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Abstract
Previous work on the semantics of relaxed shared-memory concur-
rency has only considered the case in which each load reads the data
of exactly one store. In practice, however, multiprocessors support
mixed-size accesses, and these are used by systems software and
(to some degree) exposed at the C/C++ language level. A semantic
foundation for software, therefore, has to address them.

We investigate the mixed-size behaviour of ARMv8 and IBM
POWER architectures and implementations: by experiment, by de-
veloping semantic models, by testing the correspondence between
these, and by discussion with ARM and IBM staff. This turns out
to be surprisingly subtle, and on the way we have to revisit the fun-
damental concepts of coherence and sequential consistency, which
change in this setting. In particular, we show that adding a memory
barrier between each instruction does not restore sequential con-
sistency. We go on to extend the C/C++11 model to support non-
atomic mixed-size memory accesses, and prove the standard com-
pilation scheme from C11 atomics to POWER remains sound.

This is a necessary step towards semantics for real-world
shared-memory concurrent code, beyond litmus tests.

Categories and Subject Descriptors C.0 [General]: Modeling
of computer architecture; D.1.3 [Programming Techniques]: Con-
current Programming—Parallel programming; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Relaxed Memory Models, mixed-size, semantics, ISA

1. Introduction
The shared-memory abstractions provided by multiprocessors are
relaxed: to accommodate a range of hardware optimisations, they
provide weaker guarantees than the sequential consistency model
(articulated by Lamport [1]), in which the writes and reads of any
execution can be totally ordered, with reads reading from the most
recent writes. Relaxed memory hardware dates back at least to
the mid-1970s and it is now ubiquitous, e.g. in the ARM, IBM
POWER, Itanium, MIPS, Sparc, and x86 architectures. This has
prompted much research into the semantics that multiprocessors
could or actually do provide, including [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Recent work
among this has established semantic models for x86 [32], IBM
POWER [33, 34, 35, 36, 38], and ARM [39] that are validated
both by experiment against multiprocessor implementations and by
discussion with the vendor architects.

All this previous work, however, makes the simplifying assump-
tion that memory accesses are to some abstract notion of store lo-
cations, or, equivalently, that all accesses are of the same size and
are suitably aligned (the only substantive exception we are aware
of is the Itanium specification [22]). In reality, all these architec-
tures support accesses at multiple sizes (typically at least 1, 2, 4,
and 8-byte units). Code routinely uses all these, and also routinely
accesses the same memory with mixed-size accesses. For a simple
but common example, C structures may be copied using memcpy,
which accesses their members byte-by-byte (or in larger units in op-
timised implementations) irrespective of their natural sizes. More-
over, C compilers, while normally allocating memory in aligned
units, typically also support packed structs, in which the members
are adjacent and therefore potentially misaligned. One would hope
that these idioms normally occur only in sequential or non-racy
code, but concurrent algorithms and other systems code also make
essential use of mixed-size accesses, including, for example, the
Linux kernel lockref implementation, ARMv8 ticketed spinlock
implementation, and read-copy-update (RCU) code, and the FreeB-
SD/i386 manipulation of PAE page table bits. Looking at the first
in more detail, the Linux kernel lockref [41] combines a spinlock
and a reference count. It is defined in lockref.h as a union of an
8-byte whole and two 4-byte structure members:

struct lockref {
union {

aligned_u64 lock_count; // whole lockref
struct {
spinlock_t lock; // lock
int count; // reference count

};
};

};

This lets fastpath code update the reference count with a relaxed 8-
byte compare-exchange, without taking the lock, with non-fastpath
code first taking the lock and then updating the reference count,
using 4-byte accesses.

All this is beyond the scope of previous relaxed-memory se-
mantic models: they do not cover even simple non-racy mixed size
cases, let alone these more intricate concurrent examples; they suf-
fice for litmus tests, but not for typical real code.

In this paper we develop semantic models that cover the mixed-
size behaviour of ARM and IBM POWER, building on previous
work for the non-mixed-size case ([39] and [33, 34, 35, 36, 38]
respectively). To the best of our knowledge, our models exactly
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capture the architectural intent for each, for the ISA fragments we
deal with: the envelope of behaviours intended to be allowed. We
develop the models and establish confidence in them by an iterative
process, following [28, 31, 30, 33, 39]:

1. referring to the architecture texts [42, 43], where those are clear;
2. experimental testing of POWER and ARM processor imple-

mentations, with handwritten litmus tests that explore key ques-
tions, using the litmus tool [44], that we have extended to sup-
port mixed-size litmus tests;

3. detailed discussion with IBM and ARM architects about their
architectural intent, our experimental results, and the structure
of our models;

4. expressing the models in rigorous, unambiguous mathematics,
which itself identifies corner cases;

5. generating executable code from the models that can calculate
the set of all allowed behaviours of small litmus tests, for
comparison with the experimental data from running those tests
on hardware implementations. This also supports interactive
exploration of the model behaviour, in command-line and web
interfaces.

We describe the mixed-size phenomena of the architectures and
hardware implementations in §2, and our models in §3. Some of
this is intricate but essentially straightforward, e.g. the splitting of
misaligned accesses into atomic parts, but handling accesses with
distinct but overlapping footprints turned out to have surprisingly
subtle consequences for the fundamental notion of coherence, and
for the semantics of barriers; it also interacts delicately with write
forwarding. Our experimental testing also identified new errata in
two production multiprocessor implementations, one of which in-
volved mixed-size phenomena and was found with a test arising
from our model design; these have been reported to and acknowl-
edged by the vendors.

The conventional wisdom for most hardware memory models
is that adding sufficient memory barriers, e.g. a strong barrier
between each memory access, will restore sequential consistency.
To the best of our knowledge this has been taken for granted for
the ARM and POWER architectures, but in the mixed-size setting
this supposedly fundamental property turns out not to hold, as we
show in §4. We define a weaker notion, BSC+SCA, and show it
characterises the behaviour of fully barriered ARM and POWER
programs without misaligned accesses. We also show that mixed-
size ARM programs that use only the ARM write-release and read-
acquire instructions are sequentially consistent.

Turning to the C language level, there are two main cases to con-
sider. First, there is “well-behaved” C code using the C/C++11 con-
currency support [45, 46], in which shared-memory accesses are ei-
ther non-atomic and should be protected (by locks or other synchro-
nisation), or are expressed as C/C++11 atomic accesses, with one of
the memory orders provided (SC, release/acquire, release/consume,
or relaxed). In the C/C++11 model, programs that exhibit data races
on non-atomics (or between non-atomic and atomic accesses) are
deemed to have undefined behaviour, and the effective type rules of
the ISO C standard prohibit mixed-size use of atomics. These re-
strictions should rule out programmer-observable instances of the
hardware mixed-size phenomena that we see in §2, in accordance
with an implicit design goal for relaxed-memory architectures, that
for well-behaved programs the associated hardware optimisations
should not be programmer-visible. We confirm this by defining an
extension of the C/C++11 axiomatic concurrency model [46] to
cover mixed-size nonatomic accesses (§5), and by extending the
previous proof [34, 35] that the standard compilation scheme from
C/C++11 concurrency to POWER concurrency is sound (§6). This
shows that, for such well-behaved code, programmers need not
consider the complexities of the hardware models.

Second, there is the case of low-level C/C++ code that intention-
ally uses racy mixed-size accesses. Such programs have undefined
behaviour according to the ISO standard, but there are important
instances in practice, e.g. as mentioned above. For these, the clar-
ification of the hardware behaviour that we provide in this paper
is directly relevant, but programmers currently must reason about
such code in terms of the assembly generated by their compiler, as
there is no candidate source-language semantics that admits both
the mixed-size hardware phenomena with compiler optimisations.
This adds to the other outstanding open problems with giving a
high-level language concurrency semantics [47, 48, 49, 50], which
we do not attempt to address here: thin-air values, undefined be-
haviour, and general combinations of non-atomic and atomic ac-
cesses.

Returning to our hardware experimental work in §7, we have
run tests on a 48-hardware-thread POWER 7 machine and on five
ARMv8-architecture implementations, with SoCs and cores by sev-
eral vendors. The tests include the hand-written tests of §2 and §3,
tests generated by the diy tool, which we have extended to the
mixed-size case, and non-mixed-size regression tests.

We conclude with discussion of future work in §8. The on-line
supplementary material [51] includes our POWER and ARM hand-
written tests, experimental data, and proofs. The web-interface
version of our tool is at www.cl.cam.ac.uk/~pes20/AArch64 and
www.cl.cam.ac.uk/~pes20/Power.

2. Mixed-size Phenomena in Hardware
For the hardware behaviours we discuss in this section, ARM
and POWER are architecturally very similar. We illustrate with
POWER versions of litmus tests, but the supplementary material
contains both versions and we discuss experimental results for both.
All except §2.7 are handled by our models.

