
Applying Formal Verification to Microkernel IPC at
Meta

Quentin Carbonneaux

Meta, France

Noam Zilberstein

Meta and Cornell University, USA

Christoph Klee

Meta, USA

Peter W. O’Hearn

Meta and University College London

UK

Francesco Zappa Nardelli

Meta, France

Abstract
Weuse Iris, an implementation of concurrent separation logic

in the Coq proof assistant, to verify two queue data struc-

tures used for inter-process communication in an operating

system under development. Our motivations are twofold.

First, we wish to leverage formal verification to boost confi-

dence in a delicate piece of industrial code that was subject

to numerous revisions. Second, we aim to gain information

on the cost-benefit tradeoff of applying a state-of-the-art

formal verification tool in our industrial setting. On both

fronts, our endeavor has been a success. The verification

effort proved that the queue algorithms are correct and un-

covered four algorithmic simplifications as well as bugs in

client code. The simplifications involve the removal of two

memory barriers, one atomic load, and one boolean check,

all in a performance-sensitive part of the OS. Removing the

redundant boolean check revealed unintended uses of unini-

tialized memory in multiple device drivers, which were fixed.

The proof work was completed in person months, not years,

by engineers with no prior familiarity with Iris. These find-

ings are spurring further use of verification at Meta.

1 Introduction
In this paper we report on a project to apply software veri-

fication to algorithms at Meta. Static program analysis has

been developed and used extensively at Meta, but not formal

program verification of full functional correctness. We state

up front that the goal of the project was engineering impact

rather than generation of novel new scientific techniques.

Our aim in writing this paper is to convey our findings on ap-

plying formal verification in our specific industrial context,

including justification for attempting formal verification at

all as well as our reasons for trying some approaches and

(crucially) not others. We also identify some of the research

problems encountered in the process, progress on which

could help make it possible for verification technology to

spread further into industry.We intend that this paper should

complement other reports on applying software verification

in industry (e.g., [6, 11, 25]), and hope that such perspec-

tives can provide input both to future research and to further

industrial use of program verification.

1.1 Verification target: IPC
Meta is building an operating system to run on a wide va-

riety of embedded devices [1]; ensuring its reliability and

correctness is of utmost importance, making it a good can-

didate for verification. The OS is being built from scratch

to meet the stringent performance constraints of upcoming

AR/VR devices. Power considerations are especially crucial,

and this has led to a design which eschews locks in favour

of non-blocking concurrency. The OS is a microkernel, and

inter-process communication (IPC) is one of its central parts:

the microkernel design is based on OS components as pro-

cesses which exchange information via IPC. The whole ker-

nel design — including functionality, security, and privacy —

fundamentally relies on IPC. This motivated taking IPC as

our first target for formal verification.

Processes in the OS exchange information using a collec-

tion of circular, nonblocking,multi-producer, multi-consumer

queues. The queues are based on a classic ring-buffer design

that is generalized to run in a multithreaded environment

and provide some special interface detailed in Sections 4 and

6.1. The queues are implemented using lock-free algorithms.

This means that, unlike traditional concurrent programming,

the core queue data structure is not made thread-safe by

wrapping its operations in Lock/Unlock calls. Instead, it is
synchronized using hardware atomic instructions such as

compare and swap. Lock-free algorithms have no critical

sections and can interleave arbitrarily; reasoning about them

is a real challenge. Indeed, the first version of the queues had

one bug that manifested in unlikely conditions and could

only be corrected by a significant revision of the implemen-

tation. Only three months ago, an assertion in the code was

discovered to not hold in rare circumstances.

Our verification goal is to model the programmer’s intent

using elementary mathematical objects, such as lists of val-

ues, and to show that the implementation fits this model.

The effect of queue operations in a concurrent setting is de-

scribed in terms of “linearizability”: the property we prove

implies that each operation “appears to take effect” at a cer-

tain point of time [10]. We validated our specifications with

engineers and, as a litmus test, used them to verify a plain

queue implemented using an OS queue.

1

Draft paper, November 1, 2021, Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli

1.2 A pivot: algorithm, not code
At first we took the aim of verifying the actual C code of the

core algorithms in the IPC implementation. The entire IPC

implementation including control plane operations totals

about three thousand lines. While the size of the code is not

large, it is intricate. Ideally, the proof and spec would be

checked into automatic continuous integration (CI), so as

to be kept in synch as the code changed. We ended up not

going down this route, for reasons we now explain.

Most fundamentally, scaling program verification to evolv-

ing codebases is potentially impactful, but is also a problem

with unsolved research challenges [6, 24]. A one-off verifi-

cation effort can be undone by future code changes, unless

proofs evolve too. The cost of doing so is one of the key

practical limitations of the celebrated seL4 project [18] and

other prominent OS verification efforts. The cost of updating

a proof on a code change would at best be unknown, we

thought, and in any case we were not aware of data from

engineering projects on updating proofs for this kind of con-

current code. The problem of verifying non-blocking con-

currency in a scalable way and keeping code+proof synched

as the former changed seemed beyond the current state of

the field. We say more in Section 8.

A second problem is that previous efforts in OS verifica-

tion have often restricted concurrency, and developed the

program in order to be verified. We had a live kernel already

being developed to meet performance constraints.

For these reasons we pivoted to verify core algorithms,
which we expected would change much less frequently, and

not the actual evolving code. This had the following benefits.

• We could spend the most precious resource, human

brainpower, on a problem where it is most required

— non-blocking concurrency. We did not need to use

scarce resources on conceptually simpler but time-

consuming problems such as proving memory safety

for an implementation.

• It opened up the opportunity to deploy a full-power

proof assistant which best fits the proof task, without

waiting for one to be wired up to source code + CI +

the dialect of C we were considering. With Coq proofs

we could target unbounded threads and unbounded

inputs, and not just bounded subsets as often done in

model checking.

• The engineering team was interested in assurance for

the core algorithm(s), and had filed patents on them

(since granted [16, 17]), so this addressed an existing

concern in a direct fashion.

This pivot was crucial for us to achieve impact without first

spending vastly more resources.

We have explained our reasoning here not to justify our

choices, but to convey to the reader the kind of consider-

ations concerning cost/benefit analysis that led us to Coq

verification in our industrial context. In brief, the cost of code

proofs in CI seemed high or unknown (for our problem), and

focussing scarce human brainpower on comparatively diffi-

cult problems (synchronization) in a Coq proof of an algo-

rithm seemed like a good tradeoff. While interactive theorem

proving in systems such as Coq is sometimes considered as

a costly activity, we were actually led there by cost – Coq

proving was not our original target, and it was surprising to

us and colleagues in Meta when we ended up there.

1.3 Choosing Iris
Concurrent separation logic (CSL) [23] is a theory for prov-

ing shared memory concurrent programs. Several automatic

verification tools use CSL, and a number of interactive proof

tools built on top of Coq. Iris [14, 15], one of the latter variety,

was a natural choice for the following reasons.

• Prior Research: non-blocking algorithms had previ-

ously been verified in Iris [13, 28].

• Corroboration: Iris is not only used by its inventors

but also by other research teams (e.g., [2, 8, 20]) and

by at least one company, Bedrock Systems.

• Community: Iris has a responsive support community.

Because of Prior Research, we were confident that Iris

could do what we wanted in terms of proof, we were just not

sure how much it would cost in the hands of non-insiders or

what the ripple effects might be in terms of side impact. Be-

cause of Corroboration we expected that many hurdles to use

had been overcome; in our experience, such hurdles might

even be effectively insurmountable for promising research

prototypes untested by others. Because of Community, we

knew where to ask if we needed help.

We didn’t attempt an exhaustive comparison establishing

that Iris is the only or definitely best existing tool that would

fit our needs. Rather, these reasons made us confident that

Iris would be a choice that would let us get started making

steps towards our aim of engineering impact, without falling

at obvious technical and usability hurdles.

1.4 Results
We verified simplified descriptions of two queue algorithms

expressed in Iris’ HeapLang. The generic queue is used by

profiling and tracing systems where a kernel component

needs to stream information to a user process. It is also used

in the block, GPU, USB, and AR device drivers that need to

communicate with their associated system service. In addi-

tion to being non-blocking, the generic queue also operates

in a two-phase manner for both enqueue and dequeue op-

erations. The API allows programmers to first claim a slot

and then read or write the data directly in the queue’s in-

ternal representation. A one-phase enqueue/dequeue can be

simulated by combining operations.

The ports queue is a used in the kernel as a lightweight

message bus to notify a user process about an event. The

main feature of the ports queue is that it allows reservations.
2

Applying Formal Verification to Microkernel IPC at Meta Draft paper, November 1, 2021,

Reservations guarantee that a later enqueue will not fail be-

cause the queue is full. Unlike claiming a slot for a two-phase

enqueue, taking a reservation can be done long before using

it, with no risk of stalling the queue. The price to pay for the

reservation mechanism is that dequeues are constrained to

happen in one shot in the ports queue.

Designing the proof invariant made it clear that in the

dequeue operation of the generic queue, one atomic load and

one check were redundant and not helping synchronization.

We decided to simplify the implementation accordingly, but

after doing so the CI of the OS reported test failures. Further

investigation revealed that the CI failures were due to the use

of an improperly initialized circular queue in at least three

device drivers. So while the verification did not find bugs

in the queue per se, the simplification it suggested to the

algorithm revealed actual bugs in client code. In the future

we also hope to use the invariant laid out in the proof to

more exhaustively test the production code as part of CI.

1.5 Limitations
We assume a sequentially consistent memory model rather

than the actual weak memory model of C. So, further bugs

could arise due to reordering of CPU instructions. However,

we are not concerned by this class of bugs because the C code

does not make use of subtle weak-memory synchronization.

The ports queue supports dynamic growth (added roughly

when we started the project). This feature is not part of our

model and therefore our psuedocode implementation leaves

out some components of the real implementation.

Our specifications do not make any claims about liveness.

Concretely, a queue for which all operations would loop

endlessly satisfies our specification. This limitation of our

work is inherited from Iris’ focus on safety.

In the remainder of this paper we describe the queue al-

gorithms, their specifications, and the ideas in the proofs.

2 The generic queue
The first queue that we verified is a non-blocking multi-

producer and multi-consumer queue used in the kernel to

exchange fixed-size messages between threads. The data

structure is a generalization of the classic ring buffer to a

concurrent context. The requirement that the queue be non-

blocking is what makes this generalization complicated, but

also interesting in a kernel context. Indeed, grabbing a lock

amounts to blocking a kernel thread for a possibly long

amount of time (if the message to transfer is large) and de-

laying the handling of low-latency requests. Another salient

feature of the queue is that it permits enqueue and dequeue

operations to happen in two phases. This two-phase mecha-

nism permits to reduce the number of copy operations and

helps with overall system performance.

1 start_enqueue(q):
2 while true:
3 pc = atomic_load(q.pc)
4 i, k = pc / q.cap , pc % q.cap
5 ik = atomic_load(q.itr[k])
6 ok = atomic_load(q.own[k])

7 if ik == i-1 && ok == PROD :

8 if CAS(q.pc, pc, pc+1) :

9 return (k, &q.dat[k])

1 mark_ready(q, k):

2 atomic_store(q.own[k], CONS)

3 dmb ish // ARM explicit memory barrier

4 atomic_incr(q.itr[k])

1 start_dequeue(q):
2 while true:
3 cc = atomic_load(q.cc)
4 i, k = cc / q.cap , cc % q.cap
5 ok = atomic_load(q.own[k])
6 ik = atomic_load(q.itr[k])

7 if ik == i && ok == CONS:

8 if CAS(q.cc, cc, cc+1) :

9 return (k, &q.dat[k])

1 mark_free(q, k):

2 atomic_store(q.own[k], PROD)

Figure 1. Pseudocode for the generic queue

2.1 Implementation
Much like in a classic ring buffer, the queue maintains two

indices for reads and writes: the consumer and producer

counters. In addition to maintaining an array of fixed-size

data cells the queue also uses an owner bitmap and an itera-

tion counter for each entry. The owner bitmap registers if a

producer or a consumer currently owns the corresponding

entry in the data buffer. The iteration counter was added

in a revision of the queue to ensure correctness in extreme

wrap-around conditions by remembering the “service cycle”

of each data cell. The producer counter, consumer counter,

owner bits, and iteration counts are all updated using atomic

operations. Initially, the iteration counts are all set to zero,

the owner bitmap is filled with PROD entries, and both pro-

ducer and consumer counters are set to the queue capacity.

Figure 1 contains a pseudocode implementation of the

enqueue and dequeue paths. To enqueue a message the

user first calls start_enqueue and obtains an index in the

queue as well as a pointer to a queue entry. The user code

then writes the value to enqueue at the pointer returned

(or produces it in place) and finalizes the enqueue by call-

ing mark_ready with the index. Dequeuing is performed

similarly using start_dequeue then mark_free.
In both start_enqueue and start_dequeue, a retry loop

will repeatedly try to claim an element by optimistically

performing unsynchronized checks and validating them on

lines 8 with an atomic compare and swap operation.

3

Draft paper, November 1, 2021, Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli

1 connect_volume(volume_id):
2 vol = new Volume ()
3 create_data_pipeline (&vol.pipeline ,
4 on_pipeline_notification)
5 initialize_producer (&vol.submission_queue)
6 initialize_consumer (&vol.completion_queue)
7 request_connection (&vol , volume_id)
8 return vol
9

10 on_pipeline_notification(vol , kind):
11 if kind == INCOMMING_DATA_NOTIFICATION:
12 process_completions (&vol.completion_queue)

Figure 2. Simplified excerpt of the OS block device driver

showing an erroneous use of the queue and its fix (in gray)

2.2 Code improvements
The generic queue used in production is implemented in

C and relies on C11 atomic memory accesses to enforce

synchronisation between threads. Additionally, some native

ARM barrier instructions have been inserted via inline as-

sembly macros. We manually audited the dmb ish memory

barrier in the mark_ready function (line 3). Despite the diffi-

culty of reasoning on code that mixes C11 atomics and inline

assembly (an open research problem), we concluded with

the OS engineers that the barrier was redundant and could

beneficially be removed. Our justification for this change

goes as follows: on the target ARM platform, implementing

sequentially consistent atomic writes requires inserting a

dmb ish instruction before the actual memory write, and,

depending on the compilation scheme, also after the actual

memory write. Since the explicit ARM barrier is in between,

and adjacent to, two atomic sequentially consistent writes,

it can safely be removed. We committed this to the pro-

duction version of the generic queue and to another similar

queue not presented here. Albeit this improvement was made

without formal justification, we consider it a product of our

verification effort because it was prompted by the thorough

questioning necessary to abstract the algorithm from the

actual implementation.

More interestingly, the code displayed in gray at lines 5

and 7 was part of the C implementation and we formally

proved it to be redundant: removing it yields a start_dequeue
function with the exact same behavior. In contrast, the corre-

sponding owner check in start_enqueue on line 7 is critical

for correctness. Much to our surprise, removing this prov-

ably redundant check from the C implementation triggered

failures in the continuous integration of the OS. Upon fur-

ther investigation, we realized that the failures were in fact

due to bugs in multiple users of the queue.

2.3 Erroneous uses
All the bugs revealed by removing the superfluous check in

the dequeue path followed the same pattern. In Figure 2 we

reproduced the bogus pattern for a block device driver. This

driver handles devices providing persistent storage such as

solid-state drives and USB flash drives; it is used as a building

block for the file systemmodule typically used by application

developers. To establish connection with a block device (or

“volume”), the client calls a function connect_volume with
a volume ID. One line 3, this function initializes a kernel-

backed data pipeline that will be used by the driver to estab-

lish a zero-copy data pipeline between the driver, the device

IOMMU and the client. Additionally, the data pipeline pro-

vides APIs to allow the driver and client to signal each other

to implement control plane operations. The requests and

responses travel via two queues residing in shared memory.

The submission queue is used to send requests to the block

driver and the completion queue is used to return the results.

The client is thus the producer on the submission queue and

consumer on the completion queue, as witnessed by the two

initialization calls on line 5 and 6. Note that unlike in our

HeapLang model, the OS API separates the producer and

consumer initialization, this is because the two ends of a

queue can reside in different address spaces so that one end

only gets read access to the other end. An OS queue will only

be ready to use when both of its ends are initialized.

