+—+-+-+ ig illegal, no “~” can be without a matching “+” before.
4. +-+-+-+-is legal, and is still legal with ¢ = 1.

15

5. ++++++++ is illegal and is a joke.

1.3 C11 Coding

With respect to the POSIX solution, we see a few syntactic changes. The solution applies the change at the
mutex and condition variable level (C11 types mtx_t and cnd_t)

#include <stdatomic.h>

/* Lock basic wrappers */

mtx_t *alloc_mutex(void) {
mtx_t *p = malloc_check(sizeof (*p)) ;
if (mtx_init(p,mtx_plain) != thrd_success) error_exit("mtz_init") ;
return p ;

}

void free_mutex(mtx_t *p) {
mtx_destroy(p) ;
free(p) ;

}

void lock_mutex(mtx_t *p) {
if (mtx_lock(p) != thrd_success) error_exit("mtz_lock") ;

}

void unlock_mutex(mtx_t *p) {
if (mtx_unlock(p) != thrd_success) error_exit("mtz_unlock") ;

}

/* Condition variable basic wrappers */

cnd_t *alloc_cond(void) {
cnd_t *p = malloc_check(sizeof (xp)) ;
if (cnd_init(p) != thrd_success) error_exit("cnd_init")
return p ;

3

void free_cond(cnd_t *p) {
cnd_destroy(p) ;
free(p) ;

}

void wait_cond(cnd_t *c,mtx_t *m) {
if (cnd_wait(c,m) != thrd_success) error_exit("cnd_wait") ;

}

void signal_cond(cnd_t *p) {
if (cnd_signal(p) != thrd_success) error_exit("cnd_signal”) ;

3

That way, semaphore code is the same as in the POSIX case, up to the types of the fields of the semaphore_t
record:

/* Semaphore proper */

typedef struct {
volatile int nfree ;

16

mtx_t *mutex ;
cnd_t *cond ;
} semaphore_t ;

As regards the spawn/join sequence we directly call the C11 primitives:
#include <threads.h>

void run(int size, int nprocs, int m) {

thrd_t thl[nprocs] ;

ctx_t alnprocs] ;

for (int kX = 0 ; k < nprocs ; k++) {
ctx_t *p = &alk] ;
p~—>id = k ; p->common = &c ;

if (thrd_create(&th([k],T1,p) !'= thrd_success) error_exit("thrd_create’)
}
for (int Xk = 0 ; k < nprocs ; k++)

if (thrd_join(th[k],NULL) != thrd_success) error_exit("thrd_join") ;

Sequentially consistent or not?

Listing valid bahaviours amounts listing all possible write-to-read matchings and all possible final values of
observed shared locations.

e Test 1 The values written to location x are 0, 1 and 2 . The values writtent to y are 0 and 1. Hence
the following valid behaviours:

x=0; r0=0, x=0; rO0=1, x=1; r0=0, x=1; rO0=1, =x=2; r0=0, x=2; r0=1

SC behaviours are underlined. They can be justified by exhibiting scheduling orders or diagrams.

e For Test 2, valid behaviours are the sams as for Test 1, since stores are the same.

x=0; r0=0, x=0; r0=1, x=1; r0=0, x=1; rO=1, x=2; r0=0, x=2; r0=1

By contast behaviour x=2; r0=1 is now SC, as can be seen by considerint the scheduling order:

¥x = 1 = *x = 2 =%y =110 = %y

e Given the possible writes, we have the following valid behaviours t2, valid behaviours are the sams as
for Test 1, since stores are the same.

r0=0; r1=0, r0=0; r1=0, r0=1; r1=0, r0=0; ri=1, r0=1; ri=1

SC behaviours are underlined.

e Test 4 is similar as regards valid behaviours and much stronger as regards SC. Namely reading the
initial value of a location after a store to the same locaton is an obvious violation of coherence.