2.1 Reading from Multiple Writes
The most basic phenomenon of the mixed-size setting is that writes
and reads may be of different sizes, with reads potentially reading
from fragments of writes and from multiple writes. For example, in
the sequential case, we might have a sequence of two overlapping
writes:

a:W x /4 = 0x03020100 (* write 4 bytes to x *)
b:W x+2 /1 = 0x 11 (* write 1 byte to x+2 *)

followed by a read that reads from both of them:

c:R x /4 = 0x03021100 (* read 4 bytes from x *)

Note that this is a big-endian example. ARM and POWER both
support little- and big-endian modes. In this paper we use little-
endian for ARM and big-endian for POWER, following the modes
used on our test machines.

In a sequential or sequentially consistent model with a concrete
byte-array memory, the writes would simply update that memory in
sequence, and the read would see whatever is there. In the relaxed-
memory concurrent setting, we need to maintain distinct events, as
shown in the execution diagram below. This shows an initialisation
write (labelled init), the three POWER assembly instructions (the
stw, stb, and lwz, labelled with instruction instance IDs i(tid:n))
and related by program-order edges (black), and the associated
read and write events below each instruction (labelled a, b, c).
In previous work such events had just an address and a value;
now each event needs a footprint, comprising an address (e.g. x or
x+2, where x is a pretty-printed symbol for an underlying concrete
aligned 64-bit address) and a size in bytes. Also shown are the
coherence relation co (brown) and the reads-from relation rf (red).
Previously the rf relation was just a binary relation between events,
but now each rf edge, from a write event to a read event, is labelled
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with the relevant slices of the write: the sub-footprints of the write
being read in this edge.

Test MIXED-SEQ-1

init:W x/8=0

i(0:1):stw r1,0(r6)
a:W x/4=0x03020100

Thread 0

i(0:2):stb r2,2(r6)
b:W x+2/1=0x11

i(0:3):lwz r5,0(r6)
c:R x/4 = 0x03021100

co

rf[x+3/1=0],[x/2=0x0302]

rf[x+2/1=0x11]

co

To fix terminology, when we say store or load we refer to
assembly or machine code instructions from the ISA (instruction
set architecture). When we say write or read we refer to the model
events which are their main effects.

2.2 Reordering and Non-multi-copy-atomic Propagation for
Disjoint Footprints

The basic choice taken by relaxed-memory architectures such as
POWER and ARM is to relax program order between memory-
access instructions that are not explicitly ordered in some way, to
allow the hardware optimisations of unconstrained out-of-order and
speculative execution (processors with stronger memory models,
such as x86, may exploit similar optimisations but in more con-
strained ways, to ensure that they are not programmer-visible).
They also allow non-multi-copy-atomic behaviour, with writes,
barriers, and (for ARM) read requests allowed to propagate to other
threads in multiple steps.

In the non-mixed-size setting, two instructions are “explicitly
ordered” if they access the same address or they are related by
some architecture-specific combinations of barriers and dependen-
cies. In the mixed-size case, considering only aligned accesses for
the moment, we have to replace that “same address” by “to over-
lapping footprints”. This is not just a cache-line phenomenon. For
example, the execution below shows a single write a to an 8-byte
aligned x on Thread 1 and two reads b and c of the disjoint 4-
byte footprints x+4/4 and x/4. It is architecturally allowed for b to
read from half of a and the program-order later c to read from the
initial state, ignoring a, even though b and c are within the same
cache line, and indeed within the same 64-bit footprint on a 64-bit
machine. This is observable in practice (500k/3.5G instances on a
POWER 7, and 6.4k/6.0G in total on our five ARMv8-architecture
implementations); it is explainable by c being satisfied early, out-
of-order.

Test CO-MIXED-1

init:W x/8=0

i(0:1):std r1,0(r4)
a:W x/8=0x0000000100000002

i(1:2):lwz r2,0(r4)
c:R x/4 = 0

Thread 0

i(1:1):lwz r1,4(r4)
b:R x+4/4 = 2

Thread 1

rf[x/4=0]

rf[x+4/4=2]
co

Similar behaviour is architecturally allowed for writes: the test
below shows two writes to disjoint aligned 4-byte footprints on
Thread 0, of which only the second is seen by the aligned 8-byte
read on Thread 1. We do not observe it on current implementa-
tions — the first of several places where the vendor architectural
programming models are intentionally looser than current imple-
mentations appear to be.

Test CO-MIXED-1b

init:W x/8=0

i(0:1):stw r1,0(r4)
a:W x/4=1

i(0:2):stw r2,4(r4)
b:W x+4/4=2

i(1:1):ld r1,0(r4)
c:R x/8 = 2

Thread 0 Thread 1

co

co

rf[x/4=0]

rf[x+4/4=2]

The above tests are mixed-size analogues of message-passing lit-
mus tests MP+sync+po and MP+po+addr [33], using aligned wide
writes and reads in place of (respectively) the pair of two writes
with a sync and the pair of two reads with an address dependency.

Writes to disjoint footprints also allow the non-multi-copy-
atomic behaviour illustrated by IRIW, below (again using wide
reads in place of the pairs of reads and address dependency of the
usual IRIW+addrs). This is observed on POWER 7 (46k/1.8G) but
not on our ARMv8 implementations (other non-multi-copy-atomic
behaviour is likewise not observed on those, so this is not surpris-
ing).

Test IRIW-MIXED-1

Thread 0init:W x/8=0

i(0:1):stw r1,0(r5)
a:W x/4=1

i(1:1):ld r3,0(r5)
b:R x/8 = 0x0000000100000000

i(2:1):stw r2,4(r5)
c:W x+4/4=2

i(3:1):ld r4,0(r5)
d:R x/8 = 2

Thread 1 Thread 2 Thread 3

rf[x/4=1] rf[x+4/4=2]

co
rf[x+4/4=0]

rf[x/4=0]co

2.3 Atomicity of Store Instructions
In both ARM and POWER architectures, all 1, 2, 4, and 8-byte
non-vector single-register accesses that are correspondingly 1, 2,
4, or 8-byte aligned are single-copy atomic1 [43, Book II §1.4],
[42, B2.6.1,B2.6.2]. Misaligned normal accesses are architecturally
regarded as being split into single-byte units which are treated as
independent atomic fragments, without any ordering between them.

In the previous examples all store and load instructions were
aligned: we regard symbolic addresses in litmus tests (such as x)
as maximally aligned, and the accesses were to footprints x/8,
x/4, x+4/4, and x+2/1. Below, we show a non-aligned store ex-
ample. Here Thread 0 writes two bytes to x+127/2, with a single
store-half-word instruction (sth), and Thread 1 reads those two ad-
dresses, one at a time, with two load-byte instructions (lbz), first
reading x+128/1 and then x+127/1, with an address dependency

1 for POWER, the 8-byte case only for 64-bit implementations



between the two load instructions to keep them locally ordered.

Test MP+misaligned2+127+addr

init:W x/256=0

i(0:1):sth r11,127(r5)
a0:W x+127/1=0x22
a1:W x+128/1=0x11

i(1:4):lbzx r2,r4,r5
c:R x+127/1 = 0

Thread 0

i(1:1):lbz r1,128(r5)
b:R x+128/1 = 0x11

Thread 1

i(1:2):xor r3,r1,r1

i(1:3):addi r4,r3,127

rf[x+128/1=0x11]

co
co

rf[x+127/1=0]

Note that the misaligned store instruction i(0:1) now generates
two write events (a0 and a1), and the reads-from (rf) edges in
these execution diagrams are between these individual write and
read events, not between store and load instructions.

This execution is observable on POWER and ARM. The table
below summarises observations for test variants with different off-
sets from the cache-line boundary; for each offset, we sum the re-
sults for a test as above and a variant (MP+misaligned2+127x+addr
etc.) with loads in the opposite order.

Test Archs POWER 7 h/w ARMv8 h/w
MP+misaligned2+0(x)+addr forbid 0/9.9G 0/9.6G
MP+misaligned2+1(x)+addr allow 0/9.8G 0/9.6G
MP+misaligned2+3(x)+addr allow 0/9.8G 0/9.6G
MP+misaligned2+7(x)+addr allow 0/9.8G 0/9.6G
MP+misaligned2+15(x)+addr allow 0/9.8G 469k/9.6G
MP+misaligned2+31(x)+addr allow 4.7M/9.8G 393k/9.6G
MP+misaligned2+63(x)+addr allow 4.0M/9.8G 85M/9.6G
MP+misaligned2+127(x)+addr allow 12.4M/9.8G 15M/9.6G

Microarchitecturally, one would expect at least stores whose foot-
print spans a cache-line boundary to be split (otherwise one is in
the realm of hardware transactional memory implementations, to
provide atomic access to multiple cache lines while avoiding dead-
lock), but we also see splitting at finer granularities, and we are
told of plausible implementation techniques for both ARM and
POWER, which may be used in current implementations, which
would lead (sometimes rarely) to such splitting. The architectures
explicitly do not guarantee single-copy atomicity for misaligned
accesses within cache lines, or indeed commit to any particular
cache-line sizes, so programmers should not rely on that and our
semantics should not guarantee it. In particular, we should split
misaligned accesses into the architectural one-byte units rather than
into the two subaccesses lying within distinct cache lines.