The failures observed in CI pointed to the pipeline notifi-

cation callback process_completions. They proved to be

caused by dequeue attempts on a completion queue that was

half initialized. The mitigation implemented by the driver en-

gineer proved rather simple: instead of merely ignoring the

data pipeline notification kind, it had to be checked against a

specific value signaling that the driver had sent completion

messages (and consequently, had initialized its queue end).

One might wonder why the redundant check prevented

the consumer from dequeueing messages. The reason is

merely that uninitialized memory was filled with zeroes

by the heap allocator and that the CONS constant happened
to be defined to 1.

3 Reasoning about concurrent objects
In this section we introduce informally the techniques used

to reason about concurrent code in Iris.

Specifying stateful imperative code is a well-understood

problem [12]. We use pre and postconditions for base state-

ments and compose reasoning using a program logic. Pro-

gram logics usually represent facts about a piece of code

with triples {P}c{Q} composed of a precondition P , a post-
conditionQ , and a piece of code c . Their intuitive meaning is

that if P holds before starting the command c , then Q holds

when the command ends. An example triple could be:{
0 ≤ a < 2

31
}
b = a ≪ 1 {b = 2 × a}

The triple states that if a is a non-negative integer less than

2
31
then the shift left by 1 bit gives a result in b that is twice a.

3.1 Invariants
In a concurrent context, however, things are more compli-

cated. Consider the shift-left triple once again. A racing

4

Applying Formal Verification to Microkernel IPC at Meta Draft paper, November 1, 2021,

thread may decrements the variable a before b gets assigned

but after the shift-left operation computes its result. In that

case, the meaning of the triple falls apart because we no

longer have b = 2 × a when the statement is done.

One solution to this problem that does not completely

forbid shared-state interaction is to move to concurrent sep-

aration logic, of which Iris is an implementation. In Iris, the

assertions in triples are stable by construction, meaning that

they are robust to interference with other threads. Mutations

to shared memory are ruled by a set of logical properties

called invariants and stored in a global logical store. Invari-

ants can be fetched from the global logical store (opened)

in order to modify their contents over atomic instructions.

But they need to be returned to the store (closed) right after

the atomic instruction has run. The intuition for why this

rule is sound is that atomic instructions are uninterruptible

and, consequently, the problematic case we observed in the

previous paragraph is impossible.

Let us see invariants in action over simple examples. We

will consider the invariant x is even . This invariant allows

to prove the following triples:

x is even ⊢ {⊤} y = atomic_load(x) {y is even}

x is even ⊢
{z is even} y = atomic_load(x);

atomic_store(x ,y + z) {⊤}

In the second triple we assume that the variable z is local

to the current thread. Note that because the load and store

operations are two distinct atomic statements, the code in

this triple is not equivalent to atomically adding z to the

shared variable x. It is safe nonetheless because y + z is

provably even and the invariant can be restored. In contrast,

no pre/postcondition can make this triple derivable:

x is even ⊢ {?} atomic_incr(x); atomic_incr(x) {?}

While it is true that x remains even if it was initially even, the

invariant does not hold between the two atomic operations.

Invariants are a global resource, so they must hold at all

times. In this example, a racing thread may rely on x being

even after only the first increment has been performed.

3.2 Logical atomicity
Invariants let us modify shared state in a globally coherent

way, but that is not enough to effectively specify a concurrent

object in a modular way. To see the problem clearly, let us

give a tentative spec for a push operation on a concurrent

stack:

{Stk(s, [x0, . . . ,xn])} push(s,x) {Stk(s, [x ,x0, . . . ,xn])}

The Stk predicate links a runtime value s with a mathemat-

ical list [x0, . . . ,xn] that represents the stack content. Our

tentative spec for push simply updates the mathematical list

by prepending the argument x to it. The problem with this

spec in a concurrent context is that push is not an atomic

operation. Consequently, even if we know the stack content

right before entering the push function, a racing push or

pop may change the stack before it is modified by the local

push operation. In lock-free programming (without criti-

cal sections), this problem seems to prevent giving modular

specifications to concurrent objects.

This inadequacy of traditional Hoare triples is mitigated

by introducing a new kind of so-called logically atomic spec-

ifications [7, 15]. A logically atomic specification is given by

a triple with a pre and postcondition. We use angle brackets

⟨ ⟩ to tell them apart from classic Hoare triples. In fact, a log-

ically atomic triple is strictly stronger than a Hoare triple: if

⟨P⟩c ⟨Q⟩ is derivable, so is {P}c{Q}. The difference between
the two judgements is that a logically atomic triple allows

opening invariants. Concretely, the following rule holds:

⟨▷ I ∗ P⟩ c ⟨▷ I ∗Q⟩

I ⊢ ⟨P⟩ c ⟨Q⟩
(LAInv)

This rule expresses that, from the user’s point of view, a con-

current object specified using logical atomicity behaves ex-

actly as if it were implemented by a single atomic instruction.

More often than not, concurrent objects are implemented

with multiple instructions. In this case, the logically atomic

triple ⟨P⟩c ⟨Q⟩ can be intuitively understood as expressing

the existence of a single atomic instruction in the execu-

tion of c (a commit or linearization point) that has pre and

postcondition P and Q , respectively.
A logically atomic specification for push would be:

⟨∀(xi). Stk(s, [x0, . . . ,xn])⟩ push(s,x) ⟨Stk(s, [x ,x0, . . . ,xn])⟩
Note the presence of a universal quantifier for the values

(xi) in the pre and postcondition. This quantifier is required

to express that the push operation will work on any list that

happens to be the stack content right before the linearization

point. In particular, this list may not be the one representing

the stack content when entering the push function.

Much like classic Hoare triples, logically atomic specifica-

tions are modular. They provide clean interfaces to concur-

rent objects that can be used in layers to build software.

4 Specifying the generic queue
We now present and justify the logically atomic specification

of the generic queue in Iris. Because the API of this queue

permits to enqueue and dequeue values in two steps our

specification is a bit more intricate than the ones of queues

previously formalized in Iris.

Figure 3 contains the specification of the queue creation

function and its four core operations. Unlike the other op-

erations, the creation function does not require a logically

atomic specification. That is because creating a concurrent

object is not an operation that can interfere with shared state.

When the queue is created, two predicates are returned in

the postcondition: a persistent IsQueue predicate, and an

affineQueueContent predicate. Persistent predicates are not
tied to any resource, and thus, can be freely duplicated. Thus,

5

Draft paper, November 1, 2021, Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli

IsQueuePersistent : ∀γ q. Persistent(IsQueue(γ ,q))

{cap > 0}

make_queue(cap)
{λq. ∃γ . IsQueue(γ ,q) ∗QueueContent(γ , [])}

IsQueue(γ ,q) −∗
⟨∀(sk).QueueContent(γ , [s0, . . . , sn])⟩
start_enqueue(q)〈

λv . ∃kℓ.∗


v = (k, ℓ)
Enqueuing(γ ,q,k, ℓ) ∗ ℓ 7→ _

QueueContent(γ , [s0, . . . , sn , ℓ])

〉

IsQueue(γ ,q) −∗

〈
∀(sk).∗

{
Enqueuing(γ ,q,k, ℓ) ∗ ℓ 7→ v
QueueContent(γ , [s0, . . . , sn])

〉
mark_ready(q,k)〈

λ(). ∃i .∗
{
si = ℓ
QueueContent(γ , [. . . , si−1,v, si+1, . . .])

〉
IsQueue(γ ,q) −∗
⟨∀(sk).QueueContent(γ , [s0, . . . , sn])⟩
start_dequeue(q)〈

λv . ∃kℓv0.∗


v = (k, ℓ) ∗ s0 = v0
Dequeuing(γ ,q,k, ℓ) ∗ ℓ 7→ v0
QueueContent(γ , [s1, . . . , sn])

〉

IsQueue(γ ,q) −∗
⟨Dequeuing(γ ,q,k, ℓ) ∗ ℓ 7→ _⟩ mark_free(q,k) ⟨λ(). ⊤⟩

Figure 3. Specification of the generic queue in Iris

if multiple threads will be using a queue q, the predicate

IsQueue(γ ,q) can be split to send one copy to each thread.