r0=0; r1=0, r0=0; r1=0, r0=1; r1=0, r0=0; ri=1, r0=1; ri=1

17

2 The and.t component

2.1 Barrier coding

int wait_and(and_t *p,int b) {

}

if (!b) p—>v =0 ;

wait_barrier(p->b) ; // Now any false is registered

int r = p->v ;

int serial = wait_barrier(p->b) ; // Now, everybody has copied result
if (serial) p->v =1 ; // No need for every body to re-initialise
wait_barrier(p->b) ; // Now component is re-inttialised

return r ;

One may notice that the code is not race-free, as several threads may write 0 to p->v concurrently. In
practice, one can probably ignore the issue as all threads write the same value with a single instruction.
Thus, it is very unlikely that the races would conduct to p->v holding anything else than O or that the
machine would catch fire.

Nevertheless, if one insists on avoiding races, one easily solves the issue by adding a mutex field to the

component and by using it to protect the writes to p->v:

int wait_and(and_-t *p, int b) {

if (!'b) { lock_mutext(p->mutex) ; p->v = 0 ; unlock_mutex(p->mutex) ; }

2.2 Direct coding

We add two fields v and saved_v to the given and_t struct definition:

typedef struct {

}

pthread_cond_t *cond ;
pthread _mutex_t *mutex ;

/* Hum the following should remind you of something... */
int nprocs,count ;

int turn ;

int v,saved_v ; // You’ll need those fields for return wvalue
and_t ;

and_t *alloc_and(int nprocs) {

}

and_t *p = malloc_check(sizeof (*¥p)) ;
p->cond = alloc_cond();

p->mutex = alloc_mutex() ;

p->nprocs = p->count = nprocs ;
p->turn = 0 ;

p—>v =1 ;

return p ;

Notice that p->v is initialised to 1, as in the previous exercise.

And here is wait_and, an enhancement of wait_barrier:

int wait_and(and_t *p,int b) {

lock_mutex (p->mutex) ;

if (!b) p—>v =0 ;

--p->count ;

if (p->count > 0) { /* Not last */
int t = p->turn ;
do {

wait_cond(p->cond,p->mutex) ;

} while (p->turn == t) ;

} else { /* I’am last */

18

p->saved_v = p->v ; /* save result */

p->v =1 ; /* as we erase it here */
p->count = p->nprocs ; /* Re-triggers barrier */
p->turn = 1-p->turn ; /* Free waiting threads */
broadcast_cond(p->cond) ;

}

int r = p->saved_v ;
unlock_mutex (p->mutex) ;
return r ;

3

The only difficulty lies in the use of p->saved_v to transmit the final value of p->v for a given round to

the last thread that enters the barrier to the other threads.

Another solution could be for each thread to save its value in some internal array (indexed by p->count
for instance), and for the last thread to compute the conjunction. This solution has the avantage that the

array need not to be be initialised and re-initialised.

3 Processor farm

The solutions are given in files monitor.sol.c and pool.sol.c in directory pool.
We here reproduce our solution:

Pool

void leave_pool(pool_t *p) {
lock_mutex (p->lock) ;
p->nrun-- ;
if (p->waiting) signal_cond(p->cond) ;
unlock_mutex (p->lock) ;

}

void look_pool(pool_t *p) {

lock_mutex(p->lock) ;

p->waiting = 1 ;

while (p->nrun >= p->maxrun) {
wait_cond(p->cond,p->lock) ;

}

p->waiting = 0 ;

p->nrun++

unlock_mutex (p->lock) ;

}

The solution is quite straightforward: look_pool increases the number of running workers, while leave_pool

decreases it.