2.4 Atomicity of Load Instructions
Similarly to store instructions, when the footprint of a load in-
struction is not sufficiently aligned, the architectures regard the
load as split into atomic single-byte units. The following variant
of the message-passing litmus test illustrates this. Thread 0 has
two single-byte store instructions to adjacent (and individually triv-
ially aligned) footprints, with an lwsync memory barrier to keep
them in order as far as other threads are concerned (an hwsync or
ARM dmb sy would be equivalent here). Thread 1 has a single mis-

aligned load-half-word i(1:2) that reads both addresses, with its
two single-byte read events e1 and e0, preceded by a load-byte
i(1:1) of the second address with a read event d.

In the execution shown, e0 and d read from the second of
Thread 0’s writes c, while e1 reads from the initial state, ignoring
Thread 1’s first write a. This is observable on POWER and (using
dmb sy in place of lwsync) ARM, illustrating that e1 can be sat-
isfied early, before e0 and indeed also before d (as otherwise the
lwsync would have forced a to have been propagated to Thread 1
and e would have had to read from c instead of from the initial
state). As for stores, splitting is also observable at various other
boundaries.

Test MP+lwsync+misaligned2+127

init:W x/256=0

i(0:1):stb r1,127(r4)
a:W x+127/1=0x11

i(0:3):stb r2,128(r4)
c:W x+128/1=0x22

i(1:2):lhz r6,127(r4)
e1:R x+127/1 = 0

e0:R x+128/1 = 0x22

Thread 0

b:i(0:2):lwsync

i(1:1):lbz r7,128(r4)
d:R x+128/1 = 0x22

Thread 1

co

co

rf[x+128/1=0x22]

rf[x+128/1=0x22]
rf[x+127/1=0]

Test Archs POWER 7 h/w ARMv8 h/w
MP+lwsync+misaligned2+0(x) forbid 0/10G 0/9.6G
MP+lwsync+misaligned2+1(x) allow 0/10G 0/9.6G
MP+lwsync+misaligned2+3(x) allow 0/10G 0/9.6G
MP+lwsync+misaligned2+7(x) allow 0/10G 0/9.6G
MP+lwsync+misaligned2+15(x) allow 0/10G 0/9.6G
MP+lwsync+misaligned2+31(x) allow 26k/10G 0/9.6G
MP+lwsync+misaligned2+63(x) allow 47k/10G 1.9M/9.6G
MP+lwsync+misaligned2+127(x) allow 3.9M/10G 2.9k/9.6G

2.5 Coherence
Many relaxed memory models, including those of the mainstream
multiprocessor architectures and C/C++11 atomics, provide some
coherence guarantee. In the non-mixed-size setting this is abstractly
characterised by requiring that in any complete execution, for each
abstract location, there is a total coherence order over all writes
to that location, with reads from that location (that are themselves
ordered in some way, e.g. by program order in the same thread,
or by a combination of barriers and dependencies) respecting the
coherence order.

In hardware implementations of relaxed-memory architectures,
the coherence relationship between two writes may be established
relatively late, after (in hardware execution time) they have been
committed and after they have been read from. For example, a co-
herence relationship may be established when one write wins a race
to pass a join-point in a storage hierarchy or a race for cache-line
ownership. This makes for a delicate interplay between coherence
and other ordering constraints, e.g. from memory barriers: coher-
ence cannot always be transitively combined with other ordering
relationships. In particular, the POWER lwsync barrier “Group A”
of actions before the barrier, is not closed under coherence [36,
Z6.3+lwsync+lwsync+addr, §11][33, blw-w-006, §6]). Previous
operational models for POWER [33, 34, 35, 38] and ARM [39]
follow implementation in this respect, establishing coherence rela-
tionships incrementally. The first does so explicitly, maintaining a



Test CO-MIXED-6-sep+reader

i(3:2):xor r6,r3,r3

i(3:3):lwzx r1,r4,r6
e:R x/4 = 0

init:W x/8=0 Thread 0 Thread 1 Thread 2 Thread 3

i(0:1):stw r1,0(r4)
a:W x/4=0x00000011

i(1:1):std r2,0(r4)
b:W x/8=0x0000002200000002

i(2:1):stw r3,4(r4)
c:W x+4/4=3

i(3:1):lwz r3,4(r4)
d:R x+4/4 = 3

co

co co rf[x+4/4=3]

rf[x/4=0]

Test CO-MIXED-6-mergedsep+reader

i(3:2):xor r6,r3,r3

i(3:3):ldx r1,r4,r6
e:R x/8 = 0x0000001100000003

init:W x/8=0 Thread 0 Thread 1 Thread 2 Thread 3

i(0:1):std r1,0(r4)
a:W x/8=0x0000001100000001

i(1:1):std r2,0(r4)
b:W x/8=0x0000002200000002

i(2:1):stw r3,4(r4)
c:W x+4/4=3

i(3:1):lwz r3,4(r4)
d:R x+4/4 = 3

rf[x+4/4=3]coco

co

rf[x/4=0x00000011]

rf[x+4/4=3]

Figure 1.

partial order over writes to the same address that records the coher-
ence relationships established so far; the second does so implicitly,
as writes propagate down a hierarchy.

In the mixed-size setting coherence must be generalised to han-
dle writes that have overlapping but non-identical footprints. Tech-
nically, one can think of this in two ways: either as a coherence re-
lation between atomic write events (with perhaps-overlapping foot-
prints), or as per-byte-address coherence orders together with some
consistency conditions between them for writes with multiple-
address overlaps. The former seems simpler to work with math-
ematically and is also a better match to microarchitecture, where
writes do propagate and win or lose coherence races as atomic
units. However, one does need to interpret such coherence edges
with care. Consider the execution below

Test CO-MIXED-2b

init:W x/8=0 Thread 0

i(0:1):std r1,0(r4)
a:W x/8=0x0000000100000001

i(2:1):ld r1,0(r4)
c:R x/8 = 0x0000000200000000

i(1:1):stw r1,0(r4)
b:W x/4=2

i(2:2):ld r2,0(r4)
d:R x/8 = 0x0000000200000001

Thread 1 Thread 2

co

rf[x+4/4=1]

rf[x+4/4=0]co

rf[x/4=2]

rf[x/4=2]

with two writes

a:W x/8 = 0x0000000100000001 (* Thread 0 *)
b:W x/4 = 0x00000002........ (* Thread 1 *)

related by coherence, with a
co−→ b (as witnessed by executions

with a final state of x/8=0x0000000200000001).
A read c of x on a third thread can see just b, ignoring a

even though it is coherence-before b, and then another read d
can see their combination. Microarchitecturally, this can occur in
several ways. A simple one is a behaviour in which c reads b
before (in hardware execution time) a wins a coherence race with
b. It is observable on POWER 7 (603/2.2G) but not on these
ARMv8 implementations, again unsurprisingly so as they appear
to be multi-copy atomic. In general, reading from a write does not
guarantee that the effects of other writes, that will eventually end
up in the coherence order before the first write, are also visible at
the point of that read.

Coherence over mixed-size writes is simplified by the fact that,
in the ARM and POWER architectures, as we saw in §2.3, 2.4, store
instructions, even if misaligned, generate write events that are each
of size 2n bytes and 2n-aligned for some natural number n. This
rules out sets of writes such as {a, b, c} or {d, e, f}:

a: W x /2 = 0x0302.... d: W x /2 = 0x0302....
b: W x+1/2 = 0x..1211.. e: W x+1/2 = 0x..1211..
c: W x/1,x+2/1 = 0x23..21.. f: W x+2/2 = 0x....2120

We do have to consider sequences of primitive coherence edges,
with each edge between two writes with non-empty overlap, but
whose endpoint writes do not overlap. However, because writes are
each 2n-aligned and size 2n bytes for some n, the sub-footprint
relation is a tree, so if two footprints overlap then one must be
included in the other, and hence in any such sequence there must
exist an intermediate write in the sequence that overlaps with both
of the endpoints.

That leaves us with examples such as the top of Fig. 1, which
has three writes:

a: W x /4 = 0x00000011........ (* Thread 0 *)
b: W x /8 = 0x0000002200000002 (* Thread 1 *)
c: W x+4/4 = 0x........00000003 (* Thread 2 *)

with a
co−→ b

co−→ c (observable in executions where the final state
of x/8 is 0x0000002200000003) and where a and c have disjoint
footprints. If coherence is transitively closed (and without that it is
hard to use in reasoning) then a

co−→ c. What is the real meaning
of such a transitive edge? At first sight one might think it means
that another thread (Thread 3) that reads the two subfootprints
separately, with a barrier or dependency to ensure local ordering,
will never see c and fail to see a, but on POWER we observe that
(7.3k/1.8G).

d: R x+4/4 = 0x........00000003 (* Thread 3 *)
<address dependency>
e: R x /4 = 0x00000000........ (* Thread 3 *)

We also observe executions (7.2k/1.8G) in which Thread 3 sees a
(i.e., not overridden by the coherence-later b, even though b is a
coherence-predecessor of the c which it has seen).

