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Chapter 1

Why study compiler optimisations of
shared memory programs?

Multicore computers have become ubiquitous, in servers, personal computers and even
phones. The lowest abstraction for programming them is the shared-memory, multi-
threaded program, in which several sequences of instructions (threads) are executed con-
currently, accessing the same data. When these programs are compiled, it is usually done
piecemeal: the compiler only see fragments of a thread at any time, unaware of the ex-
istence of other threads. This disconnect can lead compilers to break the expectations
of the programmers regarding such multi-threaded programs. Consider for example the
following program which shows two threads executing side-by-side:

Initially, x = y = 0
Thread 1 Thread 2

x:= 1;
if (y > 0) {

print x;
}

if (x > 0) {
x := 0;
y := 1;

}

It has two global variables, x and y which are initialized at 0, and they are shared
by the two threads. We assume both threads are started at the same time. What values
can the first thread print? At first glance, 0 is the only value that can be printed: if the
conditional in the left thread is taken, it means the store of 1 to y has happened, and
so the store of 0 to x has happened too. Since it is also in a conditional, it must have
happened after the store of 1 to x. So the value of x is 0 when it is printed.

But if the first thread is compiled by an optimising compiler, the compiler will execute
the constant propagation optimisation: since there is no visible access to x between its
store and its load, the compiler will assume the value has not changed and will replace
print x by print 1, introducing a new behaviour.

Is this a bug in the compiler? No, the problem was our assumption that all threads
have the same view of memory at all times, and that executing a multi-threaded pro-
gram is equivalent to repeatedly picking one thread and executing it for one step. These
assumptions are called the Sequential Consistency model (SC) and were first formal-
ized in [Lam79]. Constant propagation is not the only optimisation that can break the
SC model. Common Sub-expression Elimination (CSE), Loop Invariant Code Motion
(LICM), Global Value Numbering (GVN) and Partial Redundancy Elimination (PRE)
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are some other examples. Consequently, most languages have decided to offer weaker
guarantees to the programmer, to preserve the compilers ability to perform these optimi-
sations.

Even if a compiler were to forsake all SC-breaking optimisations, programmers still
could not rely on the SC model, because of details in the architecture of the underlying
processor. Consider for example the so-called Store Buffering pattern in Figure 1.1, where
one thread writes to a variable and reads from another one, and another thread writes to
the second variable and reads from the first one.

Initially, x = y = 0

x := 1;
print y;

y := 1;
print x;

Figure 1.1: Store Buffering (SB) pattern

In an SC world, the outcomes of such a program can be listed by enumerating all
possible interleavings of the threads (a more efficient way will be described later in the
section on axiomatic memory models, see Section 2.2.2). Such an enumeration can easily
prove that in any execution, at least one of the two print operations will print 1.

Yet, when implemented directly in assembly, this program will occasionally print two 0s
on most multicore/multiprocessor platforms (including x86, ARM, Power, Sparc, Alpha).
This can be explained by the presence of store buffers in these processors, so that they do
not have to wait for stores to go all the way to memory. Loads check the local store buffer
for stores to the same address so single-threaded programs do not notice this optimization,
but it is observable to multi-threaded programs. In this instance for example, both stores
can go into the store buffers, then both loads will check their own store buffer, not see any
store to the same address, and load the value 0 from their cache (or directly from main
memory). Only then will the stores be propagated to the memory. In practice, processors
do not need to have physical store buffers to exhibit this behaviour, it can emerge from the
coherency protocol of normal caches. In order to enforce the SC behaviour, it is necessary
to include a special instruction between the stores and the loads, such as mfence on x86.
All such instructions whose only purpose is to limit the observable effect of processor
optimisations are called fences, and are usually quite slow.

As a consequence, programming languages that allow writing multi-threaded programs
must carefully define what guarantees they offer the programmer. The compiler will then
be able to both limit its optimisations and insert fence instructions in the right places
to enforce these guarantees. Such a set of guarantees offered to the programmer by
a platform is called a memory model (occasionally “memory consistency model” in the
literature). The C and C++ standards committees have added such a memory model to
these languages in 2011 (that we call the C11 model in the rest of this thesis). The C11
model is based on two ideas:

1. The compiler will ensure that code where no memory location is accessed concur-
rently behaves like in the SC model.

2. Otherwise, the programmer must add annotations to the loads and stores to describe
what semantics they want from them. These annotated loads and stores are called
atomic operations or just atomics, and the annotation is called a memory order
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or attribute. Obviously, the stronger the semantics wanted, the more careful the
compiler must be.

This model is convenient in that compilers can optimise code without concurrency prim-
itives like in the SC model. They only have to be careful when encountering either locks
or atomic operations: these force them to disable some of their own optimisations, and
to introduce fence instructions to block processor optimisations.

Contributions In this thesis we present work on the optimisation of shared-memory
concurrent programs, with a focus on the C11 memory model.

• The C11 model is highly complex. It has been formalized, but it was originally
designed by the standards committee based on what seemed reasonable to implement
at the time. It is natural to wonder whether it respects some basic intuitions: is it
sound to replace a relaxed atomic (that is supposed to have the weakest guarantees)
by a stronger one (monotonicity)? Is it sound to decompose a complex computation
into several simpler ones with temporary variables? We answer these questions and
others by the negative in Chapter 3, and propose modifications to the model that
fix some of these warts.

• In Chapter 4, we study which traditional compiler optimisations designed in a se-
quential world remain correct in the C11 model. As expected, they remain correct
on code without atomics, but must be very careful when modifying code containing
atomics. We prove the correctness of criteria under which they remain sound.

• Armed with this theory of correct optimisations, we built a tool that uses random
testing to find mistakes in the implementation of the C11 memory model in GCC.
This tool is presented in Chapter 5.

• Another important question related to the C11 model is how usable it is in practice
for writing complex lock-free algorithms. What patterns are the most frequently
used? Can non-trivial code using atomic operations be proven correct? To answer
these questions, we designed and implemented a dynamic scheduler for Kahn Pro-
cess Networks in C11, starting from a naive sequentially consistent algorithm and
progressively refining it to use more efficient atomic operations (Chapter 6).

• Finally, we looked at how compilers can optimize the fence instructions that they
have to insert around atomic operations to prevent reorderings of instructions by
the processor. We propose a novel algorithm for fence elimination based on Partial
Redundancy Elimination (Chapter 7).

• Before all of that, we need to provide some background information. In particular,
we will see formal models for x86, ARM, Power, and C11 (Chapter 2). This chapter
includes some original work in Section 2.3.1, that shows how a compiler optimisation
is unsound in the Power model.

Collaborations Much of the work presented in this thesis was done in collaboration
with others and resulted in publications:

• The study and testing of the optimisations done by Clang and GCC around atomics
was done with Pankaj Pawan and Francesco Zappa Nardelli. It was presented at
PLDI 2013 [MPZN13] and is described in Section 4.1 and Chapter 5
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• The formal study of optimisations in C11 and its variants was done with Viktor
Vafeiadis, Thibaut Balabonski, Soham Chakraborty and Francesco Zappa Nardelli.
It was presented at POPL 2015 [VBC+15] and is described in Chapter 3 and Sec-
tion 4.2

• LibKPN (Chapter 6) was joint work with Nhat Minh Lê, Adrien Guatto and Albert
Cohen. It has not yet been published.

• The fence elimination algorithm presented in Chapter 7 was designed during an
internship at Google under the supervision of Jean-François Bastien and evaluated
later with Francesco Zappa Nardelli. It will be presented at CC 2017 [MZN17].
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Chapter 2

A primer on memory models

2.1 Examples of non-sequentially consistent behaviors
We already saw in the introduction the SB pattern (Figure 1.1), and how it can be caused
by First-In First-Out (FIFO) store buffers in each core.

This is not the only processor optimisation that can be observed by multi-threaded
programs. Consider for example the program in Figure 2.1, called Message Passing or
MP in the literature:

Initially, x = y = 0

x := 1;
y := 1;

if (y == 1)
print x;

Figure 2.1: Message Passing (MP) pattern

According to the SC model, this pattern should never print 0. And indeed it never
does on x86, as the store buffers behave in a First-In First-Out (FIFO) way, so by the time
the store of y is visible to the second thread, so is the store of x. But on ARM and Power,
it will occasionally print 0. Several architectural reasons can explain this. For example, it
could be that the store buffers are not FIFO, letting the store of y reach global memory
before the store of x. Or this behaviour could be caused by speculation: the second core
may guess that the branch will be taken, and execute the load of x in advance, possibly
even before the load of y.

Another example is the Load Buffering (LB) pattern in Figure 2.2. Like the previous
one, this program cannot print two ones in the SC model or on x86 processors, but it
can on ARM and Power processors. This can be caused by the processors executing the

Initially, x = y = 0

print y;
x := 1;

print x;
y := 1;

Figure 2.2: Load Buffering (LB) pattern
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instructions out-of-order and deciding to execute the stores before the loads.

An even more surprising example is the Independent Reads of Independent Writes
(IRIW) pattern in Figure 2.3.

Initially, x = y = 0

x := 1;
print x;
print y;

print y;
print x;

y := 1;

Figure 2.3: Independent Reads of Independent Writes (IRIW) pattern

This is yet another case where x86 follows the SC model, but ARM and Power do not.
More precisely, different cores can see the stores to x and y happening in different orders,
resulting in both central threads printing 1 and then 0. This can happen if the L2 cache
is shared between the threads 0 and 1, and is shared between the threads 2 and 3: the
store of x will be visible first to the thread 1, and the store of y will be visible first to the
thread 2.

Cache coherency is usually defined as all cores agreeing on the order in which all stores
to each individual memory location reach the memory. While the behaviour shown above
is quite unintuitive, it is not a violation of cache coherency: it is only the order of stores
to different locations that is not well defined.

2.2 Hardware memory models
Given the wide range of surprising behaviours shown in Section 2.1 it is necessary for
any programmer writing concurrent code in assembly to have a model of the observable
effects of these processor optimisations. Processor vendors offer informal specifications
in their programming manuals, but these are often ambiguous and sometimes outright
incorrect. This led to a significant amount of research in formal memory models for
hardware architectures.

2.2.1 The x86 architecture

As we saw in Section 2.1, x86 differs from sequential consistency mostly by its behaviour
in the SB pattern. It is possible to limit the behaviour in this pattern to those admissible
under SC by inserting a special instruction called mfence between the stores and the
loads. x86 also has a LOCK prefix that can be added to some instructions to make them
atomic.

The x86 architecture is one of the first whose memory model was rigorously formal-
ized and validated against the hardware. The resulting model is called x86-TSO and is
described in [OSS09, SSO+10]. This model was formalized in two different ways, an oper-
ational and an axiomatic models. We describe both in more details below, as an example
of each kind of model.

2.2.1.1 The x86 operational model

The first model is an operational model [BP09]: it is the description of an abstract machine
that simulates an x86 processor and explicitly models the store buffers and a global lock.
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Figure 2.4: Abstract machine for x86-TSO from [OSS09]

Such a model is convenient for building an intuition, and can easily show that a behaviour
is possible. Unfortunately, showing a behaviour to be impossible can be difficult as all
transitions must be explored.

In this view of x86-TSO, each processor proceeds mostly independently and com-
pletely sequentially, communicating with its store buffer, the global lock and the memory
according to the following rules (see Figure 2.4):

• Whenever it executes a store, the store is sent to a local store buffer that acts as a
First-In First-Out (FIFO) queue.

• Whenever it executes a load, it first checks if there is a store to the same address
in the local store buffer. If there is, it returns the value of the latest such store.
Otherwise it asks the global memory for the value of this memory location. In both
cases, the load is only executed if the global lock is not taken by another processor.

• Whenever it executes an instruction with the LOCK prefix, it first flushes its local
store buffer to memory, then takes the global lock, executes the instruction, flushes
the buffer again, and release the lock afterwards. In x86, instructions with the
LOCK prefix are executed atomically, and are used to implement primitives like
fetch-and-add or compare-and-swap.

• Whenever it executes a mfence instruction, it flushes its local buffer.

• It can flush the latest store(s) from its buffer to the shared memory at any point
where no other processor holds the global lock.

Consider again the SB example (Figure 1.1). Without fences, the following behaviour
is permitted by the model:

1. The left thread sends the store to x to its store buffer.

2. It then executes the load of y. Since there is no store to y in its store buffer, it reads
the initial value from global memory and prints 0.

3. The right thread sends the store to y to its store buffer.
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4. The right thread executes the load of x. Since the store of x is only in the left
thread’s core’s store buffer, it reads the initial value of x from global memory and
prints 0.

With the mfence instruction added between every store and load, this execution would
be impossible: the left thread would have to flush its store buffer to memory before
executing the load. When the right thread later reads from memory, it would see the
correct value and print 1.

However, note that in this model the only way to check that a behaviour can not
happen (for example both thread printing 0) is to explore every transition of the system
exhaustively.

2.2.1.2 The x86 axiomatic model

The second model of x86-TSO is an axiomatic model : an execution is valid and can
happen if there exists a set of relations between the memory accesses of the execution
that verifies some set of axioms. The model is entirely defined by its relations and axioms.

Axiomatic models are usually less intuitive than operational ones, but easier to use
for verification purposes [AKT13], as they simplify proofs that a behaviour is impossible.

Here is how the axiomatic formalisation of x86-TSO works in more detail. For each
thread, the set of memory events (store, loads, locked operations) this thread can produce
is generated, assuming completely arbitrary values returned for each read. The data of
such a set and the program order relation (po) is called an event structure in [OSS09], but
we will call it a event set here, as the term event structure has come to mean something
else in more recent papers.

An event set is a valid execution if there exists an execution witness made of two
relations reads-from (rf) and memory-order (mo)1 which respects the following axioms:

1. rf is a function from loads to store, and if w = rf(r), then w and r share the same
value and memory location;

2. mo is a partial order on memory events that is a total order on the stores to each
memory location (but does not necessarily relate stores to different memory loca-
tions);

3. if w = rf(r), then there is no other write w2 to the same location with w <mo w2

and w2 <mo r or w2 <po r;

4. program order is included in memory order for all of the following cases:

• the first event is a read,

• both events are writes,

• the first event is a write, the second is a read, and there is a mfence instruction
in-between,

• one of the event comes from a locked instruction;

5. all memory events associated to a given locked instruction are adjacent in memory
order.

1The original model also includes an initial_state function that we ignore for simplicity
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Consider again the SB example (Figure 1.1). It has a very large number of event sets,
as we must generate one for every value that each load could read, for example those in
Figure 2.5:

W x 0 W y 0

W x 1

R y 0

W y 1

R x 0

W x 0 W y 0

W x 1

R y 1

W y 1

R x 0

W x 0 W y 0

W x 1

R y 42

W y 1

R x 13

Figure 2.5: Three examples (out of many) of event sets of SB. Note the arbitrary values
returned by reads.

For each of these we can try building mo and rf. In particular, to check that SB can
print two 0, we must build these two relations for the corresponding event set. We clearly
can, as shown in Figure 2.6 where all the axioms are respected.

W x 0 W y 0

W x 1

R y 0

W y 1

R x 0

mo mo

rfrf

Figure 2.6: building mo and rf for the anomalous SB result

This might not look like an improvement over the operational model. But it becomes
useful when we try to show that some behaviour cannot happen. For instance, we can
now easily show that SB cannot print two 0 with a mfence between the store and the
load in each thread. By the axiom 4, the events in each thread are necessarily ordered by
mo. And they are mo-after the initial stores. We assume the existence of the initial stores
that are po-before all other events to avoid having to special-case them. By the Axiom 1,
each read must be related by rf to the initial stores. But that is in contradiction with
Axiom 3: we have successfully proven that adding a mfence between the stores and the
loads prevent this program from printing two 0.

A complete description of the models can be found in the aforementioned papers.

2.2.2 The Power and ARM architectures

A memory model is said to be stronger than another one if it allows less behaviours. SC
is clearly the strongest of all the memory models we saw. As we saw earlier with the MP,
LB and IRIW examples, both Power and ARM have significantly weaker memory models
than x86.
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These models are highly subtle and poorly documented, which led to a list of pro-
gressively more complete and readable formalisations in the literature [AFI+09, AMSS10,
SSA+11, SMO+12, MMS+12, AMT14]. We will only present in detail the formalization
in [AMT14], which we rely upon in Chapter 7. This model 2 is axiomatic, and we call it
the “Herding Cats” model after the title of the paper.

This formalisation is actually a framework with several parameters that can be instan-
tiated to give a model for Power, ARM, x86 or even SC.

In this framework the semantics of a program is defined in three steps, as in the x86
axiomatic model.

First the program is mapped to a set of memory events (e.g. atomic read or writes
of shared memory locations) and several relations among these events. The intuition is
that these events capture all possible memory accesses performed by the various threads
running in an arbitrary concurrent context. The additional relations capture how several
“syntactic” aspects of the source program lift to, and relate, events. These include the
program order relation (po), that lifts the program order to the events, and the addr, data,
and ctrl relations, that lift address, data and control dependencies between instructions
to events. This corresponds to the event sets in the model of Section 2.2.1.2

Second, candidate executions are built out of the events by imposing restrictions on
which values read events can return, each execution capturing a particular data-flow
of the program. The restriction are expressed via two relations, called reads-from (rf)
and coherence-order (co). The former associates each read even to the write event it
observes. The second imposes a per-location total order on memory writes, capturing
the base property ensured by cache coherence. These are subject to two well-formedness
conditions:

• rf is a function from loads to store, and if w = rf(r), then w and r share the same
value and memory location;

• co is a partial order on memory events that is a total order on the stores to each
memory location (but does not necessarily relate stores to different memory loca-
tions).

Several auxiliary relation are computed out of rf and co. The most important is the
relation from-read (fr), defined as rf−1; co, that relates a read to any store that is co-after
the one it reads from. An example of that can be seen in Figure 2.7: because the load of
x reads from the first store, it is related by fr to every later store to x.

We also compute the projections of rf, fr and co to the events internal to a thread (the
related events belong to the same thread, suffix i) or external (the related events belong
to different threads, suffix e) to a thread; these are denoted rfi, rfe, fri fre and coe. The
construction of these relations corresponds to the construction of rf and mo in the model
of Section 2.2.1.2, with co corresponding to mo.

Third, a constraint specification decides if a candidate executions are valid or not.
HerdingCats is a framework that can be instantiated to different architectures. For this
it is parametric in two relations happens-before (hb), defining the relative ordering of

2This model does not cover mixed-size accesses, nor special instructions like load-linked/store-
conditional
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Figure 2.7: co, rf, and fr

the events., and propagation order (prop), capturing the relative ordering of memory
writes to different locations that somehow synchronise. We detail the instantiation of
the framework to x86, Power, and ARM below. The framework then imposes only four
axioms on candidate executions to determine their validity. These axioms play the same
role as the axioms of the model of Section 2.2.1.2

The first axiom, SC per location, captures cache coherence: for every memory
location considered in isolation, the model behaves as if it was sequentially consistent. In
formal terms:

acyclic(poloc ∪ com)

where poloc is the program order restricted per location, and com (communication order)
is the union of the coherency order co, the reads-from relation rf, and the from-reads
relation fr.

The second axiom, no thin air, prevents the so-called out-of-thin-air reads, where
the read of a value is justified by a store that is itself justified by the original read. Such
causality loops are not observable on any modern hardware. In Section 3.1.2 we will see
how troublesome a model without that rule is. In formal terms, the rule forbids cycles in
happens-before (hb), which is the first parameter of the model:

acyclic(hb)

The third axiom, observation, mostly enforces that loads cannot read from stores
that have been overwritten in-between. In particular, it is what makes the MP(Figure 2.1)
pattern work in x86, and with the right fences in ARM and Power too.

irreflexive(fre; prop; hb∗)

In this rule fre is the restriction of fr to an inter-thread relation, hb∗ is the transitive
and reflexive closure of hb, and prop is the second parameter of the model. The stated
justification in the paper for prop is to relate stores to different memory locations that
are synchronised somehow, and thus represent cumulativity. In the words of the paper,
“a fence has a cumulative effect when it ensures a propagation order not only between
writes on the fencing thread (i.e. the thread executing the fence), but also between certain
writes coming from threads other than the fencing thread.” [AMT14, p. 18].