The master (cf. look_pool) suspends when maxrun workers are already running and is awaken by any
worker that leaves the pool. Observe that we guard against spurious wakeups in look_pool by the means

of the classical while loop on the sleeping condition.
Monitor

/* Called by master */

void enter_monitor(monitor_t *m) {
lock_mutex(m->lock) ;
m->nrun++ ;
unlock_mutex(m->lock) ;

19

}

/* Called by worker */

void leave_monitor(monitor_t *m,uintmax_t y) {
lock_mutex(m->lock) ;
m->nrun-- ;
m->ncompleted++ ;
m->r = m->compose(y,m->r) ;
if (n->waiting && m->nrun == 0) signal_cond(m->cond) ;
unlock_mutex(m->lock) ;

}

/* Called by master */
uintmax_t wait_monitor(monitor_t *m,int ntasks) {
uintmax_t r ;
lock_mutex(m->lock) ;
m->waiting = 1 ;
while (m->ncompleted < ntasks) wait_cond(m->cond,m->lock) ;

assert (m->nrun == 0) ;
m->waiting = 0 ;

r = m->r ;
unlock_mutex(m->lock) ;
return r ;

}

The only difficult point is the handling of master sleep and wakeup. Quite logically, the master sleeps when
strictly less than ntasks have been completed. The worker that is last to complete should awake the master
in leave_monitor . A worker can know it is the last to complete by checking the condition m->nrun === 0,
because the master called enter_monitor and thus has incremented m->nrun.

If workers were calling enter_monitor , then there would be no guarantee that all tasks are completed
when m->nrun == 0. Consider a scenario where the master leaves the for loop while two tasks have been
allocated but the workers have not started yet and all other workers have terminated. The value of m->nrun
is then 0. The master then suspends. One worker start, increasing m->nrun to 1, performs its work and
then decreases m->nrun to 0. As a result the master is awaken, while one task is still pending.

Notice that enter_monitor can be called by workers (in fact suppressed) by a different design: the
call wait_monitor (m,ntasks) would record ntasks into the monitor structure, for workers that call
leave_monitor () to compare ntasks with m->completed. Then, the last worker to complete would
know it is last by the condition ntasks == m->completed.

Finally as noticed by a student, the original version of the two examples of had a bug: the master handles
program termination as follows:

uintmax_t r = wait_monitor(...) ;
free_pool(c.pool) ;
free_monitor (c.monitor) ;

3

That is, once wait_monitor has returned, the master de-allocates the pool and monitor structures. While
the buggy worker code was as follows:
void *worker (void *p) {

worker_t *w = (worker_t *)p ;
common_t *c w—->common ;

leave_monitor (c->monitor,y) ;
leave_pool(c->pool) ;
return NULL ;

20

Thus, it may be that a worker attempts to access the pool structure after (while!) it has been freed. The bug
can be corrected by swapping the calls to leave_monitor and leave_pool in worker, so as to perform
the call to leave_monitor last:

void *worker (void *p) {

worker_t *w = (worker_t *)p ;
common_t *c w->common ;

leave_pool(c->pool) ;
leave_monitor (c->monitor,y) ;
return NULL ;

The issue is solved (up to weak memory effects. ..). Nevertheless, our minimal “process farm” framework
appears quite brittle. This can be alleviated by grouping the pool and monitor structures in one single
component.

4 Controlling workers with a stack

4.1 Concurrent push and pop

The solution is in file stack.partial.c. The code is standard and handles spurious wakeups:

void push(stack_t *p, void *q) {
lock_mutex(p->lock) ;
while (p->sp >= p->sz) wait_cond(p->is_full,p->lock) ;
int was_empty = p->sp <= 0 ;
p->tlp->spl = q ; p->sp++ ;
if (was_empty) broadcast_cond(p->is_empty) ;
unlock_mutex (p->lock) ;

void *pop(stack_t *p) {
void *r ;
lock_mutex(p->lock) ;
while (p->sp <= 0) wait_cond(p->is_empty,p->lock) ;
int was_full = p->sp >= p->sz ;
p->sp-- ; r = p—>t[p->spl ;
if (was_full) broadcast_cond(p->is_full) ;
unlock_mutex (p->lock) ;
return r ;

4.2 Controlling termination

The solution is in file stack.sol.c
The easiest alteration is for push. We simply crash the program in case of a push attempt on a killed
stack:

static void stack_error(char *msg) {
fprintf (stderr, "stack:, /s\n",msg) ;
exit (2);

}

void push(stack_t *p, void *q) {
lock_mutex(p->lock) ;
if (p->killed) stack_error("pushing, on,a killed stack");

21

while (p->sp >= p->sz) wait_cond(p->is_full,p->lock) ;
int was_empty = p->sp <= 0 ;

p~>t[p->sp]l = q ; p->sp++ ;

if (was_empty) broadcast_cond(p->is_empty) ;
unlock_mutex (p->lock) ;

Now, here is the code for kill:

void kill(stack_t *p,int nprocs) {

}

lock_mutex(p->lock) ;

if (p—>killed) stack_error("killing, the stack, more then once");
p->killed = 1 ;

broadcast_cond(p->is_empty) ;

while (p->seen < nprocs) wait_cond(p->wait,p->lock) ;
unlock_mutex(p->lock) ;

After the lock has been acquired:

e Double kill is checked, crashing the program if occurring.
e The p->killed flag is set, in effect killing the stack.

e Some poppers may be suspended, waiting for the stack to become non-empty (or to be killed!). We
awake them all (with broadcast_cond).

e Then we wait for nprocs acknowledgements, suspending on the condition variable p->wait in a quite
standard manner.

The pop function is responsible for making acknowledgements:

void *pop(stack_t #*p) {

}

void *r ;
lock_mutex(p->lock) ;
while (!p->killed && p->sp <= 0) wait_cond(p->is_empty,p->lock) ;
if (p->sp > 0) {
int was_full = p->sp >= p->sz ;

p->sp-- ; r = p—>t[p->sp] ;
if (was_full) broadcast_cond(p->is_full) ;
} else {

assert (p->killed) ;
p—->seent+
signal_cond(p->wait) ;
r = NULL ;

}

unlock_mutex(p->lock) ;

return r ;

In effect, pop must take some action when the stack is non-empty or killed, or equivalently pop must block
when the stack is not killed and empty — see the condition (!p->killed && p->sp <= 0) above.

If some action have to be taken, observe that retrieving an item from a non-empty stack has priority —

see if (p->sp) {... above. It the action is a kill acknowledgement, the thread that performed the kill
is waiting on the condition variable p->wait, we awake it (by instruction signal_cond (p->cond)) after
having acknowledged the kill (by instruction p->seen++).

22

5 'Transitive visibility

Here is the diagram:

write transmit read
a:MM=Lf$+b:Rx=1rf d: Ry=1

| 1
po = po
C: =1 e: Rx=0

The diagram follows from:

1. As the reader reads value 1 in y (written by the transmitter), it must be that the transmitter

has read value 1 in x (written by writer). Hence the two 2 arrows.

2. As the reader reads initial value 0 in x, it must be that the read is in Ty with the sole write to x by
writer.

We see first that the execution is not sequentially consistent, as we have a cycle in RN NIN PN
The execution is not TSO either, given that no W %R edge is present in the cycle.

6 A memory model zoo

2+2W MP R LB

SC No No ©No No
TSO No No 0k No
PSO Ok 0k Ok No

The TSO and PSO models are similar, up to happens-before relations: PSO happens-before relation is
included in the TSO happens-before relation. As a result, a cycle in PSO happens-before is also a cycle in
TSO happens-before. The converse implication thus holds for the absence of cycles.

23

	Semaphores
	Coding a semaphore
	Semaphore usage
	C11 coding
	Sequentially consistent or not?
	A concurrent component
	Barrier encoding
	Direct coding

	A process farm
	Controlling workers with a stack
	Concurrent push and pop
	Controlling termination

	Transitive visibility

	A memory model zoo
	Semaphores
	Coding a semaphore
	Semaphore usage
	C11 Coding
	The |andt| component
	Barrier coding
	Direct coding

	Processor farm
	Controlling workers with a stack
	Concurrent push and pop
	Controlling termination

	Transitive visibility
	A memory model zoo