These observations might appear counter-intuitive at first sight,
but they have straightforward microarchitectural explanations. Sup-



pose Threads 2 and 3 are close together, sharing one level of
cache/store-buffer, then c can reach Thread 3 before being visi-
ble to other threads, and before any coherence decisions have been
made. It is no surprise that the initial 0 can be read in the other
half of the location, by Thread 3 reading from the shared level
of cache. Slightly more interesting is the case (not shown) where
Thread 3 instead sees a. This could occur if Threads 2 and 3 are
close together, as above, and Threads 0 and 1 are not neighbours of
each other or of 2+3. As before, c can reach Thread 3 and be read
from before reaching other threads, and before any coherence deci-
sions have been made. Then the coherence mechanism between the
thread neighbourhoods 0, 1, and 2+3 can settle coherence among
{a, b, c}. Write a wins, reaches Thread 3, and is read from, then
writes b and c, in that order, take their places in coherence.

Interestingly, one would expect coherence decisions between
far-away neighbourhoods to be made at cache-line granularities.
This means when write a reaches Thread 3, it has to be locally
merged with the partial write c which has not yet taken its place
in coherence. This suggests the variation in the bottom of Fig. 1
should also be observable, and indeed it is (6.8k/1.8G).

All these observations require non-multi-copy-atomic be-
haviour, so again it is unsurprising that we do not see analogous
results on the ARMv8 implementations tested.

Another interesting case is below: the simple disjoint
write/write thread-local reordering we saw in the second example
of §2.2 can also lead to cycles in the union of coherence and pro-
gram order. This test has two disjoint writes on Thread 0 and a write
to the combined footprint on Thread 1; it asks if the former two can
be coherence-ordered against program order, with the latter write
coherence-between them:

Test CO-MIXED-6

init:W x/8=0 Thread 0 Thread 1

i(0:2):stw r1,4(r4)
b:W x+4/4=1

i(0:1):stw r3,0(r4)
a:W x/4=3

i(1:1):std r1,0(r4)
c:W x/8=0x0000000200000022

coco
co

The interesting outcome is with b
co−→ c

co−→ a, with

a: W x /4 = 0x00000003........ (* Thread 0 *)
b: W x+4/4 = 0x........00000001 (* Thread 0 *)
c: W x /8 = 0x0000000200000022 (* Thread 1 *)
final x/8 = 0x0000000300000022

This is not observed on POWER 7 or on our ARMv8 implemen-
tations. The former is unsurprising, as current POWER implemen-
tations appear not to do out-of-order write commitment, and any
write propagation effects may well only be at a cache-line granu-
larity. The latter contrasts with other ARM write-write reordering,
e.g. MP+po+addr. However, discussion with the vendors confirm
that it is architecturally allowed for both, simply because a and b are
to disjoint footprints and so are not architecturally locally ordered
(despite their program-order relationship). Our models permit it.

2.6 Write Forwarding
In the non-mixed-size context a load can read a value written by a
store from the same thread while the store is still speculative (i.e.,
a branch condition preceding the store has not been resolved yet).
This is illustrated by the PPOCA litmus test [33]. Implementation
microarchitectures exhibit such behaviour by forwarding uncom-
mitted speculative writes to program-order-later reads. There are
several interesting variations of such forwarding in the mixed-size
setting (these tests are not shown but they are included, with the
others, in the supplementary material).

In Test PPOCA-MIXED-3, a slice of write can be forwarded to a
narrower load. Test PPOCA-MIXED-1 has a read partially satisfied by
forwarding a speculative write, with the rest satisfied from memory.
Test PPOCA-MIXED-2 involves a read satisfied by forwarding two
writes. All three of these behaviours are allowed by both architec-
tures; they are observed on current hardware as below.

Test Archs POWER 7 h/w ARMv8 h/w
PPOCA-MIXED-3 allow 7/3.4G 69k/6.0G
PPOCA-MIXED-2 allow 0/3.4G 63k/6.0G
PPOCA-MIXED-1 allow 0/3.4G 28k/6.0G

2.7 Load/Store Multiple and Load/Store Pair
The IBM POWER ISA contains store multiple word stmw and
load multiple word lmw instructions, that write or read up to 32
consecutive 4-byte words into the low-order bytes of corresponding
registers (in the Server version of the architecture, which is our
focus, these instructions are only available in big-endian mode).
Even if word-aligned, their writes and reads must be split into
4-byte units, with no ordering amongst them, broadly similar to
the splitting in §2.3 and §2.4. We observe this on POWER 7 in
tests MP+stmw+addr+124 and MP+std+lmw (not shown, 8.7M/3.4G
and 12M/3.4G respectively). The first has Thread 0 comprising a
store-multiple of two aligned 4-byte words that cross a cache-line
boundary, read by two aligned 4-byte reads on Thread 1 separated
by an address dependency. The second has Thread 0 comprising an
8-byte aligned store-doubleword, read by a similarly aligned load-
multiple of two words.

However, the fact that lmw reads into multiple registers raises a
new question that our models do not currently address. The above
shows that the read requests to memory must semantically be split,
but then after one read request from a lmw is satisfied, can program-
order later instructions that read from the register that takes that
result go ahead even before the other read requests from the lmw
are satisfied? The test below illustrates this: Thread 0 has an 8-byte
write (aligned, and hence single-copy atomic) c to x/8, preceded
by an lwsync barrier and a write a to y. Thread 1 has a load-
multiple instruction that reads from x/4 into register r30 (d1) and
from x+4/4 into register r31 (d0) (zero-extending both values).
In the execution shown, the first of those reads (d1) is satisfied
first, from the initial state for x/4 rather than from c, which lets
an address dependency to the read e of y go ahead and read from
the initial state for y. This must be before (in machine execution
time) the second read (d0): that does read from write c, and the
lwsync means that write a to y must have propagated to Thread 1
before c does, but the read e of y did not see a. This is observable
on POWER 7 (4.7k/3.5G).

Test MP+lwsync+lmw-addr+BIS3

i(0:1):stw r1,0(r5)
a:W y/4=3

i(0:3):std r2,0(r4)
c:W x/8=0x0000000100000002

i(1:1):lmw r30,0(r4)
d1:R x/4 = 0

d0:R x+4/4 = 2

Thread 0

b:i(0:2):lwsync

i(1:3):lwzx r2,r3,r5
e:R y/4 = 0

Thread 1

i(1:2):xor r3,r30,r30

init0:W x/8=0
init1:W y/8=0

co

co
rf[x+4/4=2]

rf[y/4=0]

rf[x/4=0]



The ARMv8 A64 64-bit instruction set includes load/store-pair
instructions, for which the same question can be asked (load/store-
multiple are part of the ARMv8 A32 32-bit instruction set, which is
not covered by this work). The analogue of the first test is observ-
able (MP+stp+addr+60, 20M/6.0G), while the analogues of the sec-
ond and third are not (MP+str+ldp, MP+dmbsy+ldp-addr+BIS3).

Our models could be adapted to permit this behaviour but at
present they do not (it needs a stronger form of intra-instruction
parallelism), so these multiple and pair instructions are not in the
fragments of the ISAs that we support. Neither ISA has instructions
that read from (say) just the top half of a register, so the question
does not arise in the remainder of the ISA.

3. Mixed-size Semantics for Hardware
We now describe our semantic models for Power and ARM that
handle the mixed-size phenomena of §2, including some more
technical issues that have to be dealt with.

Context The new models extend those developed in previous
work [33, 34, 35, 38, 39], which we recall first. These are opera-
tional models: at the top level, each defines a type of whole-system
machine states, a type of transition labels, and a total computable
function that, given a state, calculates the set of all its possible tran-
sitions. Each model can thus be executed as a test oracle, to com-
pute (for a small litmus-test program and initial state) the set of
all model-allowed final states, by an exhaustive memoised search.
This set can then be compared with the sets of final states ob-
served by running the test experimentally on production hardware
implementations, using the test harness constructed by the litmus
tool [44, 28]; any discrepancy between the two sets indicates ei-
ther a flaw in the model, a flaw in the hardware, or a place where
the architecture (and the model) is intentionally looser than the be-
haviour of that specific hardware implementation. The models can
also be executed interactively, letting the user explore a single exe-
cution path (backtracking as desired), with command-line and web
interfaces to show the state at each point.

The concurrency models are expressed in the Lem lan-
guage [52] as type and function definitions, from which Lem gen-
erates pure OCaml code used in tools. Lem can also generate
theorem-prover definitions, for HOL4, Isabelle/HOL, and (to a lim-
ited extent) Coq; this should enable mechanised proof about the
models in the future. As an experiment towards that, we have re-
cently proved termination for the Isabelle version of most functions
(in a slightly earlier version of the model than that of this paper) ex-
cept the Sail interpreter and the fragment processing.

Each model is factored into three parts:

• the semantics of individual machine instructions in isolation.
This is expressed in Sail [38, 39], a language reminiscent of
(but cleaner and more strongly typed than) the vendor pseu-
docode languages used in their architecture texts. We use Sail
definitions of substantial fragments of the POWER [38] and
ARM [39] ISAs, derived (respectively) semiautomatically and
manually from those. The typed Sail AST is deeply embedded
in Lem; a Sail interpreter gives an operational semantics that
produces primitive memory and register read/write events [38,
§2.2].