The fourth axiom, propagation, enforces the compatibility of the coherence order
with this prop relation:

acyclic(co ∪ prop)

In fact, prop is not entirely limited to stores on Power (see below), and has a term that
can relate loads. It is this term in combination with the propagation axiom that bans the
IRIW pattern (Figure 2.3) when the loads are separated by heavyweight fences.
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2.2.2.1 Instantiations of the framework

The model presented above is completely generic over hb and prop. We will now show what
definition to give to these two relations to make the model describe different architectures.

Instantiation for SC Getting back sequential consistency in this framework is easy:
just define hb = po ∪ rfe and prop = po ∪ rf ∪ fr (where rfe is the restriction of rf to an
inter-thread relation). Then the first three axioms are implied by the fourth one which is
equivalent to acyclic(po ∪ com), which is a well-known characterisation of SC [Lam79].

Instantiation for x86 Similarily, x86-TSO can be recovered by defining hb = po\WR∪
mfence∪ rfe and prop = hb∪ fr, with mfence being the restriction of po to pairs of accesses
with a mfence instruction in between, and po\WR the program order relation from which
every pair from a write to a read has been removed. In this instantiation, the axioms No
thin air and observation are implied by propagation.

Instantiation for Power The Power memory model is significantly more complex.
Here are the definitions of hb and prop:

fences
def
= (lwsync\WR) ∪ hwsync

propbase
def
= rfe?; fences; hb∗

prop
def
= (propbase ∩WW) ∪ (com∗; propbase∗; hwsync; hb∗)

dp
def
= addr ∪ data

rdw
def
= poloc ∩ (fre; rfe)

detour
def
= poloc ∩ (coe; rfe)

ii0
def
= dp ∪ rdw ∪ rfi

ci0
def
= (ctrl + cfence) ∪ detour

ic0
def
= ∅

cc0
def
= dp ∪ poloc ∪ ctrl ∪ (addr; po)

ii
def
= ii0 ∪ ci ∪ (ic; ci) ∪ (ii; ii)

ci
def
= ci0 ∪ (ci; ii) ∪ (cc; ci)

ic
def
= ic0 ∪ ii ∪ cc ∪ (ic; cc) ∪ (ii; ic)

cc
def
= cc0 ∪ ci ∪ (ci; ic) ∪ (cc; cc)

ppo
def
= (ii ∩ RR) ∪ (ic ∩ RW)

hb
def
= ppo ∪ fences ∪ rfe

In these, lwsync and hwsync are restrictions of po to pairs of accesses with respectively
a lwsync or hwsync (two kinds of fence instruction that exist on Power, respectively
lightweight and heavyweight synchronisation) in between. ctrl, addr and data are re-
spectively control, address and data dependencies. Finally, ctrl + cfence refers to control
dependencies which have been reinforced by an isync fence.
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The relations ii, ic, ci cc are defined as the least fixed point of the equations above.
The intuition behind these is that i stands for “initiation” of an access, while c stands for
“commit” of an access; which is similar to older models for Power [MMS+12].

Instantiation for the ARM architecture The instantiation of HerdingCats for ARM
follows the IBM Power one, with three differences:

• the relation hwsync is replaced by the relation dmb ish, that is the restriction of po
to pairs of accesses with respectively a dmb ish synchronising barrier in between;
similarly the relation cfence is replaced by the relation isb, that is the restriction of
po to pairs of accesses with respectively a isb instruction in between;

• the relation lwsync is removed;

• the relation cc0 is redefined as dp∪ctrl∪(addr; po), losing the poloc term (the reason
for this is detailed at length in [AMT14]).

2.2.3 Other architectures

Several other architectures have complex and documented memory models: Alpha [alp98],
Itanium [ita02], Sparc [WG03]. Because these architectures are not as popular as x86 and
ARM, we do not consider them in the rest of this thesis. We also do not treat GPUs,
whose memory model has only started to be studied over the past few years.

I would like to mention one point about Alpha however: it is an example of how weak
a hardware memory model can be. In particular it is the only architecture that does
not respect address dependency by default between reads: the pseudo-code (using the C
notation for pointers) in Figure 2.8 can print 0:

Initially, x = 0, z = 42 and y = &z

x := 1;
heaviest_fence ()
y := &x;

r = y;
print *r;

Figure 2.8: Example of an address dependency

It is as if the load of *y was reordered before the load of y. This could be caused by using
independent caches for different cache lines, and in particular for y and x.

2.3 Language memory models
As we saw in Chapter 1, languages must also have a memory model that describes both
how the optimisations done by the compiler can change the semantics of concurrent pro-
grams and what fences it introduces to restrict the underlying processor from doing the
same.
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Initially, x = y = z = 0

z := 42;
z := 13;
sync;
x := 42;

r0 = z;
print r0; // 42
r1 = x;
print r1; // 42
if (r0 == r1)
z := r1;
sync;
y := 1;

print y; // 1
sync;
print z; // 13

Figure 2.9: WaR elimination in the Power model: counterexample with a dependency

2.3.1 Compiler optimisations in the Power model?

Since hardware memory models are reasonably well understood, it is tempting to lift one
of them to the language level. We want a weak one, to allow many compiler optimisations.
Since Power has one of the weakest hardware models that has been extensively studied,
it is the obvious pick.

In this section we show why it is not a good option: some common compiler optimiza-
tions are unsound in the Power memory model3.

In particular, one of the optimizations we study in Chapter 4 is calledWrite-after-Read
elimination (WaR) in the literature, and consists in eliminating a store to memory when
the value stored has just been read.

Figure 2.9 provides a counterexample to the claim that WaR elimination is sound in
the Power model: it is impossible to have all the print instructions give the expected
result before the highlighted store (in bold and red) is removed and it becomes possible
afterwards. Compilers could try to remove this store because it is only executed when the
value to be stored is equal to the value that was just read, so it seems unable to modify
the state of memory. The synchronisation on x makes the stores to z to happen before
the highlighted store. That store, in turn, happens before the load of z in the last thread.
As a result, this load can not see the store of 13, as it is overwritten by the highlighted
store with the value 42. If that store is removed, the printing of 13 suddenly becomes
possible.

It might seem that this example relies on the dependency between the load and the
store, and that we could find some local criterion under which WaR elimination is valid
on Power, such as an absence of dependency between the load and the store.

Figure 2.10 proves that there is no local condition sufficient to make WaR elimination
sound: even when the store to be eliminated is adjacent to the load that justifies it, it is
still unsound to remove it. Like in the previous example, the print operations can only give
the results in the comments if the highlighted access is removed, so removing it is unsound.
This counterexample was carefully checked both by hand and by an unreleased software
tool by Luc Maranget. Here is some intuition for how it works. The synchronisation on
y between the last two threads ensures that the to-be-eliminated access is visible to the
last load of z in the last thread. The complex synchronisation on x in the first 4 threads
ensures that this second store of 42 in z is after the store of 13 in the coherency order.

3This section presents original work, by opposition to the rest of this chapter that only provides
background.

18



Initially, x = y = z = 0

z := 42;
z := 13;
lwsync;
x := 2;

x := 1;
print x; // 2
lwsync;
print x; // 1

print z; // 42
lwsync;
print x; // 0
print x; // 1
lwsync;
r = z;
print r; // 42
z = r;
lwsync;
y := 1;

print z; // 13
print y; // 1
lwsync;
print z; // 13

z := 42

z := 13

x := 2

x := 1 print x

print x

print z

print x

print x

r = z

print r

(z = r)

y := 1

print z

print y

print z

rf

rf

rf

rf

rf
rf

rf

rf

co
co

co

lwsync

lwsync lwsync

lwsync

lwsync

lwsync

Figure 2.10: WaR elimination in the Power model: counterexample in the most general
case
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We use this complex pattern instead of a simpler message-passing pattern to allow the
last load of 42 in the second to last thread.

2.3.2 Data-Race Freedom (DRF)

A fairly simple and popular language-level memory model is Data-Race Freedom
(DRF) [AH90].

A data-race is described as two memory events, one of which at least is a write,
accessing the same memory location concurrently. DRF states that every program that is
free from data-races on all of its executions (and in particular any program that protects
all of its concurrently accessed locations by locks) behaves as it would in the SC model.
Any data-race is undefined behaviour, and any program that can exhibit one has no
defined semantics.

This model is attractive for three reasons:

• it is rather easy to explain to programmers;

• common compiler optimisations remain correct on any piece of code without
locks [Sev11, Sev08];

• fence instructions, that limit the optimisations performed by the processor, only
have to be introduced inside the lock and unlock methods.

However, the fact that this model gives no defined semantics to racy code is a major
weakness. It makes it unsuitable for use by both Java and C/C++, although for different
reasons.

It is unsuitable to Java, because racy code can break safety invariants (since by def-
inition it can do absolutely anything). This is unacceptable for Java, as no valid Java
code should be able to forge a pointer to the internals of the JVM. As a result, the Java
community had to develop a much more complex memory model [MPA05]. This model
evolved over the years as some flaws were discovered (see for example [SA08]). As we are
focused on the C11 model in the rest of this thesis, we won’t describe it here.

C and C++ cannot use DRF either, because of the second weakness: it is impossible to
write low-level racy code in the DRF model, as all concurrent accesses must be protected
by some synchronisation. To solve this problem, C and C++ use a variant of DRF,
where some accesses can be annotated by the programmer to allow races involving them.
Such atomic accesses have a behaviour that is complex and dependent on the annotation
provided by the programmer. We will now explain this model in more details.

2.3.3 The C11/C++11 model

The C11/C++11 memory model was first presented in the C++11 standard [Bec11]. It
offers four kind of operations:

• stores;

• loads;

• read-modify-write (RMW) operations like compare-and-swap (CAS) or fetch-and-
add;
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• fences.

Each store and load is either not annotated and called not-atomic (na), or annotated
with one of the following memory orders (also called memory attributes):

• Sequentially consistent (sc): all such accesses are fully ordered. If all concurrent
accesses in a program have this attribute, then the program follows the SC model;

• Release (rel, for writes) and Acquire (acq, for reads) enforce the SC behavior
specifically in the MP pattern. Anything that happens before a release store is
visible to anything that happens after an acquire load that reads from that store.
For example, in the following figure, the non-atomic load must read the value 1:

Wna(x, 1)

Wrel(y, 1)

Racq(y, 1)

Rna(x, ?)

• Consume (consume, for reads only) is a weaker form of acquire: it only prevents
the MP pattern anomaly if the second read has an address dependency on the first
one. It was introduced to the standard to avoid a fence in that specific case on ARM
and Power;

• Relaxed (rlx) accesses offer extremely few guarantees, mostly just cache coherency.
They are intended not to require hardware fences on any common architecture, and
only weakly restrict compiler optimisations.

Similarily, RMW operations can be sc,rel,acq,consume,rlx, or Release-Acquire
(rel-acq) which combine the properties of rel and acq.

Fences can also have one of several memory orders:

• rel fences make subsequent relaxed stores behave more like release stores (we will
soon see a more rigorous description, this is only the intuition behind them);

• acq fences make previous relaxed loads behave more like acquire loads;

• rel-acq fences naturally behave like both release and acquire fences;

• sc fences additionnaly prevent the anomalous behavior of the SB pattern.

We will now give the details of the formalisation of C11, that was first given
in [BOS+11] and was further extended in [BMO+12].

Like the other axiomatic models we have seen, it is organised in three steps. First it
builds sets of events (called opsems below), then it considers possible relations between
those events (these set of relations are called witnesses below), and finally it filters all
these candidate executions by some axioms.
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Opsemsets To abstract from the syntax complexity of the C language, we identify a
source program with a set of descriptions of what actions it can perform when executed
in an arbitrary context.

More precisely, in a source program each thread consists of a sequence of instructions.
We assume that, for each thread, a thread-local semantics associates to each instruction
instance zero, one, or more shared memory accesses, which we call actions. The actions
we consider, ranged over by act , are of the form:

Φ ::= skip | W(sc|rel|rlx|na)(`, v) | R(sc|acq|rlx|na|consume)(`, v)
| C(sc|rel-acq|acq|rel|rlx)(`, v, v

′) | F(acq|rel|rel-acq|sc) | A(`)

act ::= tid : Φ

where ` ranges over memory locations, v over values and tid ∈ {1..n} over thread iden-
tifiers. We consider atomic and non-atomic loads from (denoted R) and stores to (W)
memory, fences (F), read-modify-writes (C), and allocations (A) of memory locations. To
simplify the statement of some theorems, we also include a no-op (skip) action. Each
action specifies its thread identifier tid , the location ` it affects, the value read or written
v (when applicable), and the memory-order (written as a subscript, when applicable).

We assume a labelling function, lab, that associates action identifiers (ranged over by
a, b, r, w, . . .) to actions. In the drawings we usually omit thread and action identifiers.

We introduce some terminology regarding actions. A read action is a load or a read-
modify-write (RMW); a write is a store or a RMW; a memory access is a load, store or
RMW. Where applicable, we write mode(a) for the memory order of an action, tid(a)
for its thread identifier, and loc(a) for the location accessed. We say an action is non-
atomic if and only if its memory-order is na, and SC-atomic if and only if it is sc. An
acquire action has memory-order acq or stronger, while a release has rel or stronger.
The is stronger relation, written w: P(MO ×MO), is defined to be the least reflexive
and transitive relation containing sc w rel-acq w rel w rlx, and rel-acq w acq w
consume w rlx.

The thread local semantics captures control flow dependencies via the sequenced-before
(sb) relation, which relates action identifiers of the same thread that follow one another
in control flow. We have sb(a, b) if a and b belong to the same thread and a precedes
b in the thread’s control flow. Even among actions of the same thread, the sequenced-
before relation is not necessarily total because the order of evaluation of the arguments
of functions, or of the operands of most operators, is underspecified in C and C++.

The thread local semantics also captures thread creation via the additional-
synchronised-with (asw) relation, that orders all the action identifiers of a thread after
the corresponding thread fork (which can be represented by a skip action).

Summarising, the thread local semantics gives each program execution a triple O =
(lab, sb, asw), called an opsem. As an example, Figure 2.11 depicts one opsem for the
program on the left and one for the program on the right. Both opsems correspond to
the executions obtained from an initial state where y holds 3, and the environment does
not perform any write to the shared variables (each read returns the last value written).

The set of all the opsems of a program is an opsemset, denoted by S. We require
opsemsets to be receptive: S is receptive if, for every opsem O, for every read action r
in the opsem O, for all values v′ there is an opsem O′ in S which only differs from O
because the read r returns v′ rather than v, and for the actions that occur after r in
sb ∪ asw . Intuitively an opsemset is receptive if it defines a behaviour for each possible
value returned by each read.
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for (i=0; i<2; i++){
z = z + y + i;
x = y;

}

 

t = y; x = t;
for (i=0; i<2; i++){
z = z + t + i;

}
Rna(z, 0) Rna(y, 3)

Wna(z, 3)

Rna(y, 3)

Wna(x, 3)

Rna(y, 3) Rna(z, 3)

Wna(z, 7)

Rna(y, 3)

Wna(x, 3)

Rna(y, 3)

Wna(x, 3)

Rna(z, 0)

Wna(z, 3)

Rna(z, 3)

Wna(z, 7)

Figure 2.11: Example of the effect of a code transformation (Loop Invariant Code Motion)
on an opsem (in which initially y = 3 and z = 0)

We additionally require opsemsets to be prefix-closed, assuming that a program can
halt at any time. Formally, we say that an opsem O′ is a prefix of an opsem O if there is an
injection of the actions of O′ into the actions of O that behaves as the identity on actions,
preserves sb and asw , and, for each action x ∈ O′, whenever x ∈ O and (sb ∪ asw)(y, x),
it holds that y ∈ O′.

Opsems and opsemsets are subject to several other well-formedness conditions, e.g.
atomic accesses must access only atomic locations, which we omit here and can be found
in [BOS+11].

Candidate executions The mapping of programs to opsemsets only takes into account
the structure of each thread’s statements, not the semantics of memory operations. In
particular, the values of reads are chosen arbitrarily, without regard for writes that have
taken place.

The C11 memory model then filters inconsistent opsems by constructing additional
relations and checking the resulting candidate executions against the axioms of the model.
We present here a subset of the model, without consume for simplicity. We will see in
Section 3.0.1 that consume is effectively unusable with its current definition. For the
subset of C11 we consider, a witness W for an opsem O contains the following additional
relations:
• The reads-from map (rf ) maps every read action r to the write action w that wrote

the value read by r.

• The modification-order (mo) relates writes to the same location; for every location,
it is a total order among the writes to that location.

• The sequential-consistency order (sc) is a total order over all SC-atomic actions.
(The standard calls this relation S.)

From these relations, C11 defines a number of derived relations, the most important of
which are: the synchronizes-with relation and the happens-before order.
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isread`,v(a)
def
= ∃X, v′. lab(a) ∈ {RX(`, v),CX(`, v, v′)}

isread`(a)
def
= ∃v. isread`,v(a)

isread(a)
def
= ∃`. isread`(a)

iswrite`,v(a)
def
= ∃X, v′. lab(a) ∈ {WX(`, v),CX(`, v′, v)}

iswrite`(a)
def
= ∃v. iswrite`,v(a)

iswrite(a)
def
= ∃`. iswrite`(a)

isfence(a)
def
= lab(a) ∈ {Facq,Frel,Frel-acq,Fsc}

isaccess(a)
def
= isread(a) ∨ iswrite(a)

isNA(a)
def
= mode(a) = na

sameThread(a, b)
def
= tid(a) = tid(b)

isrmw(a)
def
= isread(a) ∧ iswrite(a)

isSC(a)
def
= mode(a) = sc

rsElem(a, b)
def
= sameThread(a, b) ∨ isrmw(b)

isAcq(a)
def
= mode(a) w acq

isRel(a)
def
= mode(a) w rel

rseq(a, b)
def
= a = b ∨ rsElem(a, b) ∧mo(a, b) ∧ (∀c. mo(a, c) ∧mo(c, b)⇒ rsElem(a, c))

sw(a, b)
def
= ∃c, d. ¬sameThread(a, b) ∧ isRel(a) ∧ isAcq(b) ∧ rseq(c, rf (d))

∧ (a = c ∨ isfence(a) ∧ sb+(a, c)) ∧ (d = b ∨ isfence(d) ∧ sb+(d, b))

hb
def
= (sb ∪ sw ∪ asw)+

Racy
def
= ∃a, b. isaccess(a) ∧ isaccess(b) ∧ loc(a) = loc(b) ∧ a 6= b

∧(iswrite(a) ∨ iswrite(b)) ∧ (isNA(a) ∨ isNA(b)) ∧ ¬(hb(a, b) ∨ hb(b, a))

Observation
def
= {(a, b) | mo(a, b) ∧ loc(a) = loc(b) = world}

Figure 2.12: Auxiliary definitions for a C11 execution (lab, sb, asw , rf ,mo, sc).

a : Wrel

rf (b) b : Racq
rf

rseq
sw a : Frel

c rf (b) b : Racq
rfrseq

sw

a : Wrel rf (d) d

b : Facq

rfrseq

sw

a : Frel

c rf (d)

d

b : Facq

rf

rseq

sw

Figure 2.13: Illustration of the “synchronizes-with” definition: the four cases inducing an
sw edge.
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• Synchronizes-with (sw) relates each release write with the acquire reads that read
from some write in its release sequence (rseq). This sequence includes the release
write and certain subsequent writes in modification order that belong to the same
thread or are RMW operations. The sw relation also relates fences under similar
conditions. Roughly speaking, a release fence turns succeeding writes in sb into
releases and an acquire fence turns preceding reads into acquires. (For details, see
the definition in Figure 2.12 and the illustration in Figure 2.13.)

• Happens-before (hb) is a partial order on actions formalising the intuition that one
action was completed before the other. In the C11 subset we consider, hb = (sb ∪
sw ∪ asw)+.

We refer to a pair of an opsem and a witness (O,W ) as a candidate execution. A
candidate execution is said to be consistent if it satisfies the axioms of the memory
model, which will be presented shortly. The model finally checks if none of the consistent
executions contains an undefined behaviour, arising from a race (two conflicting accesses
not related by hb)4 or a memory error (accessing an unallocated location), where two
accesses are conflicting if they are to the same address, at least one is a write, and at least
one is non-atomic. Programs that exhibit an undefined behaviour in one of their consistent
executions are undefined; programs that do not exhibit any undefined behaviour are called
well defined, and their semantics is given by the set of their consistent executions.

Consistent Executions. According to the C11 model, a candidate execution
(lab, sb, asw , rf ,mo, sc) is consistent if all of the properties shown in Figure 2.14 hold.

(ConsSB) Sequenced-before relates only same-thread actions.

(ConsMO) Writes on the same location are totally ordered by mo.

(ConsSC) The sc relation must be a total order over SC actions and include both hb
and mo restricted to SC actions. This in effect means that SC actions are globally
synchronised.

(ConsRFdom) The reads-from map, rf , is defined for exactly those read actions for which
the execution contains an earlier write to the same location.

(ConsRF) Each entry in the reads-from map, rf , should map a read to a write to the same
location and with the same value.

(ConsRFna) If a read reads from a write and either the read or the write are non-atomic,
then the write must have happened before the read. Batty et al. [BOS+11] addi-
tionally require the write to be visible: i.e. not to have been overwritten by another
write that happened before the read. This extra condition is unnecessary, as it
follows from (CohWR).

(SCReads) SC reads are restricted to read only from the immediately preceding SC write
to the same location in sc order or from a non-SC write that has not happened
before that immediately preceding SC write.

(IrrHB) The happens-before order, hb, must be irreflexive: an action cannot happen before
itself.

4 The standard distinguishes between races arising from accesses of different threads, which it calls
data races, and from those of the same thread, which it calls unsequenced races. The standard says
unsequenced races can occur even between atomic accesses.
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∀a, b. sb(a, b) =⇒ tid(a) = tid(b) (ConsSB)
order(iswrite,mo) ∧ ∀`. total(iswrite`,mo) (ConsMO)

order(isSC, sc) ∧ total(isSC, sc) ∧ (hb ∪mo) ∩ (isSC× isSC) ⊆ sc (ConsSC)
∀b. (∃c. rf (b) = c) ⇐⇒ ∃`, a. iswrite`(a) ∧ isread`(b) ∧ hb(a, b) (ConsRFdom)

∀a, b. rf (b) = a =⇒ ∃`, v. iswrite`,v(a) ∧ isread`,v(b) (ConsRF)
∀a, b. rf (b) = a ∧ (isNA(a) ∨ isNA(b)) =⇒ hb(a, b) (ConsRFna)
∀a, b. rf (b) = a ∧ isSC(b) =⇒
imm(scr, a, b) ∨ (¬isSC(a) ∧ @x. hb(a, x) ∧ imm(scr, x, b))

(SCReads)

@a. hb(a, a) (IrrHB)
@a, b. rf (b) = a ∧ hb(b, a) (ConsRFhb)
@a, b. hb(a, b) ∧mo(b, a) (CohWW)

@a, b. hb(a, b) ∧mo(rf (b), rf (a)) (CohRR)
@a, b. hb(a, b) ∧mo(rf (b), a) (CohWR)
@a, b. hb(a, b) ∧mo(b, rf (a)) (CohRW)

∀a, b. isrmw(a) ∧ rf (a) = b =⇒ imm(mo, b, a) (AtRMW)
∀a, b, `. lab(a) = lab(b) = A(`) =⇒ a = b (ConsAlloc)

∀a, b, x. (isfence(x) ∧ isread(b) ∧ iswriteloc(b)(a)∧
imm(sc, a, x) ∧ sb+(x, b)) =⇒ (a = rf (b) ∨mo(a, rf (b)))

(SCFences1)

∀a, b, x. (isfence(x) ∧ isread(b) ∧ iswriteloc(b)(a)∧
sb+(a, x) ∧ sc(x, b)) =⇒ (a = rf (b) ∨mo(a, rf (b)))

(SCFences2)

∀a, b, x, y. (isfence(x) ∧ isfence(y) ∧ isread(b) ∧ iswriteloc(b)(a)∧
sc(x, y) ∧ sb+(a, x) ∧ sb+(y, b)) =⇒ (a = rf (b) ∨mo(a, rf (b)))

(SCFences3)

∀a, b, x, y. (isfence(x) ∧ isfence(y) ∧ iswrite(b) ∧ iswriteloc(b)(a)∧
sc(x, y) ∧ sb+(a, x) ∧ sb+(y, b)) =⇒ mo(a, b)

(SCFences4)

∀a, b, y. (isfence(y) ∧ iswrite(b) ∧ iswriteloc(b)(a)∧
sc(a, y) ∧ ∧sb+(y, b)) =⇒ mo(a, b)

(SCFences5)

∀a, b, x. (isfence(x) ∧ iswrite(b) ∧ iswriteloc(b)(a)∧
sc(x, b) ∧ sb+(a, x)∧ =⇒ mo(a, b)

(SCFences6)

where order(P,R)
def
= (@a. R(a, a)) ∧ (R+ ⊆ R) ∧ (R ⊆ P × P )

imm(R, a, b)
def
= R(a, b) ∧ @c. R(a, c) ∧R(c, b)

total(P,R)
def
= (∀a, b. P (a) ∧ P (b) =⇒ a = b ∨R(a, b) ∨R(b, a))

scr(a, b)
def
= sc(a, b) ∧ iswriteloc(b)(a)

Figure 2.14: Axioms satisfied by consistent C11 executions,
Consistent(lab, sb, asw , rf ,mo, sc).
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Figure 2.15: Patterns forbidden by the SCFences axioms.

(ConsRFhb) A read cannot read from a future write.

(CohWW,CohRR,CohWR,CohRW) Next, we have four coherence properties relating mo,
hb, and rf on accesses to the same location. These properties require that mo never
contradicts hb or the observed read order, and that rf never reads values that have
been overwritten by more recent actions that happened before the read.

(AtRMW) Read-modify-write accesses execute atomically: they read from the immedi-
ately preceding write in mo.

(ConsAlloc) The same location cannot be allocated twice by different allocation actions.
(This axiom is sound because for simplicity we do not model deallocation. The C11
model by Batty et al. [BOS+11] does not even model allocation.)

(SCFences1, SCFences2, SCFences3, SCFences4, SCFences5, SCFences6) These six proper-
ties explain in detail how sc fences restrict mo for writes nearby. More precisely
they forbid the patterns shown in Figure 2.15.

27



Chapter 3

Issues with the C11 model and possible
improvements

In this chapter we will list unintuitive consequences of the axioms of the C11 model, and
propose improvements to the model where possible.

We will first explain some known difficulties related to consume accesses and sc fences.
They led us to ignore these parts of the language in the rest of our treatment of C11.

3.0.1 Consume accesses

The formal C11 model we saw in Section 2.3.3 did not include consume. Remember,
a consume read is supposed to order the store it reads from (provided it is at least
release) with any read that has a data or address dependency on it. The problem is how
to define such dependencies. In the standard, it is done syntactically. As a result there is
a dependency between the two loads in the following code:

r = x.load(consume );
y = *(z+r-r);

but there is naturally no dependency between them in the following:

r = x.load(consume );
y = *z;

Any optimising compiler will transform the first fragment into the second one. Since there
is no longer a dependency, the compiler must now introduce a fence before the second read
on ARM and Power to prevent the processor from reordering the two reads. But knowing
this would require the compiler to track every dependency in the program throughout the
compilation pipeline. In particular, as dependencies are not necessarily local, it would
break modular compilation. As a consequence, compilers just insert a fence every time on
ARM/Power, treating consume as the (less efficient in theory) acquire. Several proposals
have been made to improve this situation [McK16] and are under discussion by the C++
standards committee.

As the presence of consume significantly complicates the model (for example it makes
hb not transitive), and it is not usefully implementable, we will ignore it in the rest of
this thesis.
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3.0.2 SC fences

The semantics of sc fences is also problematic, as despite their name they cannot restore
full sequential consistency. Consider for example the IRIW example (Figure 2.3). If all
the accesses are sc, then only the sequentially consistent outcomes can happen. But if the
accesses are all rlx, no amount of sc fences can prevent the non-sequentially consistent
outcome. This can be seen by a look at the axioms specific to sc fences:

• SCFences1, SCFences5, SCFences6 do not apply as they require a sc write;

• SCFences2 does not apply as it requires a sc read;

• SCFences3 only means that any sc fence sb after the writes must also be sc after
any fence between the reads;

• SCFences4 does not apply as it requires two writes to the same location, one with a
sc fence after it and the other with one before it.

This is unlikely to have been intended by the standards authors, as sc fences are supposed
to be the strongest form of synchronisation, and their implementation on all platforms
actually prevent the IRIW anomalous behaviour. For this reason, and because of their
complexity, we have also decided to ignore sc fences in our treatment of C11.

3.1 Sanity properties
Now that we have identified a useful subset of C11, it is natural to check whether it has
the properties we expect.

3.1.1 Weakness of the SCReads axiom

One desirable property of a memory model is that adding synchronisation to a program
introduces no new behaviour (other than deadlock). We have seen that rlx is supposed
to be the weakest memory attribute, and sc the strongest. So it should always be sound
to replace a rlx access by a sc one. Unfortunately, it is not correct in C11 as it stands.
Consider the example in Figure 3.1.

Coherence of the relaxed loads in the final thread forces the mo-orderings to be as
shown in the execution on the bottom of the figure. Now, the question is whether the
SC-load can read from the first store to x and return r = 1. In the program as shown, it
cannot, because that store happens before the x.store(2, sc) store, which is the immediate
sc-preceding store to x before the load. If, however, we also make the x.store(3,rlx)
be sequentially consistent, then it becomes the immediately sc-preceding store to x, and
hence reading r = 1 is no longer blocked. The SCReads axiom places an odd restriction
on where a sequentially consistent read can read from. The problem arises from the case
where the source of the read is a non SC write. In this case, the axiom forbids that
write to happen before the immediately sc-preceding write to the same location. It may,
however, happen before an earlier write in the sc order.

We propose to strengthen the SCReads axiom by requiring there not to be a happens
before edge between rf (b) and any same-location write sc-prior to the read, as follows:

∀a, b. rf (b) = a ∧ isSC(b) =⇒ imm(scr, a, b) ∨ (¬isSC(a)∧@x. hb(a, x)∧ scr(x, b))
(SCReads′)
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x.store(1,rlx);
x.store(2, sc);
y.store(1, sc);

x.store(3,rlx);
y.store(2, sc);

y.store(3, sc);
r = x.load(sc);

s1 = x.load(rlx);
s2 = x.load(rlx);
s3 = x.load(rlx);
t1 = y.load(rlx);
t2 = y.load(rlx);
t3 = y.load(rlx);

Wrlx(x, 1)

Wsc(x, 2)

Wrlx(x, 3)

Wsc(y, 1)

Wsc(y, 2)

Wsc(y, 3)

Rsc(x, 1)

mo mo

mo

mo
rf sc

sc
sc

sc

Behaviour in question: r = s1 = t1 = 1 ∧ s2 = t2 = 2 ∧ s3 = t3 = 3

Figure 3.1: A weird consequence of the SCReads axiom: strengthening the x.store(3,rlx)
into x.store(3, sc) introduces new behaviour.

instead of the original:

∀a, b. rf (b) = a ∧ isSC(b) =⇒ imm(scr, a, b) ∨ (¬isSC(a) ∧ @x. hb(a, x) ∧ imm(scr, x, b))
(SCReads)

Going back to the program in Figure 3.1, this stronger axiom rules out reading r = 1,
a guarantee that is provided by the suggested compilations of C11 atomic accesses to
x86/Power/ARM.

Batty et al. [BDW16] later noticed that this modified axiom enables more efficient
simulation of C11 programs, and proposed to further simplify the treatment of SC atomics,
treating all SC atomics (including the fences) in one single axiom.

3.1.2 Relaxed atomics allow causality cycles

The C11 semantics for relaxed atomics surprisingly allow causality cycles. To understand
why, consider the following programs (with x and y initialized at 0):

r1 = x.load(rlx);
y.store(1,rlx);

r2 = y.load(rlx);
x.store(1,rlx);

(LB)

if (x.load(rlx))
y.store(1,rlx);

if (y.load(rlx))
x.store(1,rlx);

(CYC)

By the rules that we introduced in Section 2.3.3, it is clear that the LB program can
end with x = y = 1. This is to be expected, since relaxed atomics are intended to be
compilable to all mainstream architectures without introducing fences, and this behaviour
is allowed on Power and ARM.

Sadly, the opsem with that result is also an opsem of CYC, and this program is well
defined (since every access is atomic). Since the C11 model checks the consistency of
executions opsem by opsem, it must by necessity also allow x = y = 1 for that second
program. This result is highly counter-intuitive as it does not happen on any platform,
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[a = x = y = 0]

Wna(a, 1)

Rrlx(x, 1)

Rna(a, 1)

Wrlx(y, 1)

Rrlx(y, 1)

Wrlx(x, 1)reads-from
reads-from

reads-from

Figure 3.2: Execution resulting in a = x = y = 1.

and would require a speculation of the write in one of the threads, observable by the other
thread. We call these kind of situations where a write needs to be observed by another
thread in order to have a chance to happen a causality cycle.

Several authors have observed that causality cycles make code verification infeasi-
ble [BDG13, ND13, VN13]. We show that the situation is even worse than that, because
we can exploit them to show that standard program transformations are unsound. Con-
sider:

a = 1;
if (x.load(rlx))

if (a)
y.store(1,rlx);

if (y.load(rlx))
x.store(1,rlx);

(SEQ)

First, notice that there is no consistent execution in which the load of a occurs. We show
this by contradiction. Suppose that there is an execution in which a load of a occurs. In
such an execution the load of a can only return 0 (the initial value of a) because the store
a = 1 does not happen before it (because it is in a different thread that has not been
synchronised with) and non atomic loads must return the latest write that happens before
them(ConsRFna). Therefore, in this execution the store to y does not happen, which in
turn means that the load of y cannot return 1 and the store to x also does not happen.
Then, x cannot read 1, and thus the load of a does not occur. As a consequence this
program is not racy : since the load of a does not occur in any execution, there are no
executions with conflicting accesses on the same non atomic variable. We conclude that
the only possible final state is a = 1 ∧ x = y = 0.

Now, imagine we apply sequentialisation, collapsing the first two threads and moving
the assignment to the start:

a = 1;
if (x.load(rlx))

if (a)
y.store(1,rlx);

if (y.load(rlx))
x.store(1,rlx);

Running the resulting code can lead to an execution, formally depicted in Figure 3.2, in
which the load of a actually returns the value 1 since the store to a now happens before
(via program-order) the load. This results in the final state a = x = y = 1, which is not
possible for the initial program.

Expression Linearisation is Unsound. A simple variation of sequentialisation is ex-
pression evaluation order linearisation, a transformation that adds an sb arrow between

31



Racq(x, 1)

Rna(y, 1)

Rna(t, 2)

Wrlx(w, 1)

Rrlx(w, 1)

Wrlx(z, 1)

Wrel(x, 1)

Wna(y, 1)

Rrlx(z, 1)

rf

sw

rf

rf rf

Figure 3.3: Execution generating new behaviour if the expression evaluation order is
linearised.

two actions of the same thread and that every compiler is bound to perform. This trans-
formation is unsound as demonstrated below:

t = x.load(acq)+y;
if (t == 2)

w.store(1,rlx);

if (w.load(rlx))
z.store(1,rlx);

if (z.load(rlx))
y = 1;
x.store(1,rel);

The only possible final state for this program has all variables, including t, set to zero.
Indeed, the store y = 1; does not happen before the load of y, which can then return only
0. However, if the t = x.load(acq) + y; is linearised into t = x.load(acq); t = t + y;, then
a synchronisation on x induces an order on the accesses to y, and the execution shown in
Figure 3.3 is allowed.

Such a deeply counter-intuitive result effectively makes it impossible to use the C11
model as the basis for a compiler intermediate representation, such as LLVM IR. It also
makes it extremely hard to make tools that can reason about arbitrary C11 programs.

Strengthening is Unsound. There are other transformations that would be intuitive
but fail on similar counterexamples. For example, even after fixing the problem with sc
semantics, strengthening a memory order is still unsound. The following example shows
in particular that replacing a relaxed atomic store with a release atomic store is unsound
in C11. Consider

a = 1;
z.store(1,rlx);

if (x.load(rlx))
if (z.load(acq))

if (a)
y.store(1,rlx);

if (y.load(rlx))
x.store(1,rlx);

As in the SEQ program, the load of a cannot return 1 because the store to a does not
happen before it. Therefore, the only final state is a = z = 1 ∧ x = y = 0. If, however,
we make the store of z a release store, then it synchronises with the acquire load, and it
is easy to build a consistent execution with final state a = z = x = y = 1. A symmetric
counterexample can be constructed for strengthening a relaxed load to an acquire load.

Roach Motel Reorderings are Unsound. Roach motel reorderings are a class of
optimizations that let compilers move accesses to memory into synchronised blocks, but
not to move them out: the intuition is that it is always safe to move more computations
(including memory accesses) inside critical sections. In the context of C11, roach motel
reorderings would allow moving non atomic accesses after an acquire read (which behaves
as a lock operation) or before a release write (which behaves as an unlock operation).
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However the following example program shows that in C11 it is unsound to move a
non atomic store before a release store.

z.store(1,rel);
a = 1;

if (x.load(rlx))
if (z.load(acq))

if (a)
y.store(1,rlx);

if (y.load(rlx))
x.store(1,rlx);

As before, the only possible final state of this program is a = z = 1 and x = y = 0.
If, however, we reorder the two stores in the first thread, we get a consistent execution
leading to the final state a = z = x = y = 1. Again, we can construct a similar example
showing that reordering over an acquire load is also not allowed by C11.

3.1.2.1 Proposed fixes

A first, rather naive solution is to permit causality cycles, but drop the offending ConsRFna
axiom. As we will show in Sections 4.2.2 and 4.2.4, this solution allows all the optimiza-
tions that were intended to be sound on C11. It is, however, of dubious usefulness as it
gives extremely weak guarantees to programmers.

The DRF theorem—stating that programs whose sequential consistent executions have
no data races, have no additional relaxed behaviours besides the SC ones—does not hold.
As a counterexample, take the CYC program from before, replacing the relaxed accesses
by non atomic ones.

Arf: Forbidding (hb ∪ rf ) Cycles A second, much more reasonable solution is to try
to rule out causality cycles. Ruling out causality cycles, while allowing non causal loops
in hb ∪ rf is, however, difficult and cannot be done by stating additional axioms over
single executions. This is essentially because the offending execution of the CYC program
is also an execution of the LB program.

As an approximation, we can rule out all (hb ∪ rf ) cycles, by stating the following
axiom:

acyclic(hb ∪ {(a, b) | rf (b) = a}) (Arf)

This solution has been proposed before by Boehm and Demsky [BD14] and also by
Vafeiadis and Narayan [VN13]. Here, however, we take a subtly different approach from
the aforementioned proposals in that besides adding the Arf axiom, we also drop the
problematic ConsRFna axiom.

In Sections 4.2.2 and 4.2.4 we show that this model allows the same optimizations
as the naive one (i.e., all the intended ones), except the reordering of atomic reads over
atomic writes.

It is however known to make relaxed accesses more costly on ARM/Power, as there
must be either a bogus branch or a lightweight fence between every shared load and shared
store [BD14].

Arfna: Forbidding Only Non-Atomic Cycles Another approach is to instead make
more behaviours consistent, so that the non atomic accesses in the SEQ example from
the introduction can actually occur and race. The simplest way to do this is to replace
ConsRFna by

acyclic(hb ∪ {(rf (b), b) | isNA(b) ∨ isNA(rf (b))}) (Arfna)
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A non atomic load can read from a concurrent write, as long as it does not cause a
causality cycle.

This new model has several nice properties. First, it is weaker than C11 in that it
allows all behaviours permitted by C11. This entails that any compilation strategy proved
correct from C11 to hardware memory models, such as to x86-TSO and Power, remains
correct in the modified model (contrary to the previous fix).

Theorem 1. If ConsistentC11(X), then ConsistentArfna(X).

Proof. Straightforward, since by the ConsRFna condition,

{(rf (b), b) | isNA(b) ∨ isNA(rf (b))} ⊆ hb

and hence Arfna follows from IrrHB.

Second, this model is not much weaker than C11. More precisely, it only allows more
racy behaviours.

Theorem 2. If ConsistentArfna(X) and not Racy(X), then ConsistentC11(X).

Note that the definition of racy executions, Racy(X), does not depend on the axioms
of the model, and is thus the same for all memory models considered here.

Finally, it is possible to reason about this model as most reasoning techniques on C11
remain true. In particular, in the absence of relaxed accesses, this model is equivalent to
the Arf model. We are thus able to use the program logics that have been developed for
C11 (namely, RSL [VN13] and GPS [TVD14]) to also reason about programs in the Arfna
model.

However, we found that reordering non atomic loads past non atomic stores is forbid-
den in this model, as shown by the following example:

if (x.load(rlx)) {
t = a;
b = 1;
if (t) y.store(1,rlx);

}

if (y.load(rlx))
if (b) {

a = 1;
x.store(1,rlx);

}

In this program, the causality cycle does not occur, because for it to happen, an (hb∪rf )-
cycle must also occur between the a and b accesses (and that is ruled out by our axiom).
However, if we swap the non atomic load of a and store of b in the first thread, then the
causality cycle becomes possible, and the program is racy. Introducing a race is clearly
unsound, so compilers are not allowed to do such reorderings (note that these accesses are
non atomic and adjacent). It is not clear whether such a constraint would be acceptable
in C/C++ compilers.

3.2 Further simplifications and strengthenings of the
model

3.2.1 Simplifying the coherency axioms

Since mo is a total order on writes to the same location, and hb is irreflexive, the CohWW
axiom is actually equivalent to the following one:

∀a, b, `. hb(a, b) ∧ iswrite`(a) ∧ iswrite`(b) =⇒ mo(a, b) (ConsMOhb)
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The equivalence can be derived by a case analysis on how mo orders a and b. (For what
it is worth, the C/C++ standards as well as the formal model of Batty et al. [BOS+11]
include both axioms even though, as we show, one of them is redundant.)

Next, we show that the coherence axioms can be restated in terms of a single acyclicity
axiom. To state this axiom, we need some auxiliary definitions. We say that a read, a,
from-reads a different write, b, denoted fr(a, b), if and only if a 6= b andmo(rf (a), b). (Note
that we need the a 6= b condition because RMW actions are simultaneously both reads
and writes.) We define the communication order, com, as the union of the modification
order, the reads-from map, and the from-reads relation.

fr(a, b)
def
= mo(rf (a), b) ∧ a 6= b

com(a, b)
def
= mo(a, b) ∨ rf (b) = a ∨ fr(a, b)

In essence, for every location `, com+ relates the writes to and initialised reads from that
location, `. Except for uninitialised reads and loads reading from the same write, com+

is a total order on all accesses of a given location, `.
We observe that all the violations of the coherence axioms are cyclic in {(a, b) ∈

hb | loc(a) = loc(b)} ∪ com (see Figure 3.4). This is not accidental: from Shasha
and Snir [SS88a] we know that any execution acyclic in hb ∪ com is sequentially consis-
tent, and coherence essentially guarantees sequential consistency on a per-location basis.
We can also observe that the same rule is used in the “Herding Cats” model (see Sec-
tion 2.2.2). Doug Lea mentionned that a similar characterisation can be found in the
appendix of [LV15].

IrrHB ConsRFhb AtRMW

x

hb

a

b

rf hb

a : RMW

rf
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b: RMW
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rf

Figure 3.4: Executions violating the coherence axioms: all contain a cycle in {(a, b) ∈ hb |
loc(a) = loc(b)} ∪ com.

Based on this observation, we consider the following axiom stating that the union of
hb restricted to relate same-location actions and com is acyclic.

acyclic({(a, b) ∈ hb | loc(a) = loc(b)} ∪ com) (Coh)

This axiom is equivalent to the conjunction of seven C11 axioms as shown in the following
theorem:

Theorem 3. Assuming ConsMO and ConsRF hold, then

Coh ⇐⇒
(

IrrHB ∧ ConsRFhb ∧ CohWW ∧
CohRR ∧ CohWR ∧ CohRW ∧ AtRMW

)
.
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Proof (sketch). In the (⇒) direction, it is easy to see that all the coherence axiom vio-
lations exhibit cycles (see Fig. 3.4). In the other direction, careful analysis reveals that
these are the only possible cycles—any larger ones can be shortened as mo is a total
order.

3.2.2 The definition of release sequences

The definition of release sequences in the C11 model is too weak, as shown by the following
example.

x.store(2,rlx);
y = 1;
x.store(1,rel);
x.store(3,rlx);

if (x.load(acq) == 3)
print(y);

In this program, assuming the test condition holds, the acquire load of x need not synchro-
nise with the release store even though it reads from a store that is sequenced after the
release, and hence the program is racy. The reason is that the seemingly irrelevant store
of x.store(2,rlx) can interrupt the release sequence as shown in the following execution
snippet.

Wrel(x, 1)

Wrlx(x, 3) Racq(x, 3)Wrlx(x, 2)

mo sb
mo

mo rf

In the absence, however, of the first thread, the acquire and the release do synchronise
and the program is well defined.

As a fix for the release sequences definition, we propose to replace the definition of
release sequences by the least fixed point of the following recursive definition (with respect
to ⊆) :

rseqRSnew(a, b)
def
= a = b ∨ (sameThread(a, b) ∧mo(a, b)) ∨ (isrmw(b) ∧ rseqRSnew(a, rf (b)))

Our release sequences are not defined in terms of mo sequences, but rather in terms of rf
sequences. Either b should belong to the same thread as a, or there should be a chain of
RMW actions reading from one another connecting b to a write in the same thread as a.

In the absence of uninitialised RMW accesses, this change strengthens the semantics.
Every consistent execution in the revised model is also consistent in the original model.
Despite being a strengthening, it does not affect the compilation results to x86, Power,
and ARM. The reason is that release sequences do not play any role on x86, while on
Power and ARM the compilation of release writes and fences issues a memory barrier that
affects all later writes of the same thread, not just an uninterrupted mo-sequence of such
writes.

3.2.3 Intra-thread synchronisation is needlessly banned

A final change is to remove the slightly odd restriction that actions from the same thread
cannot synchronise.1 This change allows us to give meaning to more programs. In the
original model, the following program has undefined behaviour:

#define f(x, y) (x.CAS(1, 0,acq)?(y++, x.store(1,rel)) : 0)
f(x, y) + f(x, y)

1This restriction breaks monotonicity in the presence of consume reads.
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That is, although f uses x as a lock to protect the increments of y, and therefore the y
accesses could never be adjacent in an interleaving semantics, the model does not treat
the x-accesses as synchronising because they belong to the same thread. Thus, the two
increments of y are deemed to race with one another.

As we believe that this behaviour is highly suspicious, we have also considered an
adaptation of the C11 model, where we set

sameThreadSTnew(a, b)
def
= sb+(a, b)

rather than tid(a) = tid(b). We have proved that with the new definition, we can drop
the ¬sameThread(a, b) conjunct from the sw definition without affecting hb.

Since, by the ConsSB axiom, every sb edge has the same thread identifiers, the change
also strengthens the model by assigning defined behaviour to more programs.
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Chapter 4

Correct optimizations in the C11 model

A great number of compiler optimizations have been proven correct over the years in the
literature, at different levels of abstraction (from source code to assembly). However, most
of these proofs were done assuming a sequential model of execution, or at least sequential
consistency.

Ševčík showed that a large class of elimination and reordering transformations are
correct (that is, do not introduce any new behaviour when the optimized code is put in
an arbitrary data-race free context) in an idealised DRF model [Sev08, Sev11].

In this chapter we adapt and extend his result to the C11/C++11 model (Sec-
tion 2.3.3), finding under which conditions compiler optimizations that are sound in the
sequential setting remain so for C11 compilers.

Summary of the Models to be Considered As the four problems explained in
Chapter 3 are independent and we have proposed fixes to each problem, we can look at
the product of the fixes:

§3.1.2︷ ︸︸ ︷
ConsRFna
Naive
Arfna
Arf

×
§3.1.1︷ ︸︸ ︷(

SCorig
SCnew

)
×

§3.2.2︷ ︸︸ ︷(
RSorig
RSnew

)
×

§3.2.3︷ ︸︸ ︷(
STorig
STnew

)

We use tuple notation to refer to the individual models. For example, we write
(ConsRFna, SCorig,RSorig, STorig) for the model corresponding to the 2011 C and C++
standards.

In a first time, we will focus on the optimisations that we have observed GCC and
Clang do (see Chapter 5 for details), and prove their correctness in the model currently
defined by the standards: (ConsRFna, SCorig,RSorig, STorig). These optimisations do not
eliminate atomic accesses, but can eliminate and move non atomic accesses in a wide
variety of cases.

In a second time, we will look at the impact of the changes to the model, and try to
determine when it is sound to eliminate atomic accesses.

Optimisations over opsemsets Because compilers like GCC or Clang have many
distinct optimisation passes, we do not attempt to prove the correctness of specific source-
to-source transformations. Instead, following Ševčík, we classify program transformations

38



for (i=0; i<2; i++){
z = z + y + i;
x = y;

}

 

t = y; x = t;
for (i=0; i<2; i++){
z = z + t + i;

}
Rna(z, 0) Rna(y, 3)

Wna(z, 3)

Rna(y, 3)

Wna(x, 3)

Rna(y, 3) Rna(z, 3)

Wna(z, 7)

Rna(y, 3)

Wna(x, 3)

Rna(y, 3)

Wna(x, 3)

Rna(z, 0)

Wna(z, 3)

Rna(z, 3)

Wna(z, 7)

Figure 4.1: Example of the effect of a code transformation (Loop Invariant Code Motion)
on an opsem (in which initially y = 3 and z = 0)

as eliminations, reorderings, and introductions over opsemsets (see Section 2.3.3 for the
formal definition of opsemsets), and give a criterion under which they are correct in C11.

This allows us to abstract from all of the details of individual optimisations. Consider
for example loop invariant code motion on the example of Figure 4.1. While the specific
analysis to determine that code is a loop invariant can be very complex, we only care
about the effect on opsems. In this specific example, some reads are eliminated because
the value was already loaded (Read-after-Read elimination), and some non atomic accesses
were reordered.

4.1 Optimising accesses around atomics

4.1.1 Eliminations of actions

We define semantic elimination and discuss informally its soundness criterion; we then
state the soundness theorems and briefly describe the proof structure.

Definition 1. An action is a release if it is an unlock action, an atomic write with
memory-order REL or SC, a fence or read-modify-write with memory-order REL, R/A or
SC.

Semantically, release actions can be seen as potential sources of sw edges. The intuition
is that they “release” permissions to access shared memory to other threads.

Definition 2. An action is an acquire if it is a lock action, or an atomic read with
memory-order ACQ or SC, or a fence or read-modify-write with memory order ACQ, R/A
or SC.

Acquire actions can be seen as potential targets of sw edges. The intuition is that they
“acquire" permissions to access shared memory from other threads.
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To simplify the presentation we omit dynamic thread creation. This is easily taken
into account by stating that spawning a thread has release semantics, while the first
accesses in SB-order of the spawned function have acquire semantics. Reciprocally, the
last actions of a thread have release semantics and a thread-join has acquire semantics.

A key concept is that of a same-thread release-acquire pair :

Definition 3. A same-thread release-acquire pair (shortened st-release-acquire pair) is a
pair of actions (r, a) such that r is a release, a is an acquire, and r <sb a.

Note that these may be to different locations and never synchronise together. To
understand the role they play in optimization soundness, consider the code on the left,
running in the concurrent context on the right:

x=0; atomic a1,a2=0
x = 1;
a1.store(1,rel);
while(0==a2.load(acq)) {};
x = 2;

while(0==a1.load(acq)) {};
printf("%i",x);
a2.store(1,rel);

All executions have similar opsems and witnesses, depicted below (we omitted rf arrows
from initialisation writes). No consistent execution has a race and the only observable
behaviour is printing 1.

WNA x 1 

WREL a1 1 

RACQ a 0 

RACQ a 1 

WREL a2 1 

sb

sb

sb

sbrf,sw,hb

WNA x 0 WNA a1 0 

RACQ a2 0 

RACQ a2 1 

WNA x 2 

sb

sb

sb

WNA a2 0 

rf,sw,hb

WRLX world 1 

RNA x 1 
sb

rf

Eliminating the first store to x (which might appear redundant as x is later overwritten
by the same thread) would preserve DRF but would introduce a new behaviour where
0 is printed. However, if either the release or the acquire were not in between the two
stores, then this context would be racy (respectively between the load performed by the
print and the first store, or between the load and the second store) and it would be
correct to optimize away the first write. More generally, the proof of the Theorem 4
below clearly shows that the presence of an intervening same-thread release-acquire is a
necessary condition to allow a discriminating context to interact with a thread without
introducing data races.

Definition 4. A read action a, t:RNA l v is eliminable in an opsem O of the opsemset P
if one of the following applies:
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Read after Read (RaR): there exists another action r, t:RNA l v such that r <sb a, and there
does not exist a memory access to location l or a st-release-acquire pair SB-between
r and a;

Read after Write (RaW): there exists an action w, t:WNA l v such that w <sb a, and there
does not exist a memory access to location l or a st-release-acquire pair SB-between
w and a;

Irrelevant Read (IR): for all values v′ there exists an opsem O′ ∈ P and a bijection f
between actions in O and actions in O′, such that f(a) = a′, t:RNA l v

′, for all actions
u ∈ O different from a, f(u) = u, and f preserves SB and asw .

A write action a, t:WNA l v is eliminable in an opsem O of the opsemset P if one of the
following applies:

Write after Read (WaR): there exists an action r, t:Rl v such that r <sb a, and there does
not exist a memory access to location l or a st-release-acquire pair SB-between r
and a;

Overwritten Write (OW): there exists another action w, t:WNA l v
′ such that a <sb w,

and there does not exist a memory access to location l or a st-release-acquire pair
SB-between a and w;

Write after Write (WaW): there exists another action w, t:WNA l v such that w <sb a,
and there does not exist a memory access to location l or a st-release-acquire pair
SB-between w and a.

Note that the OW rule is the only rule where the value can differ between the action
eliminated and the action that justifies the elimination. The IR rule can be rephrased as
“a read in an execution is irrelevant if the program admits other executions (one for each
value) that only differ for the value returned by the irrelevant read”.

Definition 5. An opsem O′ is an elimination of an opsem O if there exists a injection
f : O′ → O that preserves actions, sb, and asw , and such that the set O\f(O′) contains
exactly one eliminable action. The function f is called an unelimination.

To simplify the proof of Theorem 4 the definition above allows only one elimination at
a time (this avoids a critical pair between the rules OW and WaW whenever we have two
writes of the same value to the same location), but, as the theorem shows, this definition
can be iterated to eliminate several actions from one opsem while retaining soundness.
The definition of eliminations lifts pointwise to opsemsets:

Definition 6. An opsemset P ′ is an elimination of an opsemset P if for all opsem O′ ∈ P ′

there exists an opsem O ∈ P such that O′ is an elimination of O.

You may remember from Section 2.3.3 that relaxed writes can create synchronisation
when they follow a release fence or are part of a release sequence (see Figure 4.2 for an
example, and Section 3.2.2 for a detailed discussion of this feature of the model).

These subtleties must be taken into account in the elimination correctness proof but
do not invalidate the intervening same-thread release-acquire pair criterion. This follows
from a property of the C11/C++11 design that makes every sw edge relate a release
action to an acquire action. For instance, in the program below it is safe to remove the
first write to x as OW, because all discriminating contexts will be necessarily racy:
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a1.store(1,rel);
x = 1;
a1.store(2,rlx);
while(0==a2.load(acq)) {};
x = 2;

WNA x 1 

WRLX a1 2 

RACQ a 2 

WREL a2 1 

sb

sb

sb

sw,hb

RACQ a2 1 

WNA x 2 
sb rf,sw,hb

WRLX world 1 

RNA x 1 
sbrf

WREL a1 1 

sb

sb

We establish that our semantic transformations have the following properties: any
execution of the transformed opsemset has the same observable behaviour as some exe-
cution of the original opsemset, and the transformation preserves data-race freedom. As
C11 and C++11 do not provide any guarantee for racy programs we cannot prove any
result about out-of-thin-air value introduction.

Theorem 4. Let the opsemset P ′ be an elimination of the opsemset P . If P is well
defined, then so is P ′, and any execution of P ′ has the same observable behaviour as some
execution of P .

We sketch the structure of the proof; details can be found in Appendix A. Let the
opsemset P ′ be an elimination of the opsemset P , and let (O′,W ′) be an execution of P ′
(that is, a pair of an opsem and a witness). Since P ′ is an elimination of P , there is at
least one opsem O ∈ P such that O′ is an elimination of O, and an unelimination function
f that injects the events of the optimized opsem into the events of the unoptimized opsem.
We build the mo and sc relations of the witness of O by lifting the mo ′ and sc′ relations of
the witness W ′: this is always possible because our program transformations do not alter
any atomic access. Analogously it is possible to build the rf relation on atomic accesses
by lifting the rf ′ one. To complete the construction of the witness we lift the rf ′ relation
on non atomic events as well, and complete the rf relation following the case analysis
below on the eliminated events in O:

• RaR: if i is a read action eliminated with the RaR rule because of a preceding read
action r, and w <rf r, then add w <rf i;

• RaW: if i is a read action eliminated with the RaW rule because of a preceding write
action w, then add w <rf i;

rf

WREL a 1 

WRLX a 2 

WRLX a 3 

sb,mo

RACQ a 3 
sb,mo

sw,hb

Figure 4.2: Example of a release sequence
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• IR: if i is an irrelevant read, and there is a write event to the same location that
happens before it, then let w be a write event to the same location maximal with
respect to hb and add w <rf i;

• OW: rf is unchanged;

• WaW: if i is a write event eliminated by the WaW rule because of the preceding
write event w, then for all actions r such that w <rf ′ r and i <hb r, replace w <rf r
by i <rf r;

• WaR: if i is a read event eliminated by the WaR rule, then every read of the same
value at the same location, that happens-after i and that either read from a write
w <hb i or does not read from any write, now reads from i.

This completes the construction of the witness W and in turn of the candidate execution
(O,W ) of P . We must now prove that (O,W ) is consistent, in particular that it satisfies
consistent non atomic read values, for which the construction has been tailored. This
proceeds by a long case disjunction that relies on the following constructions:

• the absence of a release-acquire pair between two accesses a and b in the same thread
guarantees the absence of an access c in another thread with a <hb c <hb b.

• in some cases the candidate execution (O,W ) turns out to have conflicting accesses
a and b that are not ordered by hb. We use the fact that opsemsets are receptive
and closed under SB-prefix to build another candidate execution of P where a and
b are still hb-unordered, but for which we can prove it is a consistent execution (not
necessarily with the same observable behaviour). From this we deduce that P is not
data-race free and ignore these cases.

By construction the consistent execution (O,W ) has the same observable behaviour as
(O′,W ′); we conclude by showing that (O′,W ′) can not have undefined behaviours that
(O,W ) does not have.

4.1.2 Reorderings of actions

Most compiler optimizations do not limit themselves to eliminating memory accesses,
but also reorder some of them. In this category fall all the code motion optimizations.
Of course not all accesses are reorderable without introducing new behaviours. In this
section we state and prove the correctness of the class of reorderings we have observed
being performed by gcc and clang, ignoring more complex reordering schemes.

Definition 7. Two actions a and b are reorderable if they access different memory loca-
tions and neither is a synchronisation action (that is a lock, unlock, atomic access, rmw,
or fence action).

Definition 8. An opsem O′ is a reordering of an opsem O if: (i) the set of actions in
O and O′ are equal; (ii) O and O′ define the same asw ; (iii) for all actions a, b ∈ O, if
a <sb b then either a <sb′ b or b <sb′ a and a is reorderable with b.

Like for eliminations, the definition of reorderings lifts pointwise to opsemsets:

Definition 9. An opsemset P ′ is a reordering of an opsemset P if for all opsems O′ ∈ P ′

there exists an opsem O ∈ P such that O′ is a reordering of O.
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The soundness theorem for reorderings can be stated analogously to the one for elim-
inations and, although the details are different, the proofs follow the same structure. In
particular the proof shows that, given a witness for an execution of a reordered opsem, it is
possible to build the happens-before relation for the witness for the corresponding source
opsem by lifting the synchronise-with relation, which is unchanged by the reorderings and
relates the same release/acquire events in the two witnesses.

Theorem 5. Let the opsemset P ′ be a reordering of the opsemset P . If P is well defined,
then so is P ′, and any execution of P ′ has the same observable behaviour as some execution
of P .

As the SB relation is partial, reordering instructions in the source code can occasion-
ally introduce SB arrows between reordered actions. For instance, the optimized trace of
Figure 2.11 not only reorders the WNA x 3 with the RNA z 0 and WNA z 3 actions but also
introduces an SB arrow between the first two events RNA y 3 and RNA z 0. Unfortunately,
as we saw in Section 3.1.2, adding such SB arrows is unsound in general. So we cannot
directly prove the soundness of the optimisation in Figure 2.11

4.1.3 Introductions of actions

Even if it seems counterintuitive, compilers tend to introduce loads when optimizing code
(introducing writes is incorrect in DRF models most of the time [BA08], and always du-
bious — see the final example in Section 5.3). Usually the introduced loads are irrelevant,
that is their value is never used. This program transformation sounds harmless but it can
introduce data races and does not lend itself to a theorem analogous to those for elimina-
tions and reorderings. Worse than that, if combined with DRF-friendly optimizations it
can introduce unexpected behaviours [Sev11]. We conjecture that a soundness property
can be stated relating the source semantics to the actual hardware behaviour, along the
lines of: if an opsem O′ is obtained from an opsem O by introducing irrelevant reads,
and it is then compiled naively following the standard compilation schemes for a given
architecture [C11, Ter08, MS11], then all the behaviours observable on the architecture
are allowed by the original opsem. In some cases the introduced loads are not irrelevant,
but are RaR-eliminable or RaW-eliminable. We proved that RaR-eliminable and RaW-
eliminable introductions preserve DRF and do not introduce new behaviours under the
hypothesis that there is no release action in SB order between the introduced read and
the action that justifies it.

4.2 Optimizing atomic accesses
In the previous section we focused on the optimisations that we observed being done by
Clang and GCC; and on the C11 model as it is currently defined. We will now look
in more details at the soundness of more optimisations, including eliminations of atomic
accesses; and at how they interact with the fixes we proposed in Chapter 3.

4.2.1 Basic Metatheory of the Corrected C11 Models

In this section, we develop basic metatheory of the various corrections to the C11 model,
which will assist us in verifying the program transformations in the next sections.
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4.2.1.1 Semiconsistent Executions

We observe that in the monotone models (see Definition 12) the happens-before relation
appears negatively in all axioms except for the =⇒ direction of the ConsRFdom axiom. It
turns out, however, that this apparent lack of monotonicity with respect to happens-before
does not cause problems as it can be circumvented by the following lemma.

Definition 10 (Semiconsistent Executions). An execution is semiconsistent with respect
to a model M iff it satisfies all the axioms of the model except for the =⇒ direction of the
ConsRFdom axiom.

Lemma 1 (Semiconsistency). Given a semiconsistent execution (O, rf ,mo, sc) with re-
spect to M for M 6= (ConsRFna,_,_,_), there exists rf ′ ⊆ rf such that (O, rf ′,mo, sc)
is consistent with respect to M .

Proof. We pick rf ′ as the greatest fixed point of the functional:

F (rf )(x) :=

{
rf (x) if ∃y. hb(y, x) ∧ iswriteloc(x)(y)

undefined otherwise

that is smaller than rf (with respect to ⊆). Such a fixed point exists by Tarski’s theorem
as the function is monotone. By construction, it satisfies the ConsRFdom axiom, while all
the other axioms follow easily because they are antimonotone in rf .

4.2.1.2 Monotonicity

We move on to proving the most fundamental property of the corrected models: mono-
tonicity, saying that if we weaken the access modes of some of the actions of a consistent
execution and/or remove some sb edges, the execution remains consistent.

Definition 11 (Access type ordering). Let v : P(MO ×MO) be the least reflexive and
transitive relation containing rlx v rel v rel-acq v sc, and rlx v acq v rel-acq.

We lift the access order to memory actions, v : P(EV × EV ), by letting act v act,
RX(`, v) v RX′(`, v), WX(`, v) v WX′(`, v), CX(`, v, v′) v CX′(`, v, v′), FX v FX′, and
skip v FX′, whenever X v X ′. We also lift this order to functions pointwise: lab v lab ′

iff ∀a. lab(a) v lab ′(a).

Monotonicity does not hold for all the models we consider, but only after some neces-
sary fixes have been applied. We call those corrected models monotone.

Definition 12. We call a memory model, M , monotone, if and only if M 6=
(ConsRFna,_,_,_) and M 6= (_, SCorig,_,_).

Theorem 6 (Monotonicity). For a monotone memory model M , if
ConsistentM(lab, sb, asw , rf ,mo, sc) and lab ′ v lab and sb ′ ⊆ sb, then there exist
rf ′ ⊆ rf and sc′ ⊆ sc such that
ConsistentM(lab ′, sb ′, asw , rf ′,mo, sc′).

This theorem approximately says that (for monotone models) for every execution
obtained by adding edges to sb ′ (creating sb) and by adding elements to lab ′ (creating
lab), we can find an execution of the original program with the same behavior.
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Proof sketch. From Lemma 1, it suffices to prove that the execution
(lab ′, sb ′, asw , rf ,mo, sc′) is semiconsistent. We can show this by picking:

sc′(x, y)
def
= sc(x, y) ∧ isSC(lab ′(x)) ∧ isSC(lab ′(y))

We can show that hb′ ⊆ hb, and then all the axioms of the model follow straightforwardly.

From Theorem 6, we can immediately show the soundness of three simple kinds of
program transformations:

• Expression evaluation order linearisation and sequentialisation, because in effect
they just add sb edges to the program;

• Strengthening of the memory access orders, such as replacing a relaxed load by an
acquire load; and

• Fence insertion, because this can be seen as replacing a skip node (an empty fence)
by a stronger fence.

4.2.1.3 Prefixes of Consistent Executions

Another basic property we would like to hold for a memory model is for any prefix of a
consistent execution to also form a consistent execution. Such a property would allow,
for instance, to execute programs in a stepwise operational fashion generating the set of
consistent executions along the way. It is also very useful in proving the DRF theorem
and the validity of certain optimizations by demonstrating an alternative execution prefix
of the program that contradicts the assumptions of the statement to be proved (e.g., by
containing a race).

One question remains: Under which relation should we be considering execution pre-
fixes? To make the result most widely applicable, we want to make the relation as small
as possible, but at the very least we must include (the dependent part of) the program
order, sb and asw , in order to preserve the program semantics, as well as the reads from
relation, rf , in order to preserve the memory semantics. Moreover, in the case of RSorig
models, as shown in the example from Section 3.2.2, we must also include mo-prefixes.

Definition 13 (Prefix closure). We say that a relation, R, is prefix closed on a set, S,
iff ∀a, b. R(a, b) ∧ b ∈ S =⇒ a ∈ S.

Definition 14 (Prefix opsem). An opsem (lab ′, sb ′, asw ′) is a prefix of another opsem
(lab, sb, asw) iff lab ′ ⊆ lab, sb ′ = sb ∩ (dom(lab ′)× dom(lab ′)), asw ′ = asw ∩ (dom(lab ′)×
dom(lab ′)), and sb and asw are prefix closed on dom(lab ′).

Theorem 7. Given a model M , opsems O = (lab,_,_) and O′ = (lab ′,_,_) and a
witness W = (rf ,mo, sc), if ConsistentM(O,W ) and O′ is a prefix of O and {(a, b) |
rf (b) = a} is prefix-closed on dom(lab ′) and either M = (_,_,RSnew,_) or mo is prefix-
closed on dom(lab ′), then there exists W ′ such that ConsistentM(O′,W ′).

Proof (sketch). We pick W ′ to be W restricted to the actions in dom(lab ′). Then, we
show hb′ = hb∩ (dom(lab ′)×dom(lab ′)) and that each consistency axiom is preserved.
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To be able to use such a theorem in proofs, the relation defining prefixes should be
acyclic. This is because we would like there to exist a maximal element in the relation,
which we can remove from the execution and have the resulting execution remain consis-
tent. This means that, for example, in the Arf model, we may want to choose hb ∪ rf as
our relation. Unfortunately, however, this does not quite work in the RSorig model and
requires switching to the RSnew model.

4.2.2 Verifying Instruction Reorderings
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↓ a \ b→ Rna|rlx|acq(`
′) Rsc(`

′) Wna(`
′) Wrlx(`

′) Wrel|sc(`
′) Crlx|acq(`

′) Cwrel(`
′) Facq Frel

Rna(`) 3Thm.8 3Thm.8 3Thm.8/?/74.2.3.3 3Thm.8/?/74.2.3.3 74.2.3.1 3Thm.8/?/74.2.3.3 74.2.3.1 3Thm.8 74.2.3.1
Rrlx(`) 3Thm.8 3Thm.8 3Thm.8/?/74.2.3.3 3Thm.8/74.2.3.2/74.2.3.3 74.2.3.1 3Thm.8/74.2.3.2/74.2.3.3 74.2.3.1 74.2.3.1 74.2.3.1

Racq|sc(`) 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 3Thm.9 74.2.3.1
Wna|rlx|rel(`) 3Thm.8 3Thm.8 3Thm.8 3Thm.8 74.2.3.1 3Thm.8 74.2.3.1 3Thm.8 74.2.3.1

Wsc(`) 3Thm.8 74.2.3.1 3Thm.8 3Thm.8 74.2.3.1 3Thm.8 74.2.3.1 3Thm.8 74.2.3.1
Crlx|rel(`) 3Thm.8 3Thm.8 3Thm.8/?/74.2.3.3 3Thm.8/74.2.3.2/74.2.3.3 74.2.3.1 3Thm.8/74.2.3.2/74.2.3.3 74.2.3.1 74.2.3.1 74.2.3.1
Cwacq(`) 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 3Thm.9 74.2.3.1
Facq 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 74.2.3.1 = 74.2.3.1
Frel 3Thm.8 3Thm.8 3Thm.8 74.2.3.1 3Thm.10 74.2.3.1 3Thm.10 3Thm.8 =

Table 4.1: Allowed parallelisations a ; b  a ‖ b in monotone models, and therefore reorderings a ; b  b ; a. We assume ` 6= `′. Where
multiple entries are given, these correspond to Naive/Arf/Arfna. Ticks cite the appropriate theorem, crosses the counterexample (in
Section 4.2.3). Question marks correspond to unknown cases. (We conjecture these are valid, but need a more elaborate definition of
opsem prefixes to prove.)
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We proceed to the main technical results of this chapter, namely the proofs of va-
lidity for the various program transformations. Having already discussed the simple
monotonicity-based ones, we now focus on transformations that reorder adjacent instruc-
tions that do not access the same location.

We observe that for monotone models, a reordering can be decomposed into a paral-
lelisation followed by a linearisation:

a ; b
under some conditions

a ‖ b By Theorem 6
b ; a

We summarise the allowed reorderings/parallelisations in Table 4.1. There are two types
of allowed updates:
(§4.2.2.1) “Roach motel” instruction reorderings, and

(§4.2.2.2) Fence reorderings against the roach motel semantics.
For the negative cases, we provide counterexamples in Section 4.2.3.

4.2.2.1 Roach Motel Instruction Reorderings

The “roach motel” reorderings are the majority among those in Table 4.1 and are annotated
by ‘3Thm.8.’ They correspond to moving accesses into critical sections, i.e. sinking them
past acquire accesses, or hoisting them above release accesses. The name comes from the
saying “roaches check in but do not check out”.

This category contains all reorderable pairs of actions, a and b, that are adjacent
according to sb and asw . We say that two actions a and b are adjacent according to a
relation R if (1) every action directly reachable from b is directly reachable from a; (2)
every action directly reachable from a, except for b, is also directly reachable by b; (3)
every action that reaches a directly can also reach b directly; and (4) every action that
reaches b directly, except for a, can also reach a directly. Note that adjacent actions are
not necessarily related by R.

Definition 15 (Adjacent actions). Two actions a and b are adjacent in a relation R,
written Adj(R, a, b), if for all c, we have:
(1) R(b, c)⇒ R(a, c), and (2) R(a, c) ∧ c 6= b⇒ R(b, c), and
(3) R(c, a)⇒ R(c, b), and (4) R(c, b) ∧ c 6= a⇒ R(c, a).

Two actions a and b are reorderable if (1) they belong to the same thread; (2) they do
not access the same location, (3) a is not an acquire access or fence, (4) b is not a release
access or fence, (5) if the model is based on Arfna or Arf and a is a read, then b is not a
write, (6) if a is a release fence, then b is not an atomic write, (7) if b is an acquire fence,
then a is not an atomic read, and (8) a and b are not both SC actions.

Definition 16 (Reorderable pair). Two distinct actions a and b are reorderable in a
memory model M , written ReordM(a, b), if

(1) tid(a) = tid(b)
and (2) loc(a) 6= loc(b)
and (3) ¬isAcq(a)
and (4) ¬isRel(b)
and (5i) ¬(M = (Arfna,_,_,_) ∧ isread(a) ∧ iswrite(b))
and (5ii) ¬(M = (Arf,_,_,_) ∧ isread(a) ∧ iswrite(b))
and (6) ¬(isFenceRel(a) ∧ isAtomicWrite(b))
and (7) ¬(isAtomicRead(a) ∧ isFenceAcq(b))
and (8) ¬(isSC(a) ∧ isSC(b))
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Theorem 8. For a monotone M , if ConsistentM(lab, sb, asw ,W ), Adj(sb, a, b),
Adj(asw , a, b), and ReordM(a, b), there exists W ′,
(i) ConsistentM(lab, sb ∪ {(a, b)}, asw ,W ′),
(ii) Observation(lab ′,W ′) = Observation(lab,W ), and
(iii) RacyM(lab, sb,W )⇒ RacyM(lab, sb ∪ {(a, b)},W ′).

Proof (sketch). By Lemma 1, it suffices to show semiconsistency. The main part is then
proving that hb = hb′ ∪{(a, b)}, where hb (resp. hb′) denotes the happens-before relation
in (lab, sb ∪ {(a, b)}, asw ,W ) (resp. (lab, sb, asw ,W )). Hence these transformations do
not really affect the behaviour of the program, and the preservation of each axiom is a
simple corollary.

The proof of Theorem 8 (and similarly those of Theorems 9 and 10 in Section 4.2.2.2),
require only conditions (1) and (3) from the definition of adjacent actions; Conditions (2)
and (4) are, however, important for the theorems of Section 4.2.4.1, and so, for simplicity,
we presented a single definition of when two actions are adjacent.

4.2.2.2 Non-RM Reorderings with Fences

The second class is comprised of a few valid reorderings between a fence and a memory
access of the same or stronger type. In contrast to the previous set of transformations,
these new ones remove some synchronisation edges but only to fence instructions. As
fences do not access any data, there are no axioms constraining these incoming and
outgoing synchronisation edges to and from fences, and hence they can be safely removed.

Theorem 9. For a monotone M , if ConsistentM(lab, sb, asw ,W ), Adj(sb, a, b),
Adj(asw , a, b), isAcq(a), and lab(b) = Facq, then
(i) ConsistentM(lab, sb ∪ {(a, b)}, asw ,W ) and
(ii) RacyM(lab, sb,W )⇒ RacyM(lab, sb ∪ {(a, b)},W ).

Theorem 10. For a monotone M , if ConsistentM(lab, sb, asw ,W ), Adj(sb, a, b),
Adj(asw , a, b), lab(a) = Frel and isRel(b), then
(i) ConsistentM(lab, sb ∪ {(a, b)}, asw ,W ) and
(ii) RacyM(lab, sb,W )⇒ RacyM(lab, sb ∪ {(a, b)},W ).

That is, we can reorder an acquire command over an acquire fence, and a release fence
over a release command.

acq ; Facq
Thm. 9 & 6

Facq ; acq Frel ; rel Thm. 10 & 6 rel ; Frel

4.2.3 Counter-examples for unsound reorderings

4.2.3.1 Unsafe Reordering Examples for All Models

We present a series of counterexamples showing that certain adjacent instruction permu-
tations are invalid.

access; Wrel|sc  Wrel|sc; access Our first counterexample shows that we cannot re-
order a memory access past a release store. Consider the following program:

access(y);
x.store(1,wrel);

if (x.load(acq))
y = 1;
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This program is race-free as illustrated by the following execution:

[x = y = 0]

a: access(y)

b: Wwrel(x, 1)

c: Racq(x, 1)

d: Wna(y, 1)
sw

If we reorder the instructions in the first thread, the following racy execution is possible.

[x = y = 0]

b: Wwrel(x, 1)

a: access(y)

c: Racq(x, 1)

d: Wna(y, 1)

sw

(RACE)

This means that the reordering introduced new behaviour and is therefore unsound.

access; Cwrel  Cwrel; access We can construct a similar example to show that reorder-
ing an access past a release RMW is also unsound. Consider the program:

access(y);
x.CAS(0, 1,wrel);

if (x.load(acq))
y = 1;

This program is race free because y = 1 can happen only after the load of x reads 1 and
synchronises with the successful CAS.

[x = y = 0]

a: access(y)

b: Cwrel(x, 0, 1)

c: Racq(x, 1)

d: Wna(y, 1)
sw

rf

If we reorder the instructions in the first thread, the following racy execution is possible,
and therefore the transformation is unsound.

[x = y = 0]

b: Cwrel(x, 0, 1)

a: access(y)

c: Racq(x, 1)

d: Wna(y, 1)

sw

(RACE)

rf

Rwacq; access access; Rwacq Next, we construct dual examples showing that reorder-
ing an acquire read past a memory access is unsound. Consider the following example,
where on the second thread, we use a busy loop to wait until the store of x has happened.

y = 1;
x.store(1,rel);

while (1 6= x.load(wacq))
access(y);
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The program is race-free as demostrated by the following execution:

[x = y = 0]

a: Wna(y, 1)

b: Wrel(x, 1)

c: Rwacq(x, 1)

d: access(y)
sw

Reordering the access(y) above the load of x is unsound, because then the following
execution would be possible:

[x = y = 0]

a: Wna(y, 1)

b: Wrel(x, 1)

d: access(y)

c: Rwacq(x, 1)sw

(RACE)

This execution contains racy accesses to y, and therefore exhibits more behaviours than
the original program does.

This shows that reordering an acquire load past a memory access is unsound. In a
similar fashion, we can show that reordering an acquire RMW past a memory access is
also unsound. All we have to do is consider the following program:

y = 1;
x.store(1,rel);

while (¬x.CAS(1, 2,wacq));
access(y);

where we have replaced the acquire load by an acquire CAS.

Wsc; Rsc  Rsc; Wsc Consider the store-buffering program with sc accesses:

x.store(1, sc);
r1 = y.load(sc);

y.store(1, sc);
r2 = x.load(sc);

Since sc accesses are totally ordered, the outcome r1 = r2 = 0 is not possible. This
outcome, however, can be obtained by reordering the actions of the left thread.

[x = y = 0]

a: Rsc(y, 0)

b: Wsc(x, 1)

c: Wsc(y, 1)

d: Rsc(x, 0)

rf
rf

Facq; access access; Facq Consider the following program

y = 1;
x.store(1,rel);

while (1 6= x.load(rlx)));
fence(acq);
access(y);
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The execution trace is as follows

[x = y = 0]

a: Wna(y, 1)

b: Wwrel(x, 1)

c: Rrlx(x, 1)

d: Facq

e: access(y)

sw

rf

In this execution (a, e) ∈ hb and hence the execution is data race free.
The reordering d; e e; d would result in following execution

[x = y = 0]

a: Wna(y, 1)

b: Wwrel(x, 1)

c: Rrlx(x, 1)

e: access(y)

d: Facq
sw

(RACE)
rf

In this case the (a, e) 6∈ hb and hence result in data race.
Hence the transformation is unsafe.

Rrlx; Facq  Facq; Rrlx Consider the following program

y = 1;
x.store(1,rel);

while (1 6= x.load(rlx));
fence(acq);
access(y);

This program is well synchronised, because for the access to y to occur, the relaxed load
must have read from the release store of x, and therefore the release store and the acquire
fence synchronise.

[x = y = 0]

a: Wna(y, 1)

b: Wwrel(x, 1)

c: Rrlx(x, 1)

d: Facq

e: access(y)

sw

rf

In this execution (a, e) ∈ hb and hence the execution is data race free.
The reordering c; d d; c would result in following execution

[x = y = 0]

a: Wna(y, 1)

b: Wwrel(x, 1)

d: Facq

c: Rrlx(x, 1)

e: access(y)

(RACE)

rf
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In this case (a, e) 6∈ hb and hence there is a data race. Therefore, the transformation is
unsafe.

With a similar program, we can show that moving a rlx or rel RMW past an acquire
fence is also unsafe. (Just replace 1 6= x.load(rlx) with ¬x.CAS(1, 2, {rlx,rel}).)

access; Frel  Frel; access Similarly consider the program below

access(y);
fence(rel);
x.store(1,rlx);

if (x.load(acq))
y = 1;

This program is data race free, because for a store of y to occur, the load of x must read
1 and therefore synchronize with the fence:

[x = y = 0]

a: access(y)

b: Frel

c: Wrlx(x, 1)

d: Racq(x, 1)

e: Wna(y, 1)

sw

rf

Reordering a; b b; a, however, results in a racy execution:

[x = y = 0]

b: Frel

a: access(y)

c: Wrlx(x, 1)

d: Racq(x, 1)

e: Wna(y, 1)

sw

(RACE)

rf

Therefore, the transformation is unsafe.

Frel; Wrlx  Wrlx; Frel Consider the following program

y = 1;
fence(rel);
x.store(1,rlx);

if (x.load(acq)) y = 2;

The program is race-free because if y = 2 happens, then it happens after the y = 1 store
because the load of x must synchronise with the fence.

[x = y = 0]

a: Wna(y, 1)

b: Frel

c: Wrlx(x, 1)

d: Racq(x, 1)

e: Wna(y, 2)

sw

rf
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Reordering b; c c; b, however, can result in the following racy execution:

[x = y = 0]

a: Wna(y, 1)

c: Wrlx(x, 1)

b: Frel

d: Racq(x, 1)

e: Wna(y, 2)

(RACE)

rf

Hence, the transformation is unsafe.
With a similar program, we can show that moving a release fence past a rlx or acq

RMW is also unsafe. (Just replace x.store(1,rlx) with x.CAS(0, 1, {rlx,acq}).)

Facq; Frel  Frel; Facq Consider the following program

z = 1;
x.store(1,rel);

if (x.load(rlx)) {
fence(acq);
fence(rel);
y.store(1,rlx);

}

if (y.load(acq))
z = 2;

The program is race free because the only consistent execution containing conflicting
accesses is the following:

[x = y = z = 0]

a: Wna(z, 1)

b: Wrel(x, 1)

c: Rrlx(x, 1)

d: Facq

e: Frel

f: Wrlx(y, 1)

g: Racq(y, 1)

h: Wna(z, 2)sw
rf sw

rf

which is, however, not racy because hb(a, h). Reordering d and e does, however, result in
the following racy execution and is, therefore, unsound.

[x = y = z = 0]

a: Wna(z, 1)

b: Wrel(x, 1)

c: Rrlx(x, 1)

e: Frel

d: Facq

f: Wrlx(y, 1)

g: Racq(y, 1)

h: Wna(z, 2)

sw

rf
sw

rf
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4.2.3.2 Counterexamples for the Arf model

Reordering an atomic read past an adjacent atomic write is unsound in the Arf memory
model. We show this first for an atomic load and an atomic store. Consider the following
program, where implicitly all variables are initialised to 0.

r = x.load(wrlx);
y.store(1,wrlx);

r′ = y.load(rlx);
x.store(1,rlx);

In this code the outcome r = r′ = 1 is not possible. The only execution that could yield
this result is the following,

[x = y = 0]

Rrlx(x, 1)

Wrlx(y, 1)

Rrlx(y, 1)

Wrlx(x, 1)

rf
rf

which is inconsistent. If, however, we permute the instructions of the first thread, then
this outcome is possible by the following execution:

[x = y = 0]

Wrlx(y, 1)

Rrlx(x, 1)

Rrlx(y, 1)

Wrlx(x, 1)

rf

rf

Note that if we replace the load of x with a compare and swap, x.CAS(1, 2,_), and/or
the store of y with a compare and swap, y.CAS(0, 1,_), the displayed source execution
remains inconsistent, and while the target execution is valid. Hence reordering any kind
of atomic read over any kind of atomic write is unsound in this model.

4.2.3.3 Counterexamples for the Arfna model

We show that reodering a non atomic or atomic read past an adjacent non atomic or
atomic write is unsound. Consider the following program, where implicitly all variables
are initialized to 0.

if (x.load(rlx)) {
t = p.load(X);
q.store(1, Y );
if (t) y.store(1,rlx);

}

if (y.load(rlx))
if (q) {

p = 1;
x.store(1,rlx);

}

(Where X and Y stand for any atomic or non atomic access modes.)
Note that this program is race-free and its only possible outcome is p = q = 0. (The

racy execution yielding p = q = 1 is inconsistent because it contains a cycle forbidden by
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the Arfna axiom.)

[x = y = p = q = 0]

Rrlx(x, 1)

RX(p, 1)

WY (q, 1)

Wrlx(y, 1)

Rrlx(y, 1)

Rna(q, 1)

Wna(p, 1)

Wrlx(x, 1)
rf

rf

rf-na

rf-na

(The reads in this cycle are annotated by “rf-na.”)
If, however, we permute the two adjacent non atomic access of the first thread as

follows:
t = p; q = 1; q = 1; t = p;

then the following racy execution:

[x = y = p = q = 0]

Rrlx(x, 1)

WY (q, 1)

RX(p, 1)

Wrlx(y, 1)

Rrlx(y, 1)

Rna(q, 1)

Wna(p, 1)

Wrlx(x, 1)
rf

rf

rf-na
rf-na

is consistent, and therefore the target program has more behaviours than the source
program.

Note that if we replace the load p.load(X) with a compare and swap, p.CAS(1, 2, X),
and/or the q.store(1, Y ) with a compare and swap, q.CAS(0, 1, Y ), the displayed source
execution remains inconsistent, and while the target execution is valid. Hence the trans-
formation adds new behaviour and is unsound.

4.2.4 Verifying Instruction Eliminations

Next, we consider eliminating redundant memory accesses, as would be performed by
standard optimizations such as common subexpression elimination or constant propaga-
tion. To simplify the presentation (and the proofs), in §4.2.4.1, we first focus on the cases
where eliminating an instruction is justified by an adjacent instruction (e.g., a repeated
read, or an immediately overwritten write). In §4.2.4.2, we will then tackle the general
case.
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4.2.4.1 Elimination of Redundant Adjacent Accesses

Repeated Read. The first transformation we consider is eliminating the second of two
identical adjacent loads from the same location. Informally, if two loads from the same
location are adjacent in program order, it is possible that both loads return the value
written by the same store. Therefore, if the loads also have the same access type, the
additional load will not introduce any new synchronisation, and hence we can always
remove one of them, say the second.

RX(`, v) ; RX(`, v) RX(`, v) ; skip (RAR-adj)

Formally, we say that a and b are adjacent if a is sequenced before b and they are adjacent
according to sb and asw . That is:

Adj(a, b)
def
= sb(a, b) ∧ Adj(sb, a, b) ∧ Adj(asw , a, b)

We can prove the following theorem:

Theorem 11 (RaR-Adjacent). For a monotone memory model M , if
ConsistentM(lab, sb, asw ,W ), Adj(a, b), lab(a) = RX(`, v), lab(b) = skip, and
lab ′ = lab[b := RX(`, v)], then there exists W ′ such that
(i) ConsistentM(lab ′, sb, asw ,W ′),
(ii) Observation(lab ′,W ′) = Observation(lab,W ), and
(iii) RacyM(lab, sb, asw ,W )⇒ RacyM(lab ′, sb, asw ,W ′).

This says that any consistent execution of the target of the transformation can be
mapped to one of the program prior to the transformation. To prove this theorem, we
pick rf ′ := rf [b 7→ rf (a)] and extend the sc order to include the (a, b) edge in case X = sc.

Read after Write. Similarly, if a load immediately follows a store to the same location,
then it is always possible for the load to get the value from that store. Therefore, it is
always possible to remove the load.

WX(`, v) ; RY (`, v) WX(`, v) ; skip (RAW-adj)

Formally, we prove the following theorem:

Theorem 12 (RaW-Adjacent). For a monotone memory model M , if
ConsistentM(lab, sb, asw ,W ), Adj(a, b), lab(a) = WX(`, v), lab(b) = skip,
lab ′ = lab[b := RY (`, v)] and either Y 6= sc or M 6= (_,_, STorig,_), then there
exists W ′ such that
(i) ConsistentM(lab ′, sb, asw ,W ′),
(ii) Observation(lab ′,W ′) = Observation(lab,W ), and
(iii) RacyM(lab, sb, asw ,W )⇒ RacyM(lab ′, sb, asw ,W ′).

Overwritten Write. If two stores to the same location are adjacent in program order,
it is possible that the first store is never read by any thread. So, if the stores have the same
access type we can always remove the first one. That is, we can do the transformation:

WX(`, v′) ; WX(`, v) skip ; WX(`, v) (OW-adj)

To prove the correctness of the transformation, we prove the following theorem saying
that any consistent execution of the target program corresponds to a consistent execution
of the source program.
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Consider the following program:
x = y = 0;

y.store(1,rlx);
fence(rel);
t1 = x.load(rlx);
x.store(t1,rlx);

t2 = x.CAS(0, 1,acq);
t3 = y.load(rlx);

t4 = x.load(rlx);

The outcome t1 = t2 = t3 = 0 ∧ t4 = 1 is not possible. If, however, we remove the
x.store(t1,rlx) then this outcome becomes possible.

[x = y = 0]

Wrlx(y, 1)

Frel

Rrlx(x, 0)

Wrlx(x, 0)

Cacq(x, 0, 1)

Rrlx(y, ???)

Rrlx(x, 1)

mo

rf

rf

mo

mo

rf

sw

[x = y = 0]

Wrlx(y, 1)

Frel

Rrlx(x, 0)

Cacq(x, 0, 1)

Rrlx(y, 0)

Rrlx(x, 1)

mo

rf

mo
rf

rf

rf

Figure 4.3: Counterexample for the ‘write after read’ elimination optimisation.

Theorem 13 (OW-Adjacent). For a monotone memory model M , if
ConsistentM(lab, sb, asw ,W ) and Adj(a, b) and lab(a) = skip and lab(b) = WX(`, v)
and lab ′ = lab[a := WX(`, v′)] and ` 6= world, then there exists W ′ such that
(i) ConsistentM(lab ′, sb, asw ,W ′),
(ii) Observation(lab ′,W ′) = Observation(lab,W ), and
(iii) RacyM(lab, sb, asw ,W )⇒ RacyM(lab ′, sb, asw ,W ′).

Note that as a special case of this transformation, if the two stores are identical, we
can alternatively remove the second one:

WX(`,v) ; WX(`,v)
(OW-adj)

skip ; WX(`,v)
reorder

WX(`,v) ; skip

Write after Read. The next case to consider is what happens when a store immediately
follows a load to the same location, and writes the same value as observed by the load.

RX(`, v) ; Wrlx(`, v) RX(`, v) ; skip

In this case, can we eliminate the redundant store?
Well, actually, no, we cannot. Figure 4.3 shows a program demonstrating that the

transformation is unsound. The program uses an atomic read-modify-write instruction,
CAS, to update x, in parallel to the thread that reads x to be 0 and then writes back 0
to x.

Consider an execution in which the load of x reads 0 (enforced by t1 = 0), the CAS
succeeds (enforced by t2 = 0) and is in modification order after the store to x (enforced by
t4 = 1 and the CohWR axiom). Then, because of the atomicity of CAS (axiom AtRMW),
the CAS must read from the first thread’s store to x, inducing a synchronisation edge
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x = y = z = 0;
y.store(1,rlx);
fence(rel);
t1 = x.load(rlx);
x.store(t1,rlx);
fence(sc);
t2 = z.load(rlx);

z.store(1,rlx);
fence(sc);
t3 = x.load(rlx);
t4 = y.load(rlx);

t5 = x.load(rlx);

The outcome t1 = t2 = t3 = t4 = 0 ∧ t5 = 1 is impossible. If, however, we remove the
x.store(t1,rlx) then this outcome becomes possible.

Figure 4.4: Counterexample for the ‘write after read’ elimination optimisation, with a sc
fence instead of a CAS

between the two threads. As a result, by the CohWR axiom, the load of y cannot read
the initial value (i.e., necessarily t3 6= 0).

If, however, we remove the store to x from the left thread, the outcome in question
becomes possible as indicated by the second execution shown in Figure 4.3.

In essence, this transformation is unsound because we can force an operation to be
ordered between the load and the store (according to the communication order). In the
aforementioned counterexample, we achieved this by the atomicity of RMW instructions.

We can also construct a similar counterexample without RMW operations, by exploit-
ing SC fences, as shown in Figure 4.4.

The above counterexamples rely on on the use of a release fence, and those only create
SW edges in conjunction with atomic accesses. So they are not counterexamples to the
Theorem 4.

4.2.4.2 Elimination of Redundant Non-Adjacent Operations

We proceed to the general case, where the removed redundant operation is in the same
thread as the operation justifying its removal, but not necessarily adjacent to it.

In the appendix, we have proved three theorems generalising the theorems of Sec-
tion 4.2.4.1. The general set up is that we consider two actions a and b in program order
(i.e., sb(a, b)), accessing the same location ` (i.e., loc(a) = loc(b) = `), without any inter-
mediate actions accessing the same location (i.e., @c. sb(a, c) ∧ sb(c, b) ∧ loc(c) = `). In
addition, for the generalisations of Theorems 11 and 12 (respectively, of Theorem 13), we
also require there to be no acquire (respectively, release) operation in between.

Under these conditions, we can reorder the action to be eliminated (using Theorem 8)
past the intermediate actions to become adjacent to the justifying action, so that we can
apply the adjacent elimination theorem. Then we can reorder the resulting “skip” node
back to the place the eliminated operation was initially.
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Chapter 5

Fuzzy-testing GCC and Clang for
compiler concurrency bugs

5.1 Compiler concurrency bugs
We saw in the previous chapter that the criteria for correctness of compiler optimisations
in C11 are subtle. Are they actually respected by compilers? In this chapter, we will
first show an example of a GCC bug that appears only in a concurrent context, and then
explain an approach for automatically detecting such bugs.

Consider the C program in Figure 5.1. Can we guess its output? This program spawns
two threads executing the functions th_1 and th_2 and waits for them to terminate. The
two threads share two global memory locations, x and y, but a careful reading of the
code reveals that the inner loop of th_1 is never executed and y is only accessed by the
second thread, while x is only accessed by the first thread. As we saw in Chapter 2, such
a program is called data-race free, and its semantics is defined as the interleavings of the
actions of the two threads. So it should always print 42 on the standard output.

If we compile the above code with the version 4.7.0 of gcc on an x86_64 machine
running Linux, and we enable some optimizations with the -O2 flag (as in g++ -std=c++11
-lpthread -O2 -S foo.c) then, sometimes, the compiled code prints 0 to the standard
output. This unexpected outcome is caused by a subtle bug in gcc’s implementation of
the loop invariant code motion (LIM) optimization. If we inspect the generated assembly
we discover that gcc saves and restores the content of y, causing y to be overwritten with
0:

th_1:
movl x(%rip), %edx # load x (1) into edx
movl y(%rip), %eax # load y (0) into eax
testl %edx, %edx # if x != 0
jne .L2 # jump to .L2
movl $0, y(%rip)
ret

.L2:
movl %eax, y(%rip) # store eax (0) into y
xorl %eax, %eax # return 0 (NULL)
ret

This optimization is sound in a sequential world because the extra store always rewrites
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#include <stdio.h>
#include <pthread.h>

int x = 1; int y = 0;

void *th_1(void *p) {
for (int l = 0; (l != 4); l++) {
if (x) return NULL;
for (y = 0; (y >= 26); ++y)
;

}
}

void *th_2(void *p) {
y = 42;
printf("%d\n",y);

}

int main() {
pthread_t th1, th2;
pthread_create(&th1, NULL, th_1, NULL);
pthread_create(&th2, NULL, th_2, NULL);
(void)pthread_join (th1, NULL);
(void)pthread_join (th2, NULL);

}

Figure 5.1: foo.c, a concurrent program miscompiled by gcc 4.7.0.
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the initial value of y and the final state is unchanged. However, as we have seen, this
optimization is unsound in the concurrent context provided by th_2, and the C11/C++11
standards forbid it. We have reported this bug, which has been fixed (see http://gcc.
gnu.org/bugzilla/show_bug.cgi?id=52558).

How to search for concurrency compiler bugs? We have a compiler bug whenever
the code generated by a compiler exhibits a behaviour not allowed by the semantics
of the source program. Differential random testing has proved successful at hunting
compiler bugs. The idea is simple: a test harness generates random, well defined, source
programs, compiles them using several compilers, runs the executables, and compares the
outputs. The state of the art is represented by the Csmith tool by Yang, Chen, Eide
and Regehr [YCER11], which over the last four years has discovered several hundred
bugs in widely used compilers, including gcc and clang. However this work cannot find
concurrency compiler bugs like the one we described above: despite being miscompiled,
the code of th_1 still has correct behaviour in a sequential setting.

A naive approach to extend differential random testing to concurrency bugs would be
to generate concurrent random programs, compile them with different compilers, record
all the possible outcomes of each program, and compare these sets. This works well in
some settings, such as the generation and comparison of litmus tests to test hardware
memory models; see for instance the work by Alglave et al. [AMSS11]. However this
approach is unlikely to scale to the complexity of hunting C11/C++11 compiler bugs.
Concurrent programs are inherently non deterministic and optimizers can compile away
non determism. In an extreme case, two executables might have disjoint sets of observable
behaviours, and yet both be correct with respect to a source C11 or C++11 program.
To establish correctness, comparing the final checksum of the different binaries is not
enough: we must ensure that all the behaviours of a compiled executable are allowed by
the semantics of the source program. The Csmith experience suggests that large program
sizes (∼80KB) are needed to maximise the chance of hitting corner cases of the optimizers;
at the same time they must exhibit subtle interaction patterns (often unexpected, as in the
example above) while being well defined (in particular data-race free). Capturing the set
of all the behaviours of such large concurrent programs is tricky as it can depend on rare
interactions between threads; computing all the behaviours allowed by the C11/C++11
semantics is even harder.

Despite this, we show that differential random testing can be used successfully for
hunting concurrency compiler bugs, based on two observations. First, C and C++ com-
pilers must support separate compilation and the concurrency model allows any function
to be spawned as an independent thread. As a consequence compilers must always as-
sume that the sequential code they are optimizing can be run in an arbitrary concurrent
context, subject only to the constraint that the whole program is well defined (race-free
on non atomic accesses, etc.), and can only apply optimizations that are sound with
respect to the concurrency model. Second, we have shown in Chapter 4 that it is possi-
ble to characterise which optimizations are correct in C11 by observing how they elim-
inate, reorder, or introduce memory accesses in the traces of the sequential code with
respect to a reference trace. We use in this chapter the model defined by the standard:
(ConsRFna, SCorig,RSorig, STorig). Combined, these two remarks imply that testing the
correctness of compilation of concurrent code can be reduced to validating the traces gen-
erated by running optimized sequential code against a reference (unoptimized) trace for
the same code.
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We illustrate this idea with program foo.c from Figure 5.1. Traces only report accesses
to global (potentially shared) memory locations: optimizations affecting only the thread-
local state cannot induce concurrency compiler bugs. On the left below, the reference
trace for th_1 initialises x and y and loads the value 1 from x:

Init x 1
Init y 0
Load x 1

Init x 1
Init y 0
Load x 1
Load y 0
Store y 0

On the right above, the trace of the gcc -O2 generated code performs an extra load and
store to y and, since arbitrary store introduction is provably incorrect in the C11/C++11
concurrency model we can detect that a miscompilation happened. Figure 5.2 shows
another example, of a randomly generated C function together with its reference trace
and an optimized trace. In this case it is possible to match the reference trace (on the left)
against the optimized trace (on the right) by a series of sound eliminations and reordering
of actions.

5.2 Compiler Testing
Building on the theory of the previous section, we designed and implemented a bug-
hunting tool called cmmtest. The tool performs random testing of C and C++ compilers,
implementing a variant of Eide and Regehr’s access summary testing [ER08]. A test case
is any well defined, sequential C program; for each test case, cmmtest:

1. compiles the program using the compiler and compiler optimizations that are being
tested;

2. runs the compiled program in an instrumented execution environment that logs all
memory accesses to global variables and synchronisations;

3. compares the recorded trace with a reference trace for the same program, checking
if the recorded trace can be obtained from the reference trace by valid eliminations,
reorderings and introductions.

Test-case generation We rely on a small extension of Csmith [YCER11] to generate
random programs that cover a large subset of C while avoiding undefined and unspeci-
fied behaviours. We added mutex variables (as defined in pthread.h) and system calls
to pthread_mutex_lock and pthread_mutex_unlock. Enforcing balancing of calls to
lock and unlock along all possible execution paths of the generated test-cases is difficult,
so mutex variables are declared with the attribute PTHREAD_MUTEX_RECURSIVE. We also
added atomic variables and atomic accesses to atomic variables, labelled with a memory
order attribute. For atomic variables we support both the C and the C++ syntax, the
former not yet being widely supported by today’s compilers. Due to limitations of our
tracing infrastructure, for now we instruct Csmith to not generate programs with unions
or consts.
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const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
unsigned int g5 = 1UL;

void f(){
int *l8 = &g6;
int l36 = 0x5E9D070FL;
unsigned int l107 = 0xAA37C3ACL;
g4 &= g3;
g5++;
int *l102 = &l36;
for (g6 = 4; g6 < (-3); g6 += 1);
l102 = &g6;
*l102 = ((*l8) && (l107 << 7)*(*l102));

}

This randomly generated function generates the following traces if compiled with gcc -O0
and gcc -O2.

Init g6 6   Init g4 1   Init g5 1
RaW* Load  g4 1
     Store g4 0
RaW* Load  g5 1
     Store g5 2
OW*  Store g6 4
RaW* Load  g6 4
RaW* Load  g6 4
RaW* Load  g6 4
     Store g6 1
RaW* Load  g4 0

Load  g5 1
Store g4 0
Store g6 1
Store g5 2
Load  g4 0

All the events in the optimized trace can be matched with events in the reference trace by
performing valid eliminations and reorderings of events. Eliminated events are struck-off
while the reorderings are represented by the arrows.

Figure 5.2: successful matching of reference and optimized traces

65



Compilation Compilation is straightforward provided that the compiler does not at-
tempt to perform whole-program optimizations. With whole-program optimization, the
compiler can deduce that some functions will never run in a concurrent context and per-
form more aggressive optimizations, such as eliminating all memory accesses after the last
I/O or synchronisation. It is very hard to determine precise conditions under which these
aggressive whole-program optimizations remain sound; for instance Ševčík’s criteria are
overly conservative and result in false positives when testing Intel’s icc -O3. Neither gcc
nor clang perform whole-program optimizations at the typical optimization levels -O2 or
-O3.

Test case execution and tracing The goal of this phase is to record an execution trace
for the compiled object file, that is the linearly ordered sets of actions it performs. For
the x86_64 architecture we implemented a tracing framework by binary instrumentation
using the Pin tool [LCM+05]. Our Pin application intercepts all memory reads and
writes performed by the program and for each records the address accessed, the value
read or written, and the size. In addition it also traces calls to pthread_mutex_lock and
pthread_mutex_unlock, recording the address of the mutex. With the exception of access
size information, entries in the execution trace correspond to the actions of Chapter 4.
Access size information is needed to analyse optimizations that merge adjacent accesses,
discussed below.

The “raw” trace depends on the actual addresses where the global variables have
been allocated, which is impractical for our purposes. The trace is thus processed with
additional information obtained from the ELF object file (directly via objdump or by
parsing the debugging information). The addresses of the accesses are mapped to variable
names and similarly for values that refer to addresses of variables; in doing so we also
recover array and struct access information. For example, if the global variable int g[10]
is allocated at 0x1000, the raw action Store 0x1008 0x1004 4 is mapped to the action
Store g[2] &g[1] 4. After this analysis, execution traces are independent of the actual
allocation addresses of the global variables. Finally, information about the initialisation
of the global variables is added to the trace with the Init tag.

Irrelevant reads The Pin application also computes some data-flow information about
the execution, recording all the store actions which depend on each read. This is done
by tracking the flow of each read value across registers and thread-local memory. A
dependency is reported if either the value read is used to compute the value written or
used to determine the control that leads to a later write or synchronisation. With this
information we reconstruct an approximation of the set of irrelevant reads of the execution:
all reads whose returned value is never used to perform a write (or synchronisation) are
labelled as irrelevant.

In addition, we use a second algorithm to identify irrelevant reads following their
characterisation on the opsems: the program is replayed and its trace recorded again but
binary instrumentation injects a different value for the read action being tested. The read
is irrelevant if, despite the different value read, the rest of the trace is unchanged. This
approach is slower but accurately identifies irrelevant reads inserted by the optimizer (for
instance when reorganising chains of conditions on global variables).

Reference trace In the absence of a reference interpreter for C11, we reuse our tracing
infrastructure to generate a trace of the program compiled at -O0 and use this as the
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reference trace. By doing so our tool might miss potential front-end concurrency bugs
but there is no obvious alternative.

Trace matching Trace matching is performed in two phases. Initially, eliminable ac-
tions in the reference trace are identified and labelled as such. The labelling algorithm
linearly scans the trace, recording the last action performed at any location and whether
release/acquire actions have been encountered since; using this information each action
is analysed and labelled following the definition of eliminable actions of Section 4.1.1.
Irrelevant reads reported by the tracing infrastructure are labelled as such. To get an
intuition for the occurrences of eliminable actions in program traces, out of 200 functions
generated by Csmith with -expr_complexity 3, the average trace has 384 actions (max
15511) of which 280 (max 14096) are eliminable, distributed as follows:

IR RaW RaR OW WaR WaW
8 (94) 94 (1965) 95 (10340) 75 (1232) 5 (305) 1 (310)

Additional complexity in labelling eliminable actions is due to the fact that a com-
piler performs many passes over the program and some actions may become eliminable
only once other actions have been eliminated. Consider for instance this sequence of
optimizations from the example in Figure 5.2:

Store g6 4
Load g6 4
Load g6 4
Load g6 4
Store g6 1

RaW−−→ Store g6 4
Store g6 1

OW−−→ Store g6 1

In the original trace, the first store cannot be labelled as OW due to the interven-
ing loads. However, if the optimizer first removes these loads (which is correct since
they are RaW), it can subsequently remove the first store (which becomes an OW). Our
analysis thus keeps track of the critical pairs between eliminations and can label actions
eliminable under the assumption that other actions are themselves eliminated. Irrelevant
and eliminable reads are also labelled in the optimized trace, to account for potential
introductions.

Before describing the matching algorithm, we must account for one extra optimization
family we omitted in the previous section: merging of adjacent accesses. Consider the
following loop updating the global array char g[10]:

for (int l=0; l<10; l++) g[l] = 1;

The reference trace performs ten writes of one byte to the array g. The object code
generated by gcc -O3 performs only two memory accesses: Store g 101010101010101 8
and Store g[8] 101 2. This optimization is sound under hypothesis similar to those of
eliminations: there must not be intervined accesses or release/acquire pairs between the
merged accesses; additionally the size of the merged access must be a power of two and the
merged store must be aligned. Since the C11/C++11 memory model, as formalised by
Batty et al., is agnostic to the size of accesses, we could not formally prove the soundness
of this optimization.

The matching algorithm takes two annotated traces and scans them linearly, compar-
ing one annotated action of the reference trace and one of the optimized trace at a time.
It performs a depth-first search exploring at each step the following options:
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• if the reference and optimized actions are equal, then consider them as matched and
move to the next actions in the traces;

• if the reference action is eliminable, delete it from the reference trace and match the
next reference action; similarly if the optimized action is eliminable. If the action is
eliminable under some condition (for example an Overwritten Write (OW) is only
eliminable if there is a later store to the same variable that is not eliminated, and
any intervening read is eliminated), that condition is enforced at this point;

• if the optimized action can be matched by reordering actions in the reference trace,
reorder the reference trace and match again.

The algorithm succeeds if it reaches a state where all the actions in the two input traces
are either deleted or matched.

To deal with mergeable and splittable accesses (and improve speed), we split the traces
by byte before running this algorithm. Each split traces has all the accesses to a single
byte, plus all atomic operations (to detect illegal reorderings). This is correct because
reordering non atomic accesses is always valid.

Some of these options are very expensive to explore (for instance when combinations
of reordering, merging and eliminations must be considered), and we guide the depth-first
search with a critical heuristic to decide the order in which the tree must be explored.
The heuristic is dependent on the compiler being tested. The current implementation
can match in a few minutes gcc traces of up to a few hundreds of actions on commodity
hardware; these traces are well beyond manual analysis.

Outcome During tracing, cmmtest records one “execution” of a C or C++ program;
using the terminology of previous sections, it should observe a witness for an opsem of
the program. Since cmmtest traces sequential deterministic code in an empty concurrent
environment, all reads of the opsem always return the last (in sb order) value written
by the same thread to the same location. The witness is thus trivial: reads-from derives
from sb while mo and are both included in sb. Note that the tool traces an execution of
the generated assembler and as such it records a linearisation of the opsem’s sb and not
the original sb. In practice, our version of Csmith never generates programs with atomic
accesses not related by sb, and we have not observed any false positive introduced by the
linearisation of sb between non atomic accesses while using cmmtest.

The cmmtest tool compares two opsems and returns true if the optimized opsem can
be obtained from the reference opsem by a sequence of sound eliminations/reorderings/in-
troductions, and false otherwise. If cmmtest returns true then we deduce that this opsem
(that is, this execution path of the program) has been compiled correctly, even if we can-
not conclude that the whole program has been compiled correctly (which would require
exploring all the opsems of the opsemset, or, equivalently, all the execution paths of the
program). Because we are limited to checking one opsem, cmmtest is not sound : it will
never discover wrong transformations such as:

r = a.load();
r2 = a.load();

by

r = a.load();
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r2 = a.load();
if (r != r2)
printf("this will never be seen in an empty context!");

More interestingly, cmmtest is not complete: whenever it returns false, then either the
code has been miscompiled, or an exotic optimization has been applied (since our theory
of sound optimizations is not complete). In this case we perform test-case reduction using
CReduce [RCC+12], and manually inspect the assembler. Reduced test-cases have short
traces (typically less than 20 events) and it is immediate to build discriminating contexts
and produce bug reports. Currently the tool reports no false positives for gcc on any
of the many thousands of test-cases we have tried without structs and atomics; we are
getting closer to a similar result for arbitrary programs (with the restriction of a single
atomic access per expression).

In practice, the tool is useful despite being neither sound nor complete in theory; the
presence of both false negatives and false positives is acceptable as long as they are rare
enough.

Stability against the HW memory model Compiled programs are executed on
shared-memory multiprocessors which may expose behaviours that arise from hardware
optimizations. Reference mappings of atomic instructions to x86 and ARM/POWER ar-
chitectures have been proved correct [BOS+11, BMO+12]: these mappings insert all the
necessary assembly synchronisation instructions to prevent hardware optimizations from
breaking the C11/C++11 semantics. On x86_64, cmmtest additionally traces mem-
ory fences and locked instructions, and under the hypothesis that the reference trace is
obtained by applying a correct mapping (e.g., by putting fence instructions after all se-
quentially consistent atomic writes), then cmmtest additionally ensures that the optimizer
does not make hardware behaviours observable (for instance by moving a write after a
fence).

Another interesting point is that despite tracing assembly code, we only need a theory
of safe optimization for the C/C++11 memory model, and not for the x86 or ARM ones.
It is indeed the responsibility of the compiler to respect the C11 model, regardless of
the platform. So if the processor was to reorder instructions in an incorrect manner, it
would still be a compiler bug, as the compiler should have put more fences to prevent
such behavior.

5.3 Impact on compiler development
Concurrency compiler bugs While developing cmmtest and tuning the matching
heuristic, we tested the latest svn version of the 4.7 and 4.8 branches of the gcc compiler.
During these months we reported several concurrency bugs (including bugs no. 52558,
54149, 54900, and 54906 in the gcc bugzilla), which have all been promptly fixed by the
gcc developers. In one case the bug report highlights an obscure corner case of the gcc
optimizer, as shown by a discussion on the gcc-patches mailing list;1 even though the
reported test-case has been fixed, the bug has been left open until a general solution is
found. In all cases the bugs were wrongly introduced writes, speculated by the LIM or
IFCVT (if-conversion) phases, similar to the example in Figure 5.1. These bugs do not

1http://gcc.gnu.org/ml/gcc-patches/2012-10/msg01411.html
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only break the C11/C++11 memory model, but also the Posix DRF-guarantee which is
assumed by most concurrent software written in C and C++. The corresponding patches
are activated via the –-param allow-store-data-races=0 flag for versions of GCC until
4.9 (it became default in 4.10) All these are silent wrong-code bugs for which the compiler
issues no warning.

Unexpected behaviours Each compiler has its own set of internal invariants. If we
tune the matching algorithm of cmmtest to check for compiler invariants rather than
for the most permissive sound optimizations, it is possible to catch unexpected compiler
behaviours. For instance, gcc 4.8 forbids all reorderings of a memory access with an
atomic one. We baked this invariant into cmmtest and in less than two hours of testing
on an 8-core machine we found the following testcase:

atomic_uint a; int32_t g1, g2;

int main (int, char *[]) {
a.load () & a.load ();
g2 = g1 != 0;

}

whose traces for the function main compiled with gcc 4.8.0 20120627 (experimental)
at optimization levels -O0 and -O2 (or -O3) are:

ALoad  a   0  4
ALoad  a   0  4
Load   g1  0  4
Store  g2  0  4

Load   g1  0  4
ALoad  a   0  4
ALoad  a   0  4
Store  g2  0  4

As we can observe, the optimizer moved the load of g1 before the two atomic SC loads.
Even though this reordering is not observable by a non racy context (see Section 4.2.2) ,
this unexpected compiler behaviour was fixed nevertheless (rr190941).

Interestingly, cmmtest found one unexpected compiler behaviour whose legitimacy is
arguable. Consider the program below:

atomic_int a; uint16_t g;

void func_1 () {
for (; a.load () <= 0; a.store (a.load () + 1))
for (; g; g--);

}

Traces for the func_1 function, compiled with gcc 4.8.0 20120911 (experimental) at
optimization levels -O0 and -O2 (or -O3), are:

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The optimizer here replaced the inner loop with a single write:
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for (; g; g--); −→ g = 0;

thus substituting a read access with a write access in the execution path where g already
contains 0. The introduced store is idempotent, as it rewrites the value that is already
stored in memory. Since in the unoptimized trace there is already a load at the same
location, this extra write cannot be observed by a non racy context.Strictly speaking,
this is not a compiler bug. However, whether this should be allowed or not is subject
to debate. In a world with hardware or software race detection it might fire a false
positive. It can also cause a fault if the page is write-protected. Also, possibly a bigger
issue, the introduced write can introduce cache contention where there should not be any,
potentially resulting in an unexpected performance loss.
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Chapter 6

LibKPN: A scheduler for Kahn Process
Networks using C11 atomics

In the previous chapters we have studied C11 from the point of view of compiler writers.
We will now investigate how C11 atomics can be used by programmers to write efficient
yet portable concurrent code through an example.

That example is LibKPN, a dynamic scheduler for a particular class of deterministic
concurrent programs called Kahn Process Networks (KPN). After explaining what they
are and why scheduling them efficiently is challenging, we will present a naive algorithm
for doing so and progressively refine it to account for the C11 memory model. We later
prove that this algorithm is free from undefined behaviour and does not deadlock on valid
KPNs, showing that despite all of its flaws the C11 model is usable today.

6.1 Scheduling of Kahn Process Networks
Kahn Process Networks (KPN) [Kah74] are a widely studied paradigm of parallel pro-
gramming. A KPN is composed of two kinds of objects: processes and queues (also called
tasks and channels). All queues are single producer single consumer (SPSC), first-in first-
out (FIFO), and typically bounded. Each process executes a sequential program, that
can only communicate with the other processes through two operations: pushing a value
on a queue, and popping a value from a queue. An important feature of KPN is that pop
is blocking, i.e. if there is no value to read, it waits until one becomes available. In the
case of bounded queues, push is also blocking, i.e. if there is no space to push a value, the
task also waits until space becomes available.

KPNs are the basis of the Lustre language [CPHP87], and inspired more recently
Openstream [PC13], an extension of OpenMP with streaming.

An interesting property of this model is that it is only possible to write deterministic
programs in it, i.e. programs whose outputs are always the same when given the same
inputs. The model does not allow writing all deterministic programs. For example it is
impossible to implement the parallel or operation. This is the operation defined by the
following:

• it has two inputs and one output;

• it pushes true on its output as soon as true is available on one of the two;

• it pushes false once false is available on both;
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Task A

Task B

buffer capacity 2

(a) A basic KPN with two
tasks

A0 A1 A2 A3
. . .

B0 B1 B2 B3
. . .

(b) The same KPN as a network of task activations with
dependencies

Figure 6.1: An example of decomposing KPNs into task activations

The reason it cannot be implemented as a KPN is that it must wait on both of its inputs
simultaneously, and KPNs only offer a blocking pop operation that looks at one input.
We will see in Section 6.2.4 how to deal with a richer model that can implement parallel
or.

6.1.1 Graphs of dependencies between task activations

An alternative way of thinking about parallel deterministic programs is based on task
activations1 and explicit dependencies between these. In this model, each task activation
has a list of other task activations it depends on and can only start once they are finished.

These two different models turn out to be equivalent [Lê16].
A KPN can be represented by splitting each process (that we call task in the rest of

this thesis) into task activations, separated at every push and pop. These task activations
are then related by a chain of dependencies to enforce the original program order inside
tasks. Finally, extra dependencies are added from every push to the pop that reads from
it and from every pop to the push that later stores to the memory cell made available by
that pop. Consider for example the Figure 6.1. On the left, it shows a basic KPN: two
tasks A and B, connected by a buffer of size 2. A repeatedly pushes into the buffer, and B
repeatedly pulls from it. On the right is the equivalent representation as task activations
connected by dependencies. The arrows there represent the dependencies (no longer the
buffer).

Conversely, we can represent each task activation by a KPN process, and each de-
pendency by a single-use queue, that is pushed into when the dependency is satisfied,
and popped from at the start of the task waiting for it. This representation is somewhat
inefficient, but it can be used as a first step when translating existing parallel implemen-
tations to LibKPN. OpenMP in particular is best understood in the tasks activations and
dependencies model. Efficiency can then be recovered by aggregating task activations
along a dependency chain in a single task, and aggregating dependencies between parallel
tasks into full-blown channels.

6.1.2 Scheduling: why naive approaches fail

All tasks can be classified in three groups:

• currently running on a core;

• ready to run;
1Task activations are more often called tasks in the literature, but we already use the word task for

kahn processes
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• waiting on a dependency, i.e. trying to push to a full queue or pop from an empty
queue;

Waiting

Ready Running

Figure 6.2: The three logical states a task can be in

There has already been a lot of research on how to schedule lightweight threads on
the cores of modern multicore processors. We can reuse these results to deal with the
transitions between the ready and running states in Figure 6.2. More specifically we use
a work-stealing algorithm for this purpose (see next section for details).

What we focus on is the other transitions: tracking which task is ready to run, and
which one is still waiting on a dependency.

6.1.2.1 Polling tasks for readiness

A simple approach would be to consider all tasks as ready to run, and check the availability
of their dependencies when they start running. This amounts to polling not-running tasks
regularly to find those actually ready to run. Unfortunately, this approach does not work
for two reasons, and we must explicitly track separately tasks ready to run and those
waiting on a dependency.

The first issue is that this approach limits us to schedulers that exhibit some degree of
fairness. Consider a trivial example with only one core and two tasks A and B, such that
A is ready to run and B depends on A. If the scheduler is unfair and constantly choose
to run B, the system will not make progress. This is especially an issue for schedulers
based on work-stealing, that offer little overhead and good locality, but have no fairness
by default.

The second issue is that even with a perfectly fair scheduler, the performance can be
arbitrarily degraded. Consider a set of n tasks A0, A1, . . . An where A(i+1) depends on
Ai. If a round-robin scheduler (perfectly fair) tries to execute this set without taking into
account the dependencies, it may run the tasks in reverse order, resulting in n− 1 useless
task activations before A0 can make progress, then n − 2 before A1 makes progress and
so on. As n is not bounded, this can represent an arbitrarily large slow-down.

6.1.2.2 Naive cooperative algorithm

A simple way to track the readiness of tasks is to add two bits to each buffer. Whenever a
task tries to pop from an empty buffer, it sets the first bit, and whenever it tries to push
from a full buffer, it sets the second bit. In both cases, it then yields control back to the
scheduler. We say that this task is suspended. Whenever a task successfully pushes or
pops from a buffer, it checks the corresponding bit and if it is set, unsets it and informs
the scheduler that the task on the other side is now ready to run. We say that this task
is woken up.

This algorithm fails because of a race between the moment where a task sets the
bit, and the moment where the opposing task tests it. The next section will describe
increasingly efficient ways of dealing with this race.
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6.2 Algorithms for passive waiting
In this section, we will see the pseudocode for the three different algorithms we developed,
along with informal justifications of their correctness. The formal proofs are in the next
section.

The first algorithm solves the race explained previously by adding a second check in
suspend. We call it algorithm F (for Fence) in the figures because in C11 it requires a
sequentially consistent fence in push and pop. It is presented in Section 6.2.1.

The second algorithm uses an optimistic approach: it lets tasks get suspended wrongly,
and makes sure they are awoken later when one of their neighbors suspends. We call it
algorithm S for Scan, because it requires a scan of all neighbors of a task during suspension.
It is presented in Section 6.2.2.

We then show a way of getting the performance benefits of both approaches with a
hybrid algorithm, called H in the figures. It is presented in Section 6.2.3.

Finally, we discover in Section 6.2.4 that it is possible to adapt this last algorithm to
implement a richer model than KPNs.

Our code manipulate three kinds of data structures:

Tasks Each task has a pointer to the function it represents. It also has a pointer to an
array of all the queues it is connected to. Finally, it has a pointer to the worker
thread it is executing on.

Work-stealing deques There is one such worker thread for each core. Each worker
thread has a work-stealing deque filled with task pointers. Such a deque offers three
operations: take and give that can be used by a thread to act on its own deque; and
steal which can be used by other threads to get tasks to execute when their own
deque is empty. We use for this purpose the Chase-Lev deque [CL05], which has
been adapted for C11 and proven correct in this context in [LPCZN13]. The three
functions from this library are prefixed by WS.

Queue Each queue (channel between tasks) has two bits, one for the producer to indicate
it is waiting for empty space to push, and one for the consumer to indicate it is
waiting for a value to read. It also has a ring buffer to store the data. For this
part we use a C11 library that is described and proven correct in [LGCP13]. The
functions from this library are prefixed by RB. Finally it has pointers to both its
producer and its consumer.

We present the code to all three algorithms in Figures 6.3 and 6.4. push and pop take
as argument the task executing them, the queue to operate on, and the data to write or
the variable to store the result in. They can directly call tryawaken on a task and the bit
in the queue noting whether that task is suspended. Finally, they can ask the scheduler
to call suspend on a task on their behalf2. The function suspend also takes as argument
the queue the task is suspending on, and an enum telling whether the task is suspending
during a push or a pop.

6.2.1 Algorithm F: double-checking in suspend

As the case of popping from an empty buffer, and the case of pushing into a full one are
symmetric, we will only treat the first case in what follows. In essence, what we build can

2We explain why push and pop cannot call suspend directly themselves in Section 6.2.5.2.
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push(t, q, x) {
if (RB_is_full(q->buf)) {

yield_to_scheduler(t->worker , SUSPEND(t, q, OUT));
}
RB_push(q->buf , x);
#if ALGORITHM_F

fence(seq_cst );
#endif
tryawaken (&q->wait[IN], q->task[IN]);

}

pop(t, q, var) {
if (RB_is_empty(q->buf)) {

yield_to_scheduler(t->worker , SUSPEND(t, q, IN));
}
RB_pop(q->buf , var);
#if ALGORITHM_F

fence(seq_cst );
#endif
tryawaken (&q->wait[OUT], q->task[OUT]);

}

Figure 6.3: Code of push and pop

be seen as an SPSC semaphore; and each bounded channel has two: one for tracking the
available space for push, and one for tracking the available data for pop.

We remove the race mentioned in the previous section by adding a second check after
setting the bit; if that second check shows that another thread pushed into the buffer
while we were setting the bit, then we try to unset the bit and cancel our suspension.

This introduces a new race as we can try to cancel our suspension at the same time
that the other thread wakes us up. That new problem is solved by using an atomic
exchange operation on the bit: no more than one thread can get the old value of 1.

The first load of waitvar in tryawaken is purely an optimization; doing the exchange
operation unconditionally would also be correct, merely a bit slower.

Translation to the C11 model Until now, we designed the algorithm as if it was
running on the SC model. As the code is racy, we must now account for the subtleties of
the C11 model.

In particular, it is necessary to add sequentially consistent fences to both suspend and
push/pop, to prevent a situation analogous to the SB litmus test, in which neither the load
in tryawaken, nor the load in suspend see the stores in push/suspend (see Figure 6.5).
This would result in the task never being awoken, leading to deadlock.

We have seen in Section 3.0.1 that sc fences have semantics that are weaker than
expected. But it is not a problem here as we only need to prevent the SB-like pattern
and the rules clearly work for this. For the SB pattern to have its anomalous result, one
of the two writes would have to be before in the mo order the write of the initial value
by SCFences3. This in turn is impossible by CohWW.
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is_not_full_or_not_empty(q, d) {
return (d == IN && !RB_is_empty(q->buf))

|| (d == OUT && !RB_is_full(q->buf));
}

suspend(t, q, d) {
#if ALGORITHM_F || ALGORITHM_S

store(&q->wait[d], 1, release );
#elif ALGORITHM_H

store(&q->wait[d], 1, relaxed );
store(&t->status , 1, release );

#endif
fence(seq_cst );
#if ALGORITHM_F

if (is_not_full_or_not_empty(q, d))
tryawaken (&q->wait[d], t);

#elif ALGORITHM_S
for (kind in {IN, OUT}) {

for (p in t->queues[kind])
tryawaken (&p->wait[kind], p->task[kind ]);

}
#elif ALGORITHM_H

s = load(&q->task[!d]->status , acquire );
if (s && is_not_full_or_not_empty(q, d))

tryawaken (&q->wait[d], t);
for (kind in {IN, OUT}) {

for (p in t->queues[kind])
if (is_not_full_or_not_empty(p, kind))

tryawaken (&p->wait[kind], p->task[kind ]);
#endif

}

tryawaken(waitvar , t) {
if (load(waitvar , relaxed )) {

#if ALGORITHM_F || ALGORITHM_S
wv = exchange(waitvar , 0, acquire );
if (wv)

WS_give(workq[t->worker], t);
#elif ALGORITHM_H

s = exchange (&t->status , 0, acquire)
if (s) {

*waitvar = 0;
WS_give(workq[t->worker], t);

}
#endif

}
}

Figure 6.4: Code of suspend and tryawaken (relaxed code in italics)
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suspend: store(&q->wait[d],1,release);

suspend: fence(seq_cst);

suspend: is_not_full_or_not_empty(q, d);

push: RB_push(q,x);

push: fence(seq_cst);

tryawaken: load(waitvar)

rfrf

sc

Figure 6.5: SB-like pattern in algorithm F: depending on the direction of the sc order, at
least one of the rf edges is present.

The acquire exchange operation in tryawaken synchronises with the release store in
suspend, to make sure that if that task is awakened, the new activation of it will see
everything done by the previous activation, giving the illusion of sequentiality. At the
same time, the first load in tryawaken can be relaxed, as there is no need to synchronise:
the exchange operation will take care of it.

6.2.2 Algorithm S: removing fences on the critical path

The previous algorithm has a frustrating issue: it has a rather costly sequentially consis-
tent fence in the middle of every push and pop. This is especially regrettable after having
picked an underlying ring buffer data structure precisely for its low overhead and absence
of full fence on the critical path.

Our first solution to this issue is the algorithm S (which stands for Scan), which
enforces a weaker invariant3. Informally, the algorithm F enforces the invariant that no
task is ever suspended on a buffer wrongly, i.e. waiting for data while the buffer is not
empty. More formally: if the suspend operation succeeds, there is no push operation whose
fence is sc-before the one in the suspend procedure that the pop operation could have read
from. It turns out that a much weaker invariant is sufficient to prevent deadlocks: no task
is ever wrongly suspended waiting on another task that was wrongly suspended after it.

This is achieved by having suspend unconditionally succeed, and do a scan of all other
tasks potentially waiting on the one suspending, waking all of them up. Those that were
wrongly suspended will be able to make progress; the rest will suspend again (potentially
waking up more tasks, and so on). This cascade of wake-ups will eventually reach any
wrongly suspended task, ensuring progress of the whole system.

6.2.3 Algorithm H: keeping the best of algorithms F and S

The algorithm S has very low overhead on most microbenchmarks. But it performs badly
on a few. The reason is that it can spuriously wake-up and suspend again every task
in the network every time a task must suspend. This motivates the search for a third
algorithm that would have the low worst-case complexity of algorithm F, and the low
overhead in the average case of algorithm S.

3Such reasoning based on invariants is hard to state formally in weak memory models, as there is
no one ordering of memory operations that all threads can agree upon. It is provided here to give the
intuition that led us to the algorithm, the formal proof is written in a different style, and is available in
the next section.
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This hybrid algorithm (called algorithm H in the pseudo-code fragments) relies on the
following informal invariant: no task is ever suspended wrongly on a task that is also
suspended. A deadlock would require a cycle of tasks suspended on each other. With this
invariant, it is clear that such a cycle is impossible unless all the suspensions are justified,
which would be a sign of an incorrectly specified KPN.

Its enforcement is made possible by moving the point of synchronisation from the
buffers to the tasks themselves, each task having a status field that is set whenever it is
suspended. When a task A suspends on a task B, A starts by reading this status bit from
B. If it is not set, then it can suspend unconditionally: it will be B’s responsibility to
enforce the invariant. If it is set, then A must check again that it is correct to suspend.
This second check is guaranteed to be accurate because the load of the status bit is
acquire and the related store is release, so A sees everything that B did before suspending.
Whenever a task successfully suspends, it then scans all of its neighbours to find if any
are wrongly suspended on it. This last part is what lets B enforce the invariant when A
does not see its status bit set.

To recapitulate, if a task A is about to suspend wrongly on a task B that is suspended
or suspending, there are three possibilities:

• the task A will see the task B suspended when it loads its status bit. Since this
load is acquire, and the setting of this bit uses the release attribute, everything done
to this point by task B is visible to task A. A can now cancel its suspension as it
notices the push that B made prior to suspending;

• or B will notice that A is suspending when doing its scan at the end of the suspend
procedure, and wake it up;

• or both will happen, and they will both call tryawaken on A. This is not an issue,
thanks to the exchange operation which will succeed for exactly one of them.

It is impossible for both to miss the other, because of the sequentially consistent fence in
suspend; the code has the same shape as the SB litmus test.

Since cascade of wake-ups are not required in this algorithm, the scan does not have
to wake-up tasks that are not wrongly suspended. As a result, it can be proved that there
are no spurious wake-ups : any time a task is woken up, it can make progress (defined as
executing outside of push and pop).

It is interesting to relate these three algorithms to the “Laws of Order” pa-
per [AGH+11]. That paper shows that all concurrent operations that respect some condi-
tions must use at least one sequentially consistent fence, or a read-modify-write operation.
We do have such a fence in push and pop in Algorithm F, but not in the other two algo-
rithms. The reason we can escape this requirement is that push/pop are not linearizable
in algorithms S and H (we can have a push and a pop on the same queue that do not
notice each other and have inconsistent views of the queue), and linearizability is one of
the conditions established in the paper. On the other end, when we actually get some
mutual exclusion (only one instance of a task can be woken up at a time), we do get costly
synchronisation (some form of exchange or compare-and-exchange) in all three algorithms.

6.2.4 Going beyond KPNs: adding select in algorithm H

Since the memory location that is used for synchronisation is now in the task itself, it is safe
to have different threads call tryawaken on the same task; only one will succeed thanks

79



select(t, qs, var) {
while (true) {

foreach (q in qs) {
if (! RB_empty(q->buf)) {

RB_pop(q->buf , var);
tryawaken(q->tasks[OUT], q, OUT);
return;

}
}
yield_to_scheduler(t->worker , SUSPEND_SELECT(t, qs));

}
}

suspend_select(t, qs) {
t->select_qs = qs;
foreach (q in qs) {

store(&q->wait[IN], 1, relaxed );
}
store(&t->status , 1, release );
fence(seq_cst );
foreach (q in qs) {

s = load(q->task[OUT]->status , acquire );
if (s && !RB_empty(q->empty )) {

tryawaken(t, q, IN);
break;

}
}
for (kind in {IN, OUT})

for (p in t->queues[kind])
if (is_not_full_or_not_empty(p, kind))

tryawaken(p->task[kind], p, kind);
}

tryawaken(t, q, kind) {
wv = load(&q->wait[kind], relaxed );
if (wv) {

s = exchange (&t->status , 0, acquire)
if (!s)

return; // cancel wake -up
foreach (p in t->select_qs) {

store(&p->wait[kind], 0, relaxed );
}
WS_give(workq[t->worker], t);

}
}

Figure 6.6: Supporting select in algorithm H
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to the atomic exchange operation. This allows us to implement the select operation,
that pops from any buffer from a set that is non empty. The corresponding pseudo-code
is presented in Figure 6.6. The presence of this operation means that we are now strictly
more expressive than Kahn Process Networks. For example, we can now easily implement
parallel or.

Preventing spurious wake-ups caused by select If we implement select as in Fig-
ure 6.6, we will lose the property that every task that is woken up can make progress.
Consider the following sequence of events:

• task A does a select on B and C and suspends itself;

• task B reads the wait field of the queue to A (in a call to tryawaken);

• task C wakes up A;

• task A does a select on D and E and suspends itself;

• task B swaps the status field of A to 0, observes it was positive and wakes up A;

• task A is awoken spuriously: it has no data to read from D or E

It is easy to prevent this at the cost of turning the exchange operation in try_awaken into
a compare-and-exchange operation, as shown in Figure 6.7. The trick is to keep in each
task an epoch field that counts the number of times that task suspended itself, to store
it into both the status field and the queue wait field, and to have try_awaken check the
correspondance between the two. In the sequence of events above, the fifth step would
then fail, as B would notice that the value it read in the wait field of the queue is stale.
It must thus retry, to check whether A is still selecting on it or not (and since it is not, it
will eventually notice the store of 0 into the wait field of the queue by C).

This situation, where an object goes from a first state (in this case suspended) to a sec-
ond state (woken up) and back (to suspended) is a common problem called ABA [DPS10].
Using a counter to make the compare-and-swap fail in that case is a common solution
where it is possible.

6.2.5 Implementation details

The code we have shown until now is idealised, without concerns for implementation
details like memory layout or memory management. We will now deal with these issues
and a few more.

6.2.5.1 Termination

The scheduler loop is shown in Figure 6.8. In it, we can see that termination is detected by
a straightforward pair of counters: num_spawned which is incremented whenever a task is
created and given to the scheduler, and num_collected which is incremented whenever a
task is over. Care must be taken to load them in the order shown, otherwise the following
could happen and cause some worker threads to exit too early:

• task A is the last to execute;

• some worker threads load num_spawned and sees the value n;
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suspend_select(t, qs) {
foreach (q in qs) {

store(&q->wait[IN], t->epoch , relaxed );
}
store(&t->status , t->epoch , release );
++t->epoch;
fence(seq_cst );
foreach (q in qs) {

s = load(q->task[OUT]->status , acquire );
if (s && !RB_empty(q->empty )) {

tryawaken(t, q, IN);
break;

}
}
for (kind in {IN, OUT})

for (p in t->queues[kind])
if (is_not_full_or_not_empty(p, kind))

tryawaken(p->task[kind], p, kind);
}

tryawaken(t, q, kind) {
while ((wv = load(&q->wait[kind], relaxed ))) {

s = CAS(&t->status , wv, 0, acquire , relaxed );
if (!s)

continue; // wv is stale , retry
foreach (p in t->select_qs) {

store(&p->wait[kind], 0, relaxed );
}
WS_give(workq[t->worker], t);
return; // success

}
}

Figure 6.7: Preventing spurious wake-ups in algorithm H with select

82



while (true) {
task *tp = NULL;
while (tp == NULL) {

int collected = load (& num_collected , acquire );
int spawned = load(& num_spawned , relaxed );
if (collected == spawned) {

exit (0);
}
tp = WS_try_pop ();
if (tp == NULL)

tp = WS_try_steal ();
}
result = run(tp);
if (result == DONE) {

suspend_done(t);
fetch_and_add (& num_collected , 1, release );

} else if (result == SUSPEND(t, q, d))
suspend(t, q, d);

else if (result == SUSPEND_SELECT(t, qs))
suspend_select(t, qs);

}

Figure 6.8: Code of the scheduler loop

• task A creates a task B and gives it to one worker thread, incrementing num_spawned;

• task A ends, and num_collected is incremented;

• the worker threads load num_collected and sees the value n;

• they decide that all tasks are over, and exits while task B still has not finished.

In addition to incrementing num_collected, the end of a task leads to a call to
suspend_done (shown in Figure 6.9). This function acts like suspend on a phantom
queue. Its role is to make sure that no other task is wrongly suspended on that one. Since
tasks cannot wrongly suspend in algorithm F, it is a no-op in that case.

6.2.5.2 Avoiding a race on stacks

Another point about the scheduler loop is that suspend is always called from the scheduler
loop, and not directly from the code of push/pop (in Figure 6.3). This is absolutely
necessary as other threads can wake up the task as soon as suspend stores to q->wait (in
the case of the first two algorithms) or to t->status (in the case of the last algorithm).
At this point, they may access the stack of the task, and if the task is still executing (for
example because it is doing the scan in suspend) this will cause some data-race and stack
corruption.
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suspend_done(t) {
#if ALGORITHM_H

store(&t->status , 1, release );
fence(seq_cst );
for (kind in {IN, OUT}) {

for (p in t->queues[kind])
if (is_not_full_or_not_empty(p, kind))

tryawaken (&p->wait[kind], p->task[kind ]);
#elif ALGORITHM_S

fence(seq_cst );
for (kind in {IN, OUT}) {

for (p in t->queues[kind])
tryawaken (&p->wait[kind], p->task[kind ]);

}
#endif

}

Figure 6.9: Code of suspend_done

6.2.5.3 Storing wait fields together for better cache locality

Both algorithms H and S require tasks to be able to scan all the queues they are connected
to, and do something when one of their two wait fields is set. This can be very costly for
tasks connected to many queues if it involves a pointer dereference for each queue (and
thus potentially a cache miss). Stores to these fields are on the other hand quite rare. So
we move these fields from the queue structure to an array in the task structure. When
the producer suspends, it must follow a pointer from the queue to the consumer task. On
the other hand, the consumer during its scan can just iterate over the array looking for a
non null cell.

This restricts expressiveness in one way: the number of queues that will be attached
to a task must be known when allocating the task to correctly size the array. This does
not seem to be a problem in our examples. If it were to become a problem, it would be
possible to mitigate it, for example by using a linked list of arrays for tasks with a very
large number of attached queues.

6.2.5.4 Memory management

There are several kinds of objects to keep on the heap and eventually reclaim.

Work-stealing deques This one is by far the easiest. As long as one scheduler loop is
active, these are kept. The last scheduler loop to exit can reclaim them all. Reallocation
when the deques are full is managed completely transparently by the library we are using.

Queues A queue can be accessed by exactly two tasks as it is single-producer single-
consumer. So we use a simple atomic reference count starting at two. When a task closes
the queue or finishes it decrