
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Julia Subtyping: A Rational Reconstruction

FRANCESCO ZAPPA NARDELLI, Inria and Northeastern U.

JULIA BELYAKOVA, Czech Technical U. in Prague

ARTEM PELENITSYN, Czech Technical U. in Prague

BENJAMIN CHUNG, Northeastern U.

JEFF BEZANSON, Julia Computing

JAN VITEK, Northeastern U. and Czech Technical U. in Prague

COMPLETE LIST OF ISSUES REPORTED TO JULIA DEVELOPERS
The complete list of the issues we reported to the Julia bug tracker since starting this project

follows. For each report, the number (and active link) in parentheses is the issue id’s in Julia’s

github database. We distinguish between bug reports that have been fixed, bug reports that have

been acknowledged and for which a solution is currently being investigated, and other design

improvement proposals.

0.1 Fixed Bugs
(1) Reflexivity and transitivity broken due to buggy diagonal rule (#24166)

Flaws in the implementation of the diagonal rule check lead invalidate expected properties

of the subtype relation, as discussed in Sec. ??. These flaws are observable in Julia 0.6.2 but

have been fixed in the development version.

(2) Propagation of constraints when subtype unions (#26654)
The order of types inside a Union constructor should not affect the subtype relation (a

property we call symmetry of Union). The subtype algorithm however traverses the types

inside a Union constructor in a precise order. Incorrect propagation of constraints during

subtyping made subtyping dependent on the order of types inside a Union constructor, as

highlighted by the Julia 0.6.2 behavior below:� �
julia> Ref{Union{Int, Ref{Number}}} <: Ref{Union{Ref{T}, T}} where T
true� �

This issue was found by our fuzz tester. It has been fixed in the development version.

(3) Union{Ref{T}, Ref{T}} and Ref{T} behave differently (#26180)

This bug was introduced after the Julia 0.6.2 release:� �
julia> Ref{Union{Ref{Int}, Ref{Number}}} <: Ref{Ref{T}} where T
false

julia> Ref{Union{Ref{Int}, Ref{Number}}} <: Ref{Union{Ref{T}, Ref{T}}} where T
true� �

The second check should return false, as the first one, because the two types on the right-

hand side are equivalent. This bug was found by our fuzz tester. It has been fixes in the

development version (with the same commit that fixes the previous bug report).

0.2 Open Issues
(1) Missing intersection types (#26131)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/JuliaLang/julia/issues/24166
https://github.com/JuliaLang/julia/issues/26654
https://github.com/JuliaLang/julia/issues/26180
https://github.com/JuliaLang/julia/issues/26131


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 F. Zappa Nardelli, J. Belyakova, A. Pelenytsin, B. Chung, J. Bezanson, J. Vitek

� �
julia> Vector{Vector{Number}} <:

Vector{Union{Vector{Number}, Vector{S}}} where S<:Integer
true� �

As discussed in Sec. ??, this query should return false because Vector{S} is not a subtype

of Vector{Number} when Vector{S}<: Integer. To correctly derive similar judgments, the

subtype algorithm must be able to compute the intersection of types. This is a hard problem

in itself. As a temporary band-aid, in reply to our call, Julia developers have introduced

a simple_meet function which computes intersections for simple cases. The current imple-

mentation is still too weak to handle this particular case. The fact that not computing the

intersection of the upper bounds in rule R_left might be source of problems in presence

of union types was suggested by an anonymous reviewer; our example is built on top of

reviewer’s remark.

(2) Stack overflows / Loops in subtype.c subtype_unionall

Unexpected looping inside the subtype algorithm, or large computer-generated types, can

make Julia subtype algorithm to exceed the space allocated for the recursion stack. We

reported this issue on a large computer-generated type (#26065). We discovered later that

other reports address a similar issue; some are referenced in the ticket above, but some are

more recent (#26487).

(3) Inconsistent constraints are ignored (#24179)

Frontend simplification rewrites types of the form T where lb<:T<:ub into the upper bound

ub, without checking first if the user-specified bounds are inconsistent, as in:� �
julia> T where String<:T<:Signed
Signed� �

This may lead to unexpected results in subtype queries, and the type above is not considered

equivalent to the Union{}. Julia developers agree this behavior is incorrect.

(4) Diagonality is ignored and constraints aremissingwhenmatchingwithunion (#26716)

Both Julia 0.6.2 and 0.7-dev incorrectly return true on these judgments (on the left types are

equivalent, on the right it is the same type):� �
julia> (Tuple{Q,Bool} where Q<:Union{Int,P} where P) <: Tuple{Union{T,Int}, T} where T
true

julia> (Tuple{Union{Int,P},Bool} where P) <: Tuple{Union{T,Int}, T} where T
true

julia> (Union{Tuple{Int,Bool}, Tuple{P,Bool}} where P) <: Tuple{Union{T,Int}, T} where T
true� �

The correct answer is false because the variable T should be considered diagonal and gets

matched bothwith P and Bool, and as such it cannot be concrete. This is confirmed by rewriting

into an equivalent type by the lift_union function, thus making the diagonal variable explicit.

In this case Julia returns the correct answer.

0.3 Proposals we made
(1) Interaction of diagonal rule and lower bounds (#26453)

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/JuliaLang/julia/issues/26065
https://github.com/JuliaLang/julia/issues/26487
https://github.com/JuliaLang/julia/issues/24179
https://github.com/JuliaLang/julia/issues/26716
https://github.com/JuliaLang/julia/issues/26453


99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Julia Subtyping: A Rational Reconstruction 1:3

Whenever the programmer specifies explicitly a lower bound for a type-variable, as in

Tuple{T,T}where T>:t, it is not always easy to decide if T should be considered diagonal

or not. This depends on whether the lower bound, t, is concrete, but in general deciding

concreteness is hard and Julia implementation approximates it with an heuristic. We proposed

that the variables should be considered diagonal only if their concreteness is obvious. The

proposal was approved, implemented and merged into the master branch.

(2) Another approach to fix problemwith concreteness of Vector{T} / transitivity (com-

ment #372746252).

A subtle interaction between the bottom type and the diagonal rule can break transitivity of

the subtype relation. We propose an alternative approach to fix the issue, as the solution to

the problem applied in Julia seems unsatisfactory.

Proceedings of the ACM on Programming Languages, Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/JuliaLang/julia/issues/26175#issuecomment-372746252
https://github.com/JuliaLang/julia/issues/26175#issuecomment-372746252

	0.1 Fixed Bugs
	0.2 Open Issues
	0.3 Proposals we made