• the thread semantics, loose enough to admit the observable be-
haviour of pipeline optimisations, including out-of-order and
speculative execution. At any moment each thread may have
many instruction instances in flight, each with partially exe-
cuted instruction semantics, and others that have been commit-
ted. Much of the thread semantics is common to the ARM and
POWER models.

• the storage subsystem semantics, handling the propagation of
writes and barriers (and, for ARM, read requests) between
threads. This abstracts from the storage hierarchies, cache pro-
tocols, and interconnects of hardware implementations. For
POWER this is based on the coherence-by-fiat model of [33,
35]; for ARM there are the low-level (more microarchitectural)
Flowing model and the higher-level (abstracting from thread in-
terconnect topology) POP model of [39].

This structure gives the thread and storage subsystem semantics
enough of a microarchitectural flavour to let us discuss them in
detail with ARM and POWER architects, which is necessary for
model design and for model validation, to ensure the models cap-
ture the architectural intent (black-box testing, while also neces-
sary, would not suffice alone). At the same time, they are abstract
enough not to get bogged down in the hardware implementation
detail that is not programmer-observable, which would be too com-
plex to work with. They really are architectural envelope models,
capturing, to the best of our knowledge, the envelopes of all be-
haviour which are intended to be allowed. For the instruction se-
mantics, where there is less ambiguity in the existing architecture
texts, and less concurrency-related subtlety, but a bigger mass of
detail for these relatively large ISAs, expressing them in a language
close to those of the existing informal specifications also helps en-
sure we correctly capture the intent.

Extending all this to the mixed-size setting required changes
to all parts. There is a pervasive change to the basic types for
read and write events, which now use footprints (of a concrete
address and a size in bytes) rather than just addresses. Below we
describe the changes to the instruction and thread semantics, which
were broadly common to ARM and POWER, and then the storage
subsystem changes for each.

3.1 Instruction and thread semantics
For the instruction semantics, our ISA metalanguage, Sail, had to
support operations on bitvectors (for register values and operations)
and bytevectors (at the interface to the thread semantics of the
memory model) throughout. To make the user interface make sense
for those familiar with the vendor ISA descriptions, we arranged for
the indexing of bitvectors (e.g. for parts of registers) to correspond
to the existing conventions: ARM bit indices decrease from most-
significant-bit to least-significant-bit, while POWER bit indices
increase, and different registers have different starting indices.

The previous thread semantics relied on the Sail semantics of
each instruction making at most one memory read or write, which
simplifies the semantics of instruction commit; to maintain this,
some of the instruction descriptions needed to be rewritten, e.g. to
do a single wide write in place of multiple writes, and an interme-
diate layer was added to split wide or misaligned write events into
the correct architecturally atomic units, as in §2.3. Misaligned and
wide reads must also be split, as in §2.4, but this was more involved,
introducing new intermediate instruction states in which some but
not all of the fragments of such a read have been satisfied.

Write forwarding, from an uncommitted write on a specula-
tive path (after an as-yet-unresolved control dependency), intro-
duced additional complications to that (§2.6). Then both register
and memory reads need to be able to read from multiple writes, as-
sembling the correct value from the relevant fragments, as in §2.1;
a common abstraction of fragments served both.

Finally (for the thread semantics), all the calculations of
whether instructions might access the same memory address
needed to take footprints into account.

The whole model is currently 12600 non-comment lines of Lem
specification, as below, together with 3400 and 3693 lines of Sail
for the fragments of the ARMv8 and POWER ISA specifications



covered, and additional OCaml code for parsing, pretty printing,
and suchlike.

machineDefDebug.lem 29
machineDefUtils.lem 72
machineDefFreshIds.lem 15
Sail interpreter (7 files) 6100
machineDefTypes.lem 726
machineDefFragments.lem 289
machineDefStorageSubsystem.lem (POWER) 604
machineDefFlowingStorageSubsystem.lem (ARM) 642
machineDefPOPStorageSubsystem.lem (ARM) 362
machineDefThreadSubsystem.lem 2810
machineDefSystem.lem 951

We now describe the more semantically interesting changes
required to each of the storage subsystem models, in terms of the
prose descriptions of their states and transitions from earlier work.

3.2 POWER Coherence-by-fiat Storage Subsystem
Semantics

Coherence and write propagation To reflect the microarchitec-
tural intuition for POWER explored in §2.5, we first adapt the
model of [33, 35] by replacing the per-location coherence partial
orders (over the writes to that abstract location) by a single par-
tial order over all writes. The previous model did not propagate a
write to a thread when any coherence successor had already been
propagated there; now we propagate the non-coherence-superseded
slices of a write: the events_propagated_to for each thread (pre-
viously a list of the writes and barriers propagated to that thread)
now includes, for each write, a list of its slices (sub-parts of its
footprint) which actually become visible to that thread. We allow a
thread to satisfy a read only from those slices, and we allow write
propagation only if there is some non-empty part of the write which
is not coherence-subsumed by the slices of other writes already
propagated. Previously it was an invariant that the order of the
writes in each events_propagated_to list coincided with their co-
herence order, but now that is not the case. Each pair of writes with
overlapping footprint in such a list must be coherence-related one
way or the other, but the events_propagated_to order must match
the coherence order only for pairs where the propagated slices have
non-empty overlapping footprints. This accommodates (for exam-
ple) the propagation of the non-coherence-superseded slice of a to
Thread 2 after b has propagated to Thread 2 in test CO-MIXED-2b of
§2.5.

Accept write request When a new write request from a thread is
received by the storage subsystem, the previous semantics updated
the coherence relation to make the new write coherence-after all
writes (to the same address) that have previously propagated to this
thread or that have reached their coherence point (see coherence
point below). We now make the new write w coherence-after all
previously propagated writesw′ whose complete footprints overlap
the neww, irrespective of their propagated slices, as any such prop-
agated write w′ for which only the non-propagated slices overlap
the new w will be coherence-predecessors of another propagated
write (w′′) with propagated slices that do overlap the new w.

Partial coherence commitment The coherence-by-fiat storage
subsystem semantics [33, 35] abstracts all other ways that coher-
ence commitments can be made incrementally into a single partial
coherence commitment rule, allowing the storage subsystem to in-
ternally add an arbitrary coherence edge (between a pair of writes
to the same address that are not yet related by coherence), together
with any edges implied by transitivity, if:

(a) there is no cycle in the union of the resulting coherence order
and the set of all pairs of writes (w1, w2), to any addresses, for
which w1 and w2 are separated by a barrier in the list of events
propagated to the thread of w2 (in the non-mixed-size setting
this can only happen if w1 is coherence-before w2); and

(b) there is no new edge to any write that has reached coherence
point.

Condition (a), whose real force is for the lwsync barrier, abstracts
from the microarchitectural fact that coherence choices in imple-
mentations are made in a hierarchical storage subsystem, and it
prevents the model from making coherence choices that will later
lead to deadlock.

At first sight one might think this could be left unchanged in the
mixed-size setting, but it should be possible for two writes by two
different threads, e.g. a to x/8 and b to x/4, to propagate to a third
thread, in order b then (the x+4/4 slice of) a, with an lwsync by
that third thread in between, even though they become coherence-
ordered a

co−→ b. The above Clause (a) would forbid this, so we
modify it to require only that there is no cycle in the union of the
resulting coherence order and the set of all pairs of writes (w1, w2),
to any addresses, for which w1 and w2 are separated by a barrier
(from any thread) in the list of events propagated to the thread of
w2, and for which w2 is not coherence-before w1.

Write reaches its coherence point This transition marks when the
coherence order up to a write has become completely determined
(preventing other writes later becoming coherence-before it). It can
remain unchanged, ignoring the propagated-slice information, for
the same intuitive reason that the coherence relation remains over
writes, not over their slices: the slice information is just a question
of superseding visibility in a local buffer or cache, not about when
the writes win coherence races at intermediate or final points.

Propagate barrier to another thread In the previous semantics,
the storage subsystem could propagate a barrier it has seen to
another thread tid if: (1) the barrier has not yet been propagated
to that thread; and (2) for each Group A write, that write (or
some coherence successor) has already been propagated to that
thread. Here the Group A writes for a barrier were the set of writes
propagated before the barrier to the thread that performed it.

Now we need Group A to include the data identifying the
slice(s) of each write that propagated before the barrier to the thread
tid ′ that performed the barrier, and we check for each such write
that, for each byte of the propagated slice, either that byte of it
or the corresponding byte of some coherence-successor write has
propagated to the barrier propagation target thread tid .

Note that if a proper slice of a write has been propagated to
a thread, then coherence-successors of the remainder of the write
must already have been propagated there. One might think that we
therefore do not need to consider the slices that have been propa-
gated to this thread individually — that it would be enough to check
that slices that coherence-cover this complete write have been prop-
agated to the barrier propagation target. But some of the coherence-
covering writes of the different slices could be coherence-between
the coherence-covered writes, so it seems one should consider the
slices propagated to this thread individually, and for each check
that coherence-covering-successor-slices have been propagated to
the target thread.

3.3 ARM Flowing and POP Storage Subsystem Semantics

Adapting the Flowing model In contrast to the POWER
coherence-by-fiat model, the Flowing model of [39] does not have
an explicit coherence relation. Instead, Flowing maintains a con-
crete hierarchy of queues above a byte-array memory. Read, write
and barrier requests are received from the threads and enter the top



of the associated queue. Adjacent requests in a queue can swap po-
sitions subject to a reorder condition. Requests at the bottom of a
queue can be removed from the queue and placed at the top of the
next queue in the hierarchy. When a write request is removed from
the root queue the memory is updated with its value. A read request
can be satisfied when it is adjacent to a write request to the same
address or when it is removed from the root queue (using the value
stored in memory).

To accommodate the behaviours explored in §2, we first have
to change the satisfy-read transitions. As a read request can now
be satisfied from multiple writes, the Satisfy read from segment
transition has to allow partial satisfaction of the read, and the state
has to account for reads that are partially satisfied. The state of the
new model records, for each read, the slices of its footprint that
have not been satisfied yet, together with the slices that have been
satisfied and the writes that satisfied them. The transition is now
enabled if the footprint of a write overlaps the unsatisfied slices of
the read. When the transition is taken, the state is first updated to
record the write has satisfied the overlapping unsatisfied slices of
the read. We then have to consider two cases: in the first case the
read has no more unsatisfied slices, in which case a read response
is sent to the thread subsystem that issued the read, together with
the writes that satisfied it, and the read is removed from the storage
subsystem. In the second case the read still has unsatisfied slices.
In this case we have to take care not to break single-copy atomicity,
as we will explain using the test below.

Test CO-MIXED-20cc

init:W x/8=0

i(1:1):STR X1, [X5]
c:W x/8=0x2222222222222222

Thread 0

i(0:1):STR W1, [X5]
a:W x/4=0x11111111

i(0:2):LDR X2, [X5]
b:R x/8 = 0x2222222211111111

Thread 1

co

rf[x+4/4=0x22222222]

co
rf[x/4=0x11111111]

Consider the following intermediate Flowing state, reached by
committing the write a, issuing the read b and committing the write
c:

memory [x/8=0x0000000000000000]

Thread 0

b:R x/8=0x????????????????
a:W x/4=0x........11111111

Thread 1

c:W x/8=0x2222222222222222

In this state we can partially satisfy b with a. If the model did not
take any measures to guarantee single-copy atomicity, we could
continue by flowing a to memory and then flowing c to memory,
reaching the following state:

memory [x/8=0x2222222222222222]

Thread 0

b:R x/8=0x????????11111111

Thread 1

At this point b could flow down and satisfy its unsatisfied slices
with the value in memory, resulting in the combined read value of
0x2222222211111111. As the final value in memory implies the
coherence order a co−→ c, that would be a violation of single-copy

atomicity. To prevent this, the transition where a write partially
satisfies a read also swaps the position of the write and the read in
the queue. In addition, to make sure the read and the write remain in
this order, we add to the reorder condition that a write that satisfied
a read can never again be reordered with it.

Going back to the example above, after b is partially satisfied
by a we reach the state:

memory [x/8=0x0000000000000000]

Thread 0

a:W x/4=0x........11111111
b:R x/8=0x????????11111111

Thread 1

c:W x/8=0x2222222222222222

(notice that a and b swapped position) which guarantees that if the
remaining slices of b are to be satisfied by c the coherence order of
a and c will be c

co−→ a.
Adapting the Satisfy read from memory rule is more straightfor-

ward as the transition fully satisfy the unsatisfied slices of the read.
It involves minor changes to account for the fact that a read might
already be partially satisfied.

Finally we adapt the reorder condition. Where before two mem-
ory access requests could not be reordered if they were to the same
address, we now check whether there is an overlap, taking foot-
prints of writes and unsatisfied slices for reads.

Adapting the POP model The POP model of [39] replaces the
hierarchical queue structure with a more abstract explicit partial or-
der between requests (order-constraint). This model makes use of
the Flowing reorder-condition to determine how order-constraint
should evolve when taking an Accept request or Propagate re-
quest to another thread transition. The modifications to the reorder-
condition we described above are the same here and the only thing
remaining to be adapted is the Send read-response to thread tran-
sition. This follows the same lines as the adaptation of the Flowing
Satisfy read from segment transition. Where in the new Flowing
model, when a read is partially satisfied by a write, we swap the
positions of the read and the write in the queue, in the POP model
we simply swap the positions of the read and the write in the order-
constraint. This is enough to guarantee the single-copy atomicity
required by the ARM architecture.

4. Sequential Consistency for Mixed-size?

Barriers do not recover SC for mixed-size ARM or POWER
A standard result for relaxed memory models, and a property that
architectures have normally been thought to intend and to guaran-
tee, is that inserting enough barriers in a concurrent program re-
stores sequentially consistent behaviour. The only exception that
we were previously aware of is Itanium.2 Perhaps surprisingly, in
the mixed-size setting neither ARM nor POWER have this prop-
erty, as the example below from §2.5 shows: there is no way to
totally order these four events with each read reading each byte
from the most recent write to that byte. This execution is archi-
tecturally allowed on both ARM and POWER and observable on
current POWER implementations (one would not expect it to be
observable on current ARM implementations as we have not ob-

2 The Intel Itanium specification [22] defines a non-multi-copy-atomic
model where the strongest barrier is not sufficient to regain multi-copy
atomicity, for normal accesses, and hence insufficient to regain SC for
them; regaining SC requires the Itanium store-release and load-acquire in-
structions. It is unclear whether Itanium implementations have actually ex-
ploited that weakness, but accommodating it led to the weak semantics of
the C/C++11 SC fence [53, 46, 34, 54].



served other non-multi-copy-atomic behaviour). Adding a barrier
between these two reads makes no difference in the models, and
the result remains observable with a sync barrier on POWER 7
(Test CO-MIXED-2b-sync, 48k/2.2G).

Test CO-MIXED-2b

init:W x/8=0 Thread 0

i(0:1):std r1,0(r4)
a:W x/8=0x0000000100000001

i(2:1):ld r1,0(r4)
c:R x/8 = 0x0000000200000000

i(1:1):stw r1,0(r4)
b:W x/4=2

i(2:2):ld r2,0(r4)
d:R x/8 = 0x0000000200000001

Thread 1 Thread 2

co

rf[x+4/4=1]

rf[x+4/4=0]co

rf[x/4=2]

rf[x/4=2]

Characterising the behaviour of fully barriered programs
We therefore characterise what guarantees these architectures do
give when inserting strong barriers (sync or dmb sy) between any
two instructions in program order. For conciseness, in the follow-
ing we will call these programs “fully barriered”. For simplicity we
restrict to the case of programs that have no misaligned memory ac-
cesses, which would also need the store and load splitting of §2.3,
§2.4.

As a first attempt at an axiomatic characterisation of hardware
behaviour for fully barriered mixed-size programs (without mis-
aligned accesses) consider the following, henceforth called Byte-
wise SC (BSC). Partition all read events and write events into
subevents (also subreads and subwrites) of the smallest size sup-
ported by the architecture (for POWER and ARM this is one byte),
and record which subevents were generated by the same event in
an irreflexive, symmetric relation si. Now define a candidate exe-
cution to consist of the subevents with the usual relations po, rf, and
co — but per byte, and with po lifting program order to a relation
on the subevents. We require that coherence be compatible with si
in the following sense: wi

co−→ vj =⇒ wi′
co−→ vj′ whenever

{(wi, wi′), (vj , vj′)} ⊆ si and wi′ and vj′ have the same address.
We then call a candidate execution BSC if there is a total order on
the subevents that agrees with po, co, and rf (a subread having the
value of the most recent preceding subwrite in the order).

This can be shown to admit all behaviour of fully barriered
mixed-size POWER and ARM programs without misaligned ac-
cesses. For example, the behaviour above is witnessed by the
subevent order c7 → a7 → a3

co−→ b3
rf−→ c3, suitably extended

for the other subevents. (xi denotes the i-th byte-sized subevent of
an event x, e.g. c3 is the subwrite 0x02 of c.) However, it gives
too weak a guarantee to be suitable for programming and is weaker
than hardware for fully barriered programs; for example, the unde-
sirable behaviour of the test below is allowed in BSC. Here the read
c is satisfied from a mix of the writes a and b, while in ARM and
POWER one would want it to be satisfied completely by a single
write, a or b, whichever wins the race.

Test SCA-1

Thread 0 Thread 1 Thread 2

b:W x/2=0x2222a:W x/2=0x1111 c:R x/2 = 0x1122

rf[x+1/1=0x22]

rf[x/1=0x11]

w’ w r
wor rf

wor

rf

This execution violates the princi-
ple of single-copy atomicity: for any
read r there must be a total order wor

over the writes it reads from such that
each subread of r reads from the wor-
maximal subwrite. This can be more

formally defined as follows: an execution is single-copy atomic if
for each read r there exists a total order over all same-address sub-
writes wor compatible with si and such that there are no cycles of
the form rfr; si; rf−1

r ;wo+
r ; si, where rfr is rf restricted to r’s sub-

reads.
The above definition allows the ordering of writes wor to be dif-

ferent for each read event r. In most cases, including POWER and
ARM, there is a notion of coherence that requires a global ordering
of overlapping writes. In these cases we can specialise single-copy
atomicity to the following, where wor always coincides with co-
herence: rf; si; rf−1; co+; si must be acyclic (c.f. [42, B2.6.2]). We
now define BSC+SCA as BSC with the latter single-copy atomicity
axiom added.

Theorem 1. All behaviours that fully barriered POWER and ARM
programs with no misaligned accesses exhibit are allowed by
BSC+SCA.

The proof, in the supplementary material, takes an arbitrary
trace tr of the POWER or ARM model, and constructs a total order
on the byte-sized subevents that matches program order, coherence,
and reads-from (and from-reads) of the trace. For ARM the proof
uses a lemma that states that any two writes that are related by paths
of coherence, reads-from, from-reads, and program-order edges are
already related in the same way in order-constraints of the final state
of tr. For POWER the key result is that for any path in the graph of
events with coherence, reads-from, from-reads, and program-order
edges that ends with an edge (e, e′), in the state in tr when e′ is
accepted into the storage subsystem all reads on the path have been
satisfied and all writes from the path have been propagated to all
threads.

Recovering SC on ARM If all memory events have the same size,
any complete execution totally orders same-address events (except
for read-read pairs) in terms of the relations coherence, reads-from,
and from-reads. In the example of CO-MIXED-2b, however, there
is not such a total order: the read c observes a state where a and
b are not ordered yet. What is necessary to prevent the behaviour
of CO-MIXED-2b is multi-copy atomicity: c must not be satisfied
before b is visible to all threads and thus ordered with a. In ARM
this is exactly the behaviour that acquire reads in combination with
release writes provide: replacing b with a write-release and c with
a read-acquire in the test forbids the non-SC behaviour, because c
can only be satisfied from b when it is propagated to all threads, at
which point a and b are ordered: either a is ordered before b and c
returns 0x0000000200000001, or b is ordered before a, but then it
is b co−→ a. This gives an intuition for the following theorem.

Theorem 2. An ARM program whose only reads are acquire reads
and whose only writes are release writes and that has no mis-
aligned memory accesses has sequentially consistent behaviour.

The intuition behind this is that if all memory accesses are re-
lease/acquire accesses, the thread semantics is forced to behave se-
quentially, the storage subsystem keeps all release/acquire events in
the order they were accepted into storage, and multi-copy atomicity
ensures that the reads-from relation agrees with some total order on
same-address events.

The proof, in the supplementary material, constructs a total
order on the reads and writes of a given POP trace that matches
program order, coherence, and reads-from (and from-reads). The
key point of the proof is that at the point when a read is partially
satisfied it has to be fully propagated, and therefore all writes it will
read from fully propagated and totally ordered by order-constraints.

Implications for Java and C memory models Both Java and
C/C++11 language-level models guarantee sequential consistency
in particular circumstances, for volatiles and for SC atomics re-



spectively; one should therefore ask whether the above observation
invalidates the usual compilation schemes. Fortunately it does not:
neither language permits mixed-size accesses of those kinds. Low-
level systems code does exploit them, however, as in the examples
mentioned in §1.

5. C/C++11 Mixed-size
In this section we extend the formal C/C++11 axiomatic model of
Batty et al. [46, 45, 53] to support mixed-size nonatomic accesses.
For brevity we describe the changes to that model in prose; we refer
the reader to [45, 46, 54] for an introduction to C/C++11 concur-
rency, and to the supplementary material for the full mathematical
definition of the extended model.

We first add footprints to read and write events, replacing the
previous addresses. The type of footprint is abstract, to support
later integration with a variety of C memory layout models; in a
concrete memory layout model it could be implemented as pairs of
a concrete address and a size in bytes, as in the hardware models.
Footprints are manipulated only with is_empty and inclusion
tests and with empty , difference , intersection , and bigunion
operations.

Reads can now read from multiple writes, so to make explicit
which part the read is reading from which write we also add foot-
prints to rf-edges. In the C/C++11 concurrency model coherence
and the SC order are only over accesses to atomic locations. In the
ISO C standard mixed-size overlapping atomic accesses are for-
bidden by the effective type rules, and the general combination of
atomic and non-atomic accesses (e.g. char * accesses to atomic
locations) is an open problem [49] which we do not consider here.
All the accesses to each atomic location will therefore be of the
same size, and so there is no need to add footprint information to
coherence or to the SC order.

Then we add footprints to the visible side effects relation vse ,
where (w, r) ∈ vse means that the write w is visible to the read r.
Visible side effects are a C/C++ notion; the relation does not have
an equivalent in hardware models. In the original C/C++11 model
the visible side effects to a read r are all the writes w to the same
location as r for which w happens before r, but where there is no
write to the same location that happens between w and r (“happens
before” or hb is a partial order calculated from the relations arising
synchronising actions and program order). In the mixed-size model
it is possible that only a part of a write is visible to a read. The
footprint of the vse-relation denotes which part is visible, and it is
defined as follows: if a writew happens before r and there is a non-
empty part f of the footprint of w that is not overwritten by writes
hb-between w and r, then (w, f, r) is a visible side effect.

Finally, we adapt the following consistency and race predicates
of the original model that concern non-atomics.

Well formed rf To support reading parts of multiple writes we
made the following changes to the consistency predicate well-
formed-rf.

• The original predicate requires that a read can read from at most
one write. In the mixed-size model this is only required for
atomics; for non-atomics we require that there is at most one
rf-edge between every pair (w, r) of write and read, and that
the footprints of all the rf-edges to the same read are disjoint.

• The original predicate requires for all (w, r) ∈ rf that w and
r are to the same location. Now we require instead that the
footprint f of (w, f, r) ∈ rf is non-empty, and included in both
the footprint of w and in the footprint of r. Note that we do not
require that the union of the footprints of all the rf-edges to r
equals the footprint of r. The reason is that it should be possible
to have a partly indeterminate read (which means the execution
is undefined).

• The original predicate requires for all (w, r) ∈ rf that the value
read by r equals the value written by w. Since a read can now
read from multiple writes we have to combine the (parts of) the
values of the writes. To determine this value we use a function
combine_cvalues whose implementation is left to users of the
model. It takes a set of tuples (v, f1, f2), where v is the value
of a write, f1 the footprint of the write and f2 the footprint
of the rf-edge from that write. The return value is an option
type, either nothing, e.g. in the case that the set is empty, or the
constructed value.

Consistent non-atomic rf The original consistent-non-atomic-rf
predicate requires that non-atomic reads only read from visible side
effects. Both rf- and vse-edges now have footprints, but it would
be wrong to require that every rf-edge (w, f, r) is in vse: in a racy
program there could be distinct writes w and w′ with the same
footprint f such that (w, f, r) and (w′, f, r) are both visible side
effects, and r could read only a part f1 of w and read the rest f2
from w′. This means that the rf-edges (w, f1, r) and (w′, f2, r) are
not in vse . Although the execution is racy, it should be consistent
(otherwise the race might not be detected) so the new consistent-
non-atomic-rf predicate requires that for every rf-edge (w, f, r)
there is a vse-edge (w, f ′, r) such that f is included in f ′.

Determinate reads The consistency predicate determinate-reads
governs whether a load r should read from somewhere or not: the
original predicate requires that r has an rf-edge to it if and only
if there exists a visible side effect to r. Because in our mixed-size
model a read can be partly determinate and partly indeterminate,
we instead require that the union of the footprints of the rf-edges to
r equals the union of the footprints of the vse-edges to r.

Indeterminate reads The predicate indeterminate-reads is a race
predicate: it does not impose any requirements on executions, but
if it is true for some consistent execution it means that the program
has undefined behaviour. The original predicate is true if there
exists a read that has no rf-edge to it. In our proposed model
indeterminate-reads is true if there exists a read r whose footprint
is not completely covered by the footprints of the rf-edges to r.

Races The original race predicate data-races is true if there exist
two distinct actions, at least one non-atomic and at least one a write,
which are to the same location, from different threads and that
are not happens-before related. The predicate unsequenced-races
is the same but for actions within a thread. In our proposed model
we no longer require that the actions are to the same location, but
instead that they have overlapping footprints (the intersection of the
footprints is non-empty).

Looking at the example hardware executions from §2 that could
arise from C/C++11 executions, regarding all reads and writes as
nonatomic C/C++11 accesses, the first (MIXED-SEQ-1) is consis-
tent and defined. The other executions are all inconsistent, since
non-atomics can only read from hb-before writes, but each test has
another execution which is consistent and racy, with all reads read-
ing from the initial write(s), and so they are deemed to have unde-
fined behaviour in the model, as one would wish.

6. Mixed-size C/C++11 to POWER: Proof
We now show that the standard compilation scheme [55] from
C/C++11 concurrency to POWER is sound also for mixed-size
nonatomic accesses, extending a previous proof [34] to cover the
models of §5 and §3. For any given C program p with mixed-
size non-atomic accesses, we begin by converting it to another C
program p′ which has non-overlapping non-atomic accesses (this
can always be done by splitting non-atomic accesses to byte-width
accesses). Under this transformation there is a natural correspon-



dence between the consistent executions of p and those of p′. In
particular, if the original program p is data-race free, so is the
transformed program p′. Furthermore there is an isomorphism be-
tween the POWER model traces generated for p and a subset of
the POWER model traces generated for p′. Using the previous cor-
rectness theorem for the non-mixed-size setting [34], any POWER
trace of the data-race free p′ will have a consistent execution in the
model of §5.3 We complete our proof by defining a mapping which
converts a given consistent execution of p′ to a consistent execu-
tion of p. We outline the steps below; more details are available in
supplementary material.

For the following, let p be a data-race free C program with
mixed-size non-atomic accesses.

Splitting non-atomic accesses We replace all non-atomic accesses
of p with a sequence of byte-sized accesses covering the footprint
of the former. Let split denote the syntactic transformer which
replaces all non-atomic accesses with a sequence of its associated
byte-sized accesses. We use the expression s′ ∈ split(s) if s′ is one
of the byte-sized accesses obtained by applying split to s. Let p′ be
the C program obtained by applying split to p.

Correspondence between p and p′ executions Observe that split
preserves data, control and address dependencies as well as the pro-
gram order. More concretely, whenever s1 and s2 are in some de-
pendency relation or the former is sequenced-before the latter, then
for any s′1 ∈ split(s1) and s′2 ∈ split(s2), the same relation holds.
Let e be a consistent execution of p. We construct the correspond-
ing consistent execution e′ of p′ as follows. The action set of e′ is
obtained by applying split to all the actions in e. Since mixed-size
is only allowed for non-atomic accesses, the relations rf, sw, sc,
mo, hb of e over atomic accesses can be used directly on e′. The rf
relation for non-atomic accesses is obtained from rf of e as follows.
Let (w, f, r) be an rf-edge in e. Then, we add an rf-edge from all
byte-sized writes corresponding to f in split(w) to all byte-sized
reads corresponding to f in split(r). The converse of obtaining a
consistent execution e of p from a consistent execution e′ of p′ fol-
lows the same reasoning.

Good traces of p′ and simulation equivalence A good trace of p′

is a POWER trace in which all transitions corresponding to a split
statement are consecutive. For instance, if a write w is propagating
to some thread t and w is due to a split non-atomic write wo, then
all w′ ∈ split(wo) propagate to t before other transitions are taken.
Observe that in certain cases, some of those transitions will not be
allowed by the POWER model. For instance, if a coherence-after
write of some w′ has already propagated to t, then the particular
transition of propagating w′ to t is not allowed. However, we do
have simulation equivalence between the good traces of p′ and the
traces of p. Let τ (resp. τ ′) be a POWER trace corresponding to p
(resp. p′). Let two states of the POWER model be observationally
equivalent if their thread subsystems are in the same state and for
all threads and locations a read returns the same value. We show
by induction that if τ is at state s1 and a transition l is allowed that
will lead to s2, then τ ′ is at some state s′1 equivalent to s1, there is
some sequence of transitions that end at some state s′2 equivalent
s2. Similarly by induction we show that for any good trace τ ′ of
p′, there is some trace τ of p such that both traces end at equivalent
states provided that they start from equivalent states.

Constructing a consistent execution for p If all accesses are
non-mixed size, then the compilation scheme is known to be cor-
rect [34]. Thus, the compilation scheme for p′ is correct. Since we

3 Strictly speaking, the proof of [34] assumes that all accesses are of the
same size, and was for the older models. Extending that proof to handle non-
overlapping non-uniform-sized accesses is tedious but straight-forward.

assumed that p is data-race free, so is p′. This follows from the
observation that the inter-thread part of the hb relation of p′ is al-
most the corresponding relation of p (upto the grouping of split
accesses). Then because p′ is data-race free, each of its POWER
traces has a corresponding consistent execution. By the above sim-
ulation equivalence, we can construct a consistent execution of p.

Theorem 3. The compilation scheme given in [55] is correct when
the C/C++11 model is replaced with the revised model of Sec. 5
and the POWER model is replaced with the model described in
Sec. 3.2.

7. Tools and Tests
As mentioned in §3, we compile our models into a tool that allows
interactive and exhaustive exploration of small programs, building
on earlier work [33, 38, 39]. This combines executable code from
the model with front-end and user-interface code; it supports as-
sembly litmus tests and small ELF object files. Extending the tool
to support mixed-size required changes throughout. To make inter-
active exploration usable for complex mixed-size tests, we built a
new interface that dynamically displays the current model state in
the form of the diagrams used in this paper, augmented with the
enabled transitions (for the user to select from) attached to each
event or instruction. We use the exhaustive exploration to compare
the models to production hardware implementation behaviour, us-
ing the litmus tool [44] (which we have also extended to support
mixed-size tests), to run tests on hardware: a POWER 7 server and
five ARMv8-architecture implementations.

• IBM POWER 730 server, POWER 7 CPU, 48 hardware threads
• LG H955 phone, Qualcomm Snapdragon810 SoC, ARM

Cortex-A57/A53 CPU, quad+quad core (using the A53 cores)
• iPad Air 2, Apple A8X SoC/CPU, three-core
• Google Nexus 9 tablet, Nvidia Tegra K1 SoC, Nvidia Denver

CPU, dual-core
• Open-Q 820 development kit, Qualcomm Snapdragon 820 SoC,

Qualcomm Krait CPU, 4-core
• ODROID-C2 development board, Amlogic S905 SoC, ARM

Cortex-A53 CPU, quad-core

Our tests include mixed-size handwritten tests, including those of
§2 and §3, mixed-size systematically generated tests, and non-
mixed-size regression tests.

Systematically-generated tests: These tests are produced by the
diy test generator [56] from cycles of candidate relaxations, a con-
cise and precise mean to describe violations of sequential consis-
tency. Briefly, a candidate relaxation is an edge from one memory
access to another that specifies various conditions such as a depen-
dency from the first access to the second, or that the second access
is a read that reads from the first. We have enriched the vocabu-
lary of candidate relaxations by adding decorations that specify the
size (byte, half-word, word, quadword) and the offset of memory
accesses.

We have generated in this way 2308 ARM and 2460 POWER
mixed-size litmus tests. Our tool, in exhaustive mode, was able
to terminate (with 2 hours time limit) on 548 ARM litmus test
using the Flowing model (2 hours time limit), 565 ARM litmus
tests using the POP model (2 hours time limit), and 905 POWER
litmus tests (4GB space limit). Experience with slightly earlier
versions of the models shows that increasing these numbers should
be straightforward with more computation time. For all of these
tests, our models are sound with respect to the hardware mentioned
above (except for known errata in the hardware).

Regression tests In addition to the mixed-size tests we have also
used a suite of 1407 ARM non-mixed-size litmus tests and 1719



POWER non-mixed-size litmus tests from a library developed in
previous work [30, 37, 33, 35], to validate the non-mixed-size
behaviour of the models. For all of these, our models are sound
with respect to the hardware mentioned above (again except for
known errata in the hardware).

8. Conclusion
Our work on ARM and POWER concurrency semantics here brings
those models to the point where they cover enough of the architec-
tures to describe the behaviour of real concurrent algorithm imple-
mentations, not just litmus tests; they can now be used as a basis
for research on reasoning techniques and tools for such.

The models build executions incrementally (as operational mod-
els normally do), and so in principle they also support pseudo-
random execution, to explore longer paths of larger programs,
and thereby support testing of concurrent algorithm implementa-
tions against the architectures, not just against particular imple-
mentations. To make that feasible in practice requires additional
performance-oriented engineering to produce semantics-based em-
ulators that exhibit the full envelope of architecturally allowed be-
haviour; our focus to date has rather been on expressing the seman-
tics as clearly as possible.

Further work on coverage remains: for user code, the models do
not support vector and floating-point instructions (these are mostly
ISA concerns, with few interactions with the concurrency seman-
tics), or the load-multiple and load-pair issue of §2.7. Complete-
ness for systems code requires much more: exceptions and inter-
rupts, address translation and TLBs, instruction cache behaviour,
and other systems-mode instructions.

Semantically, it would be desirable also to have a more abstract
presentation, e.g. as a provably equivalent axiomatic semantics.
And, while our hardware semantics are broadly compositional in
hardware implementation structure, and construct executions incre-
mentally (unlike axiomatic models), they are whole-program se-
mantics; not compositional in program structure. That is an open
problem for relaxed-memory concurrency in general, with early
steps provided e.g. by the library abstraction work of Batty et
al. [57], the program logic of Turon et al. [58] (both for C/C++11),
and the program logic of Bornat et al. [59] (for POWER).

At the C/C++11 language level, we have extended the previous
C/C++11 axiomatic model to cover non-racy mixed-size accesses,
and our compilation scheme result provides assurance about both
this and the hardware models, but supporting mixed-size atomics
and mixtures of atomic and non-atomic accesses represents another
open problem for the design of C/C++11 models.
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