This is unlike theQueueContent predicate which can only

exist in one copy. This affine predicate relates the queue’s

logical name γ with a model of its content: a list of slots that
can either be locations (ℓ) for pending enqueues, or fully

enqueued values (v).
The operation specifications all follow the same pattern:

A persistent IsQueue(γ ,q) assertion and a logically atomic

triple are connected with the wand separation logic connec-

tive (−∗). This structure requires the user of the queue to

prove that the IsQueue predicate holds before calling any of

the queue’s methods. Note that it is unnecessary for the specs

to return the IsQueue predicate since, because of persistence,
it can be duplicated at will. The IsQueue predicate asserts
basic well-formedness of the queue value q and links it to a

“logical name” γ that is shared by all predicates to identify

the queue instance logically. Unlike the triple’s precondition,

the IsQueue predicate is required to hold for q before the

call to an operation and not only before its commit point.

In all specifications, variables that appear not quantified are

implicitly universally quantified.

We will now consider the different queue operations. For

start_enqueue, the logically atomic triple will modify an

arbitrary content of the queue to append a location ℓ exis-
tentially quantified in the return value. This location is a

pointer to a memory slot inside the queue’s internal repre-

sentation. A permission to modify this memory slot ℓ 7→ _ is

also returned and the user is expected to use it to assign the

value meant to be enqueued in place. Finally, the postcon-

dition provides a predicate Enqueuing(γ ,q,k, ℓ), that can be

understood as a permission to call mark_ready later on.

When a user has written the value to be enqueued at loca-

tion ℓ they can call the mark_ready function to commit the

enqueue. If the call succeeds there was an index i such that

the original queue content contained location ℓ at position i .
The effect of the call to mark_ready is to update the queue

content so that it containsv at position i . Because concurrent
enqueues may have started and even finished, it can be that

i is not referring to the last element in the queue content.

To dequeue a value, the user calls start_dequeue. From
the postcondition we see that this function only succeeds

when the first slot in the queue content is a value. Any at-

tempt to dequeue when the first slot is still a pending en-

queue will block the thread. Like in start_enqueue, the
function returns a permission to access a memory location

in the internal queue representation, as well as a Dequeuing
predicate similar to Enqueuing. The points-to predicate gives
the user a way to fetch the value that was in the queue, and

the queue content is updated to remove the top value.

Because Iris is an affine logic a usermay drop theDequeuing
predicate as well as the points-to permission ℓ 7→ v0 instead
of calling mark_free. However, in the implementation, doing

so would end up stalling the queue. This fact is not appar-

ent in our specifications. While that is a shortcoming, the

focus on safety has some advantages. For example, our spec-

ification works equally well for bounded and unbounded

implementations of the queue: if an enqueue is happening

when the queue is full, a bounded implementation may sim-

ply loop until one slot becomes free. That is how the code in

Figure 1 works, and this also explains why the capacity cap
argument of the make_queue function does not appear in

any other specification.

Finally, note that there is a slight asymmetry in our speci-

fication: pending enqueues are visible in the queue’s logical

state but not partial dequeues. Making pending dequeues

visible may help when specifying liveness properties of the

implementation, but we found no need to do it to make our

safety specification usable.

6

Applying Formal Verification to Microkernel IPC at Meta Draft paper, November 1, 2021,

Empty Claim for
enqueue

Owner set
to CONS

Ready Claim for
dequeue Free

Figure 4. Cell logical states

5 Proving the generic queue
We nowmove to the description of our proof that the generic

queue implements the specification in Figure 3. Our proof

relies on a global invariant that accounts for all the possi-

ble configurations the physical representation of the queue.

Leveraging Iris ghost state [15], the invariant is able to ex-

press a protocol that constrains the evolution of the queue

and enables reasoning about sequences of atomic steps.

5.1 Endless ribbon
To spare ourselves painful reasoning about modular arith-

metic, we architected a logical data structure that does not

exhibit the wrap-around behavior of ring buffers. A natural

idea that proved very fruitful is to “unroll the ring” into an

ever-growing ribbon. This ribbon is indexed with logical

indices, as opposed to physical indices that are used to index

the various queue arrays. This distinction and two lemmas

relating physical and logical indices effectively factored out

all the reasoning about modular arithmetic.

The following figure gives an example state for the physi-

cal queue; we see that the producer index (i.e., q.pc modulo

q.cap) already wrapped with respect to the consumer index.

Both the producer and consumer indices point at the next

cell that is going to be produced or consumed.

4 5 1 2 3

producer
index

consumer
index

The corresponding ribbon would be:

· · · 1 2 3 4 5

queue base producer
counter

consumer
counter

In Coq, the logical ribbon is represented as a list of q.pc
elements. The ribbon items are not mere values, instead they

give the logical state of the queue cells. Cells are meant to

represent one usage cycle of an entry in the physical queue;

they start their life in the “Empty” state and end it in the

“Free” state. During this cycle a value got enqueued then

dequeued. Even though the physical representation of the

queue re-uses memory, our logical view of the queue uses a

new ribbon cell for each enqueue/dequeue cycle.

To motivate this rich logical state, consider the ribbon

depicted above. On the figure, gray cells between the queue

base and the consumer counter may still be in the process of

being dequeued and have their owner set to CONS because

mark_free is not yet done. The fine granularity of logical

states lets us be explicit about the different configurations in

which a queue entry might be. The set of all logical states

is displayed in Figure 4. We also used matching colors in

Figure 1 to highlight code that transitions to a state of the

same color.

5.2 Monotonicity
Monotonicity is central in our reasoning. For example, in the

code of start_enqueue, the producer counter q.pc is only

ever increased. Our queue invariant registers this constraint

so that every time the producer counter is updated, we have

to prove as a side condition that it increased. The counterpart

for this proof obligation is that when the compare-and-swap

succeeds, we know that the producer counter remained con-

stant during all the atomic loads between lines 3 and 9.

We make another use of monotonicity to constrain the

evolution of the cells’ logical state. In our invariant, the phys-

ical representation of a queue cell — data item, owner bit,

and iteration number — is entirely characterized by its logi-

cal state. The queue operations are carefully crafted to have

this physical representation evolve along a certain order —

e.g., the iteration number is always incremented after the

owner is set to CONS. We encode this protocol as a mono-

tonicity constraint on the evolution of the logical state. Valid

transitions between logical states are depicted as arrows in

Figure 4.

5.3 Ribbon ghost state
The central resource algebra in our proof is the one for the

ribbon ghost state. Figure 5 gives its precise definition as well

as derived rules. At a high level, we define three predicates

all indexed by a name γribbon that ties them to the same ghost

resource.

• Ribbon(γribbon,r), the authoritative copy of the rib-

bon’s content r ; the other predicates are fragmental

information about specific cells in this “master copy”.

In our proof, this predicate resides in a global invariant.

• CellMut(γribbon, i, r), a permission granting its owner

full access to the ribbon cell at index i . As witnessed
by the Ribbon-Agree rule, this permission gives full

knowledge of a cell’s logical state to its owner.

• CellBnd(γribbon, i, r), a persistent predicate witnessing
that the cell at index i is at least in state r . The actual
cell content might be a state r ′ such that r →+ r ′ (ac-
cording to the transitions in Figure 4), so r is only a

lower bound. The predicate is persistent — holds for-

ever — because cells are constrained to evolve mono-

tonically in Ribbon-Update.

The resource algebra definition is greatly simplified by

the various combinators packaged with Iris. We refer the

reader to the literature [14, 15] for their precise definition. In

any case, the specifics should not obstruct our explanation

7

Draft paper, November 1, 2021, Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli

RibbonRA ≜ Auth(GMap(N,Auth(Mono(State,→∗)))

Ribbon(γribbon, [r0, . . . , rn]) ≜ •{i 7→ •ri | 0≤ i ≤n}
γribbon

CellMut(γribbon, i, r) ≜ ◦{i 7→ •r }
γribbon

CellBnd(γribbon, i, r) ≜ ◦{i 7→ ◦r }
γribbon

(CellBnd-Persistent) Persistent(CellBnd(γr, i, r))

(Ribbon-Bound)

Ribbon(γr,r) ∗ CellBnd(γr, i, r) −∗ i < |r | ∧ r →∗ ri

(Ribbon-Agree)

Ribbon(γr,r) ∗ CellMut(γr, i, r) −∗ i < |r | ∧ r = ri

(Ribbon-Bound-Alloc)

Ribbon(γr,r) ∗ i < |r |

|⇛Ribbon(γr,r) ∗ CellBnd(γr, i, ri)

(Ribbon-Update)

Ribbon(γr,r) ∗ CellMut(γr, i, r) ∗ r →∗ r ′

|⇛Ribbon(γr,r [i← r ′]) ∗ CellMut(γr, i, r ′)

Figure 5. Axiomatic presentation of the ribbon ghost state

since we merely use them to realize the axiomatic rules of

Figure 5. The only combinator we use that is not part of the

Iris standard library is Mono, which comes from Timany

& Birkedal [27]. TheMono construction builds a resource

algebra from an arbitrary preorder (here→∗) such that the

algebra’s inclusion order ⊑ coincides with the preorder. Com-

bined with the the authoritative resource algebra Auth, it

can usefully represent the state of single cell. The ribbon is

then assembled using a finite map resource algebra GMap

and wrapped in another authoritative instance to allow defin-

ing both bounds and mutation tokens.

5.4 Invariant
We now turn our attention to the correctness argument. The

aim of our reasoning is to show that there are predicate

definitions that satisfy the specification in Figure 3. The

definitions used in our proofs are presented in Figure 6.

The central predicate IsQueue(γ ,q) asserts that q is a well-

formed queue instance with logical state identified by the

name γ . In our developement, γ is not a single Iris ghost

state name but a pair of those ⟨γr ,γs ⟩. This is transparent
for the user of our specification because γ is treated as a

black box. However, it lets us use two ghost structures in

other predicates: the logical ribbon (used in Enqueuing) and
the user-facing slots list (used in QueueContent). Queue
instances are required to be six-tuples with the first item

— the queue capacity C — a positive integer and the other

items locations for, respectively, the producer and consumer

QueueContent(γ , s) ≜ ◦s
γs

IsQueue(γ ,q) ≜
∃γz γc C ℓpc ℓcc ℓd ℓo ℓi .

C > 0 ∗ q = ⟨C, ℓpc , ℓcc , ℓd , ℓo , ℓi ⟩ ∗
QueueInv(γ ,γz ,γc ,C, ℓpc , ℓcc , ℓd , ℓo , ℓi))

Enqueuing(γ ,q,k, ℓ) ≜

∃i .∗
{

i mod q.C = k ∧ ℓ = q.ℓd +l k

CellMut(γr , i, ClaimedEnq)

(a) Definitions of the specification predicates

QueueInv(γ ,γz ,γc ,C, ℓpc , ℓcc , ℓd , ℓo , ℓi) ≜
∃cc z r .

∗



z ≤ cc ≤ |r | = z +C

∀i < z. ri = Free
∀i < cc . Ready(_) →+ ri
∀i ≥ cc . ri →

∗ Ready(_)
MonoNatFull(γz , z) ∗MonoNatFull(γc , cc)
Ribbon(γr ,r) ∗ •QueueSlots(r ,C, cc, ℓd)

γs

ℓpc 7→ z +C ∗ ℓcc 7→ cc

∗
z≤i< |r |


ri = Ready(_) −∗ CellMut(γr , i, ri)
CellData(ℓd +l (i mod C), ri)
ℓo +l (i mod C) 7→ CellOwner(ri)
ℓi +l (i mod C) 7→ CellIter(ri , i,C)

QueueSlots(r ,C, cc, ℓd) ≜ [Slot(ri , i mod C, ℓd) | cc ≤ i]
Slot(ri ,k, ℓd) ≜{

v when ri = Ready(v) or OwnerSet(v)
ℓd +l k otherwise

CellData(ℓ, r) ≜
ℓ 7→ _ when r = Empty or Free

ℓ 7→ v when r = Ready(v) or OwnerSet(v)

True when r = ClaimEnq or ClaimDeq

CellOwner(r) ≜{
PROD when r = Empty , ClaimEnq , or Free

CONS otherwise

CellIter(r , i,C) ≜{ ⌊ i
C

⌋
− 1 when r →∗ OwnerSet(_)⌊ i

C

⌋
otherwise

(b) Definition of the internal invariant

Figure 6. Predicates and invariant for the generic queue. In

all definitions γ is a pair ⟨γr ,γs ⟩ of names: γr for the ribbon
ghost state, and γs for the slots.

8

Applying Formal Verification to Microkernel IPC at Meta Draft paper, November 1, 2021,

counters, the data array, owner array, and iteration array.

The IsQueue predicate is persistent since it is an existentially
quantified conjunction of persistent predicates. The first two

conjuncts are pure and thus persistent. The case of the third

conjunct is sorted out by an Iris proof rule showing that

every predicate of the form I is persistent.

The definition of theQueueContent predicate asserts frag-
mental ownership of a list s of queue slots. Iris’ ghost state
rules then guarantee that the list s is synchronized with the

slots described by the authoritative assertion in theQueueInv
invariant •QueueSlots(r ,C, cc, ℓd)

γs
.

We now turn our attention to the definition of Enqueuing.
This predicate is obtained after a user calls start_enqueue.
It is meant to represent that a slot with identifier k can be set

by writing to the heap location ℓ. Our implementation of this

predicate requires that there exists a cell in the logical ribbon

at index i that is in the state “Claimed for enqueue”. The

Enqueuing predicate additionally requires that the logical

index i is consistent with the physical offset k , and that the

location ℓ is at offset k in the queue’s data array. We elided

the definition of the predicate Dequeuing since it is identical
to the one of Enqueuing, except that it requires the state to
be “Claimed for dequeue”.

Figure 6(b) contains the definition of the global invariant

QueueInv. This invariant specifies the entire physical layout
of the queue and hinges on three existentially quantified

quantities: the consumer counter cc , the queue base z index,
and the logical ribbon r . The ribbon is split in three segments.

The first one, before the queue base z, is dead and all cells

there are required to be free. In the second segment [z, cc),
cells have been consumed and are either free or in the pro-

cess of being dequeued; formally their state is required to

be strictly greater than Ready in the→ preorder of Figure 4.

Finally, the third segment [cc, z+C) contains cells that are
being enqueued. Note that only the value of the consumer

counter appears directly, the producer counter is computed

from the queue base and capacity: ℓpc 7→ z +C . The queue
base z and the consumer counter cc are required to evolve

monotonically by twoMonoNatFull ghost state predicates.
The producer and consumer counters in the heap are de-

scribed with two classic points-to assertions of separation

logic. Them being wrapped in the invariant triggers proof

obligations when they are mutated: for example, changing cc
can only be done if the ribbon cell at index cc can be moved

from the enqueuing segment to the dequeuing one. The en-

try i of the data, owner, and iteration arrays has its content

specified by the logical state ri and the functions CellData,
CellOwner, and CellIter, respectively. One interesting thing

to notice is that CellData evaluates to True when the logi-

cal state is “Claimed for Enqueue/Dequeue”. This is because

when in these states — i.e., after start_{enqueue,dequeue}
has completed — the permission to write to (or read from)

the data array entry has been lent to the user.

5.5 Code proof
The correctness proofs of the enqueue and dequeue paths are

split in two substantially different parts. First we attempt to

find out what is the logical state of the cell at the producer/-

consumer counter. During this part of the proof we generate

persistent CellBnd predicates for each atomic memory read.

These predicates and the rule Ribbon-Bound justify the ex-

istence of a sequence of monotonically increasing logical

states. Coupled with the outcome of the tests on the itera-

tion number and owner bit, this montonic sequence lets us

corner a single logical state (Free/Ready). After the compare-

and-swap operation, the cell is claimed by the current thread.

In practice, this means that we own a CellMut predicate for
the cell. This predicate gives us full control over the logi-

cal state and lets us update it using Ribbon-Update. When

an enqueue operation completes, the CellMut predicate is
returned to the invariant so that the matching dequeue op-

eration can fetch it later.

6 The ports queue
The ports queue is used as a lightweight notification system

between the kernel and user processes; its implementation,

in Figure 7, follows a similar structure to that of the generic

queue.

The ports queue offers an original reservation mechanism.

The kernel can reserve space in the queue without taking up

a physical slot. This guarantees that a later enqueue will not

fail due to the queue being full while also allowing other pro-

cesses to use the queue normally. If instead the kernel were

to “reserve” a slot by starting an enqueue without marking

the cell ready, then the entire queue would be blocked. That

is, no elements could be dequeued until the kernel marked

that cell ready. Reservations are used in the kernel to avoid

having to cope with error conditions in parts of the code

where they are difficult to handle.

The logic for enqueuing is revised to support reservations.

The producer counter now tracks three values: the actual

counter (cnt), the number of existing unused reservations

(res), and the number of reservations that have been used

to enqueue data (in_flight). We call lookahead the quan-

tity res+in_flight. Checking whether a new enqueue or

reservation can occur now involves checking whether the

space between the producer and consumer counters plus the

lookahead is less than the queue capacity.

The price paid for this reservation mechanism is the loss

of two-phase dequeues. This modification incurs changes in

the synchronization mechanisms, in particular, the owner

array present in the generic queue is no longer needed.

Several new operations are added to manipulate reserva-

tions. Using a reservation with use_reservation is similar

to enqueueing a value, but no checks need to be done to

ensure that the queue has space. If it is known to the user

that a slot enqueued using a reservation has been dequeued,

9

Draft paper, November 1, 2021, Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli

1 start_enqueue_or_reserve(q, reserve):
2 while true:
3 pc = atomic_load(q.pc)
4 cc = atomic_load(q.cc)

5 if (pc.cnt - cc) + pc.res + pc.in_flight < q.cap :

6 if reserve:
7 newpc = {pc.cnt , pc.res+1, pc.in_flight}
8 if CAS(q.pc, pc, newpc):
9 return (0, null)
10 else:
11 newpc = {pc.cnt+1, pc.res , pc.in_flight}

12 if CAS(q.cnt, pc, newpc) :

13 k = pc.cnt % q.cap
14 return (k, &q.dat[k])

1 use_reservation(q):
2 while true:
3 pc = atomic_load(q.pc)
4 newpc = {pc.cnt+1, pc.res -1, pc.in_flight +1}

5 if CAS(q.pc, pc, newpc) :

6 k = pc.cnt % q.cap
7 return (k, &q.dat[k])

1 reclaim_reservation(q):
2 while true:
3 pc = atomic_load(q.pc)
4 newpc = {pc.cnt , pc.res+1, pc.in_flight -1}
5 if CAS(q.pc, pc , newpc): return

1 release_reservation(q):
2 while true:
3 pc = atomic_load(q.pc)
4 newpc = {pc.cnt , pc.res -1, pc.in_flight}
5 if CAS(q.pc, pc , newpc): return

1 mark_ready(q, k):

2 atomic_incr(q.itr[k])

1 dequeue(q):
2 while true:
3 cc = atomic_load(q.cc)
4 i, k = cc / q.cap , cc % q.cap
5 ik = atomic_load(q.itr[k])

6 if ik == i :
7 data = atomic_load(q.dat[k])

8 if CAS(q.cc, cc, cc+1) :

9 return data

Figure 7. Pseudocode for the ports queue

the function reclaim_reservation can be used to reclaim

the reservation. Finally, reservations can be released using

release_reservation to free space in the queue.

6.1 Specification
Notice in Figure 7 that operations involving reservations do

not validate whether the queue has space. This is because

the API assumes that the user does in fact have the reserva-

tion that they claim. To specify these functions in Iris, we

require that reservations are “passed” to the precondition.

Reservations are materialized as purely logical tokens Res(γ)
that witness properties about the queue state.

Formal specifications for the most important operations

of the ports queue are shown in Figure 8. One notable dif-

ference over the generic queue is that slots now optionally

bear a marker which we write as superscript R. This marker

indicates that the enqueued slot was enqueued using a reser-

vation.When calling dequeue on a queuewhere the head slot

IsQueue(γ ,q) −∗
⟨⊤⟩ start_enqueue_or_reserve(q, true) ⟨Res(γ)⟩

IsQueue(γ ,q) −∗
⟨∀(sk).QueueContent(γ , [s0, . . . , sn]) ∗ Res(γ)⟩
use_reservation(q)〈

λv . ∃kℓ.∗
{
v = (k, ℓ) ∗ Enqueuing(γ ,q,k, ℓ, _)
QueueContent(γ , [s0, . . . , sn , ℓR])

〉
{Enqueuing(γ ,q,k, ℓ, _)}
atomic_store(ℓ,x)
{Enqueuing(γ ,q,k, ℓ,x)}

IsQueue(γ ,q) −∗
⟨∀(sk).QueueContent(γ , [s0, . . . , sn])⟩
dequeue(q)〈

λv .∗
{ ∃k . s0 = vk ∗ (k = R −∗ DequeuedRes(γ))
QueueContent(γ , [s1, . . . , sn])

〉
IsQueue(γ ,q) −∗
⟨DequeuedRes(γ)⟩ reclaim_reservation(q) ⟨Res(γ)⟩

Figure 8. Selected specifications for the ports queue

is a marked valuevR
, the dequeuing thread gains access to an

instance of theDequeuedRes token. This token can be turned
back into a reservation by calling reclaim_reservation.

Another subtle difference is that the function starting an

enqueue operation no longer returns a bare heap permission

ℓ 7→ _. This change is necessary for technical reasons and

explained in the following section.

The operations omitted from Figure 8 follow closely their

counterpart in the generic queue. For example, starting an

enqueue without reservation will append an unmarked loca-

tion ℓ to the slots list; marking a slot ready turns a location

ℓk in the slots list into a value vk with the same marker.

6.2 Code proof
The proof for the ports queue hinges around a similar ar-

gument to that of the generic queue. We reuse concepts

such as the logical ribbon and monotonicity of the counters

and cell states. While cell states still follow the monotonic

progression of Figure 4, some states are now skipped.

The intersting part of the proof is to establish that the

reservation operations are safe without doing any explicit

checks in the algorithm. This is where the reservation re-

sources come into play. As ghost state, we use two instances

of the resource algebra AuthNatRA ≜ Auth(N,+). This
algebra wraps the monoid of natural numbers inside the

10

Applying Formal Verification to Microkernel IPC at Meta Draft paper, November 1, 2021,

authoritative combinator. Some derivable rules are:

(Auth-Nat-Bound)

•n
γ
∗ ◦m

γ
⊢m ≤ n

(Auth-Nat-Alloc)

•n
γ
⊢ |⇛ •(n +m)

γ
∗ ◦m

γ

The first rule shows that fragments witness lower bounds

on the authoritative natural number. The second rule allows

allocating a new fragment by increasing the authoritative

number. Unlike in a monotonic algebra, this number can also

be decreased by consuming fragments.

Two instances of AuthNatRA track the in flight and

reservation counters stored in the producer counter. The

Res(γ) and DequeuedRes(γ) predicates are simply defined

to be ◦1
γr s

and ◦1
γi f

, respectively, where γr s and γi f are

two new components of γ . In our reasoning we use these

fragments and the Auth-Nat-Bound rule to show that, for

example, the lookahead is sufficiently large to justify the

presence of one free cell when a reservation is used.

One other subtlety of the ports queue algorithm is that the

dequeue function speculatively reads the data array (line 7)

before having checked that the cell is in the correct Ready

state (line 8). This scheme does not let us return a permission

ℓ 7→ _ when we start an enqueue. Indeed, if the permission

would be missing from the invariant in some states, we could

not possibly prove the safety of the unguarded speculative

read on line 7. To deal with this problem, we parameterize

Enqueuing with the slot value and prove a Hoare triple for

the atomic store expression that assigns to the slot. This way,

the user does not need to call a library function to set the

slot value but can instead use a regular atomic assignment.

7 Experience using Iris
In this section we report on our experience using Iris for

the first time at Meta. Overall, learning and using Iris was

smooth. The effort put into the Iris distribution and documen-

tation is remarkable. We made use of the many high-quality

resources linked from the Iris website, such as tutorials, re-

lated papers, and example developments. We also found the

community to be friendly, skilled, and responsive. We dis-

covered the stdpp library at the same time as Iris and found

it much more pleasant to use that Coq’s standard library,

with which we had prior experience. Finally, when design-

ing our invariant we appreciated that the extensive library

of resource algebra combinators provided for most of our

needs out of the box.

Nonetheless we also experienced some difficulties. Hea-

pLang was well suited to expressing the generic queue al-

gorithm but, when dealing with the compound producer

counter of the ports queue, we had to artificially use the

Cantor pairing function to pack multiple counters in a sin-

gle integer. While the C code uses bitpacking, we thought

that the modelling language does not ought to restrict the

compare-and-swap operation to integers, especially if those

are of arbitrary precision. When modelling our invariant we

found it difficult to be principled about the split between

properties belonging to resource algebras and the ones be-

longing to the logic. We were also surprised that the most

important lemmas took only a couple lines to prove while

using the invariants and writing the code proofs required

hundreds of rather straightforward lines. While Iris’ proof

mode [19] made using CSL easy, this observation seems to

indicate that there remains untapped potential to increase

the reasoning density. Finally, when experimenting with re-

source algebras on lists, we were surprised by Coq’s lack of

support for first order reasoning. One of the authors having

recently completed a proof in HOL Light repeatedly noticed

that some labor intensive reasoning in Coq would have been

a one-liner within HOL Light.

8 Contextual remarks
While we stop short of exhaustive comparison to the (large)

literature on concurrency and OS verification, in this section

we provide remarks on some of the most closely related work,

especially that which influenced us.

Fine-grained Concurrency Verification. The GPS pa-

per [28], one of the founding references for Iris, included a

circular non-blocking queue as a key example. The queue

there was simpler than both our generic and ports queues;

e.g., it did not have a reservation mechanism, or two-phase

enqueue and dequeue. Also, they proved a certain weak prop-

erty of the queue which was less than functional correctness

(refinement). But, their work provided inspiration for ours.

A recent Iris paper verifies a model of a queue fromMeta’s

Folly C++ library [13]. Going beyond GPS, they prove refine-

ment. The queue algorithm is very different from those in

this paper, and used for different purposes. The queue veri-

fied is much more complex than the one in the GPS paper;

it is used in production at Meta where it serves traffic for

their implementation of “the social graph”. The realism in

this example influenced our choice to proceed with Iris.

Another recent paper on Cosmo [21], which appeared

after we had completed our proof, verifies a circular queue

which is similar in respects to our generic queue. Both are

generalizations of the classic ring buffer that use auxiliary

arrays for synchronization. Their queue does not provide a

two-phase API nor a reservation mechanism. Nonetheless,

the algorithmic similarities yield similarities in the structure

of our invariants, such as the central use of monotonicity.

One notable difference is is that their reasonning is carried in

the Cosmo logic that accounts for the weak memory model

of multicore OCaml. Cosmo’s treatment of weak memory

(or that of GPS) might affect our future work.

The Cosmo authors make a point on the state of the art,

which we agree with: “These logics settle a strong theoretical
ground; their confirmation as practical tools, however, needs
a demonstration that they allow the modular verification of
realistic multicore programs. [21].” One way to view our work

is as providing data on the “confirmation as practical tools”

11

Draft paper, November 1, 2021, Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli

issue, and since our demonstration is done by engineers who

are not the tool creators this perhaps provides additional,

more independent data for the community.

Finally, advice from an Iris expert – “for weak memory it is

still an open research questionwhat we should be proving, let

alone getting engineers to prove it” (Derek Dreyer, personal

communication) – influenced our decision to work with a

sequentially consistent model for our current proof project,

but we look forward to possibly leveraging advances as the

field matures.

OS Verification. With demonstrations such as seL4 [18],

it is now accepted that it is feasible to prove functional cor-

rectness of small OS’s, and this had an important influence on

us launching our project in the first place. However, our spe-

cific industrial problem, paired with the current limitations

in OS verification, caused us to focus on proving psuedocode

rather than source.

The first issue concerns not doing the proof the first time,

but maintaining it once it is done: Our OS is evolving not

just in its implementation but also in its requirements. An

ideal would be continuous verification, where specs and code

are kept in sync using an automatic continuous integration

(automatic CI) system that does proofs fully automatically.

Less ideal would be “human CI”, where human proof ex-

perts manually keep specs and code in synch. Currently, an

approach like seL4, based on an interactive proof assistant,

would tend more towards the human CI end of the spectrum.

A second issue is that the proven systems have often con-

strained the programming model (e.g., seL4 ruled out pre-

emption), and depending on context such constraints might

imperil a non-research, non-demonstrator system.

There has been positive progress (partly) attacking these

limitations. Hyperkernel uses a push-button form of verifica-

tion based on bounded model checking [22], but again at the

cost of constraining the programming model. Another work

removes the restriction on pre-emption from seL4 [29], but

stays closer to what we termed human CI. Work at Google

and Meta uses automatic CI for static analysis [9, 26], but for

lightweight properties not close to functional correctness.

Work at Amazon utilizes CI for proofs of less than functional

correctness such as memory safety [3], or for functional

correctness of restricted software [5], but to reason about

correctness of kernel IPC they moved to a less automatic

solution that we understand is not kept in sync using CI [4].

(Side note: the IPC proof of [4] does more than ours in that

it considers code and not pseudocode, but less in that it is

for coarse-grained rather than fine-grained concurrency.)

Finally, the Microsoft F* prover emphasizes automation and

CI, but is again driven by proof experts. We hope further

progress will help proof to scale more broadly in the future.

9 Conclusion
Formally verifying the generic queue gave us additional ben-

efits on top of the correctness proof. We uncovered improve-

ments to the algorithm as well as two bugs. We are now

confident that this piece of the OS functions as intended.

The effort required was less than we initially estimated.

The main proof work was done by two engineers with prior

experience of Coq but not Iris. Even after we had pivoted

to algorithm and not code, we were unsure whether the ini-

tial verification could be done inside six months with two

engineers. And, we had no way of predicting whether some

tangible impact beyond announcing “we’re done” would re-

sult. In the end it took a person month to come up to speed

with Iris, two further person months to verify the Generic

queue, and then one further month of part time work for

the ports queue. Interaction between Coq and kernel pro-

grammers resulted in changes being checked into the kernel.

The expertise we built in formal verification of concurrent

programs makes us expect that future efforts will be easier.

As mentioned earlier, this was an engineering project and

not a project aimed at generating new techniques: it was

about experimenting with state-of-the-art formal verifica-

tion technology in our industrial context, as well as about

producing an actual proof. On both fronts, the project was a

success. We now know how to use a leading edge tool for

verifying concurrent algorithms (Iris), we have produced

our first formal proofs using those tools, and demonstrated

concretely how side-effect impact via improved code can re-

sult. The latter has generated interest within Meta because it

shows tangible value beyond confirming that the algorithm

is correct. Finally, some generic Coq we have written for this

project will be contributed back to the Iris community.

Based onwhat we have learned, there are numerous follow

up projects that we could pursue. There are more compo-

nents of the IPC stack such as variations of the generic queue

which would benefit from formal correctness proofs. The

invariants that we used in the formal proof could be useful

in other settings as well. These invariants dictate what a

valid memory configuration looks like and therefore they

could be used in tests to determine whether the actual queue

implementation violates the invariants at runtime. While we

have proven that the algorithm is correct, additional runtime

verification would rule out bugs in the implementation.

We could also bridge the algorithm/implementation gap

by making our model more realistic and consider memory

models that are not sequentially consistent. This line of work

is challenging because verification of concurrent code on top

of relaxed memory models is still in its infancy. Nonetheless,

building on the invariants of the formal proof, it would be

worth investigating if the atomic accesses used by the imple-

mentation can be further relaxed for increased performance.

Given the positive outcomes of this project, it makes sense

to apply formal verification more widely at Meta.

12

Applying Formal Verification to Microkernel IPC at Meta Draft paper, November 1, 2021,

References
[1] Harry Baker. 2021. Zuckerberg explains why Facebook is building a

‘Reality Operating System’. (2021). VR News, 03 June.

[2] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-

dovich. 2019. Verifying concurrent, crash-safe systems with Peren-

nial. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019,
Tim Brecht and Carey Williamson (Eds.). ACM, 243–258. https:
//doi.org/10.1145/3341301.3359632

[3] Nathan Chong, Byron Cook, Jonathan Eidelman, Konstantinos Kallas,

Kareem Khazem, Felipe R. Monteiro, Daniel Schwartz-Narbonne, Ser-

dar Tasiran, Michael Tautschnig, and Mark R. Tuttle. 2021. Code-

level model checking in the software development workflow at Ama-

zon Web Services. Softw. Pract. Exp. 51, 4 (2021), 772–797. https:
//doi.org/10.1002/spe.2949

[4] Nathan Chong and Bart Jacobs. 2021. Formally Verifying FreeRTOS’

Interprocess Communication Mechanism. (2021). Embedded World

Exhibition and Conference.

[5] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian

Huffman, Colm MacCárthaigh, Stephen Magill, Eric Mertens, Eric

Mullen, Serdar Tasiran, Aaron Tomb, and Eddy Westbrook. 2018. Con-

tinuous Formal Verification of Amazon s2n. In Computer Aided Veri-
fication - 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part II (Lecture Notes in Computer Science), Hana Chock-
ler and Georg Weissenbacher (Eds.), Vol. 10982. Springer, 430–446.

https://doi.org/10.1007/978-3-319-96142-2_26
[6] Byron Cook. 2018. Formal Reasoning About the Security of Amazon

Web Services. In Computer Aided Verification - 30th International Con-
ference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I (Lecture Notes in
Computer Science), Hana Chockler and Georg Weissenbacher (Eds.),

Vol. 10981. Springer, 38–47. https://doi.org/10.1007/978-3-319-96145-
3_3

[7] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.

2014. TaDA: A Logic for Time and Data Abstraction. In ECOOP 2014
– Object-Oriented Programming, Richard Jones (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 207–231.

[8] Paulo Emílio de Vilhena and François Pottier. 2021. A separation logic

for effect handlers. Proc. ACM Program. Lang. 5, POPL (2021), 1–28.

https://doi.org/10.1145/3434314
[9] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W.

O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM
62, 8 (2019), 62–70. https://doi.org/10.1145/3338112

[10] Ivana Filipovi, Peter OHearn, Noam Rinetzky, and Hongseok Yang.

2010. Abstraction for Concurrent Objects. Theor. Comput. Sci. 411,
51–52 (Dec. 2010), 4379–4398. https://doi.org/10.1016/j.tcs.2010.09.021

[11] John S. Fitzgerald, Juan Bicarregui, Peter Gorm Larsen, and Jim Wood-

cock. 2013. Industrial Deployment of Formal Methods: Trends and

Challenges. In Industrial Deployment of System Engineering Meth-
ods, Alexander B. Romanovsky and Martyn Thomas (Eds.). Springer,

123–143. https://doi.org/10.1007/978-3-642-33170-1_10
[12] Robert W. Floyd. 1967. Assigning Meanings to Programs. InMathemat-

ical Aspects of Computer Science (Proceedings of Symposia in Applied
Mathematics), J. T. Schwartz (Ed.), Vol. 19. American Mathematical

Society, Providence, Rhode Island, 19–32.

[13] Dan Frumin, Simon Friis Vindum, and Lars Birkedal. 2021. Mechanized

Verification of a Fine-Grained Concurrent Queue from Facebook’s Folly

Library. (2021). Submitted for publication.

[14] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular

foundation for higher-order concurrent separation logic. J. Funct.
Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151

[15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’15). Association for Computing

Machinery, New York, NY, USA, 637–650. https://doi.org/10.1145/
2676726.2676980

[16] Christoph Klee and Sumit Kamath. 2021. Circular queue for microker-

nel operating system. (2021). US patent 11113128, Sept 7.

[17] Christoph Klee, Bernhard Poess, and Sumit Kamath. 2020. Port config-

uration for microkernel operating system. (2020). US patent 10795739,

Oct 6.

[18] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal

Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon

Winwood. 2010. SeL4: Formal Verification of an Operating-System

Kernel. Commun. ACM 53, 6 (June 2010), 107–115. https://doi.org/10.
1145/1743546.1743574

[19] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive

proofs in higher-order concurrent separation logic. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe
Castagna and Andrew D. Gordon (Eds.). ACM, 205–217. https://doi.
org/10.1145/3009837.3009855

[20] Siddharth Krishna, Dennis E. Shasha, and ThomasWies. 2018. Go with

the flow: compositional abstractions for concurrent data structures.

Proc. ACM Program. Lang. 2, POPL (2018), 37:1–37:31. https://doi.org/
10.1145/3158125

[21] Glen Mével and Jacques-Henri Jourdan. 2021. Formal verification of

a concurrent bounded queue in a weak memory model. Proc. ACM
Program. Lang. 5, ICFP (2021), 1–29. https://doi.org/10.1145/3473571

[22] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,

James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:

Push-Button Verification of an OS Kernel. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October
28-31, 2017. ACM, 252–269. https://doi.org/10.1145/3132747.3132748

[23] Peter W. O’Hearn. 2007. Resources, Concurrency, and Local Reasoning.

Theor. Comput. Sci. 375, 1–3 (April 2007), 271–307. https://doi.org/10.
1016/j.tcs.2006.12.035

[24] Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the im-

pact of formal methods. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 13–25.

https://doi.org/10.1145/3209108.3209109
[25] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Haw-

blitzel, Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beur-

douche, Joonwon Choi, Antoine Delignat-Lavaud, Cédric Fournet, Na-

talia Kulatova, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,

Christoph M. Wintersteiger, and Santiago Zanella Béguelin. 2020. Ev-

erCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider. In

2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020. IEEE, 983–1002. https://doi.org/10.1109/
SP40000.2020.00114

[26] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon,

and Ciera Jaspan. 2018. Lessons from building static analysis tools at

Google. Commun. ACM 61, 4 (2018), 58–66. https://doi.org/10.1145/
3188720

[27] Amin Timany and Lars Birkedal. 2021. Reasoning about Monotonic-

ity in Separation Logic. In Proceedings of the 10th ACM SIGPLAN In-
ternational Conference on Certified Programs and Proofs (CPP 2021).
Association for Computing Machinery, New York, NY, USA, 91–104.

https://doi.org/10.1145/3437992.3439931

13

https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1002/spe.2949
https://doi.org/10.1002/spe.2949
https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1145/3434314
https://doi.org/10.1145/3338112
https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1007/978-3-642-33170-1_10
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3158125
https://doi.org/10.1145/3158125
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1145/3188720
https://doi.org/10.1145/3188720
https://doi.org/10.1145/3437992.3439931

Draft paper, November 1, 2021, Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli

[28] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navi-

gating Weak Memory with Ghosts, Protocols, and Separation. SIG-
PLAN Not. 49, 10 (Oct. 2014), 691–707. https://doi.org/10.1145/2714064.
2660243

[29] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and

Zhaohui Li. 2016. A Practical Verification Framework for Preemptive

OS Kernels. In Computer Aided Verification, Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer International Publishing, Cham, 59–79.

14

https://doi.org/10.1145/2714064.2660243
https://doi.org/10.1145/2714064.2660243

	Abstract
	1 Introduction
	1.1 Verification target: IPC
	1.2 A pivot: algorithm, not code
	1.3 Choosing Iris
	1.4 Results
	1.5 Limitations

	2 The generic queue
	2.1 Implementation
	2.2 Code improvements
	2.3 Erroneous uses

	3 Reasoning about concurrent objects
	3.1 Invariants
	3.2 Logical atomicity

	4 Specifying the generic queue
	5 Proving the generic queue
	5.1 Endless ribbon
	5.2 Monotonicity
	5.3 Ribbon ghost state
	5.4 Invariant
	5.5 Code proof

	6 The ports queue
	6.1 Specification
	6.2 Code proof

	7 Experience using Iris
	8 Contextual remarks
	9 Conclusion
	References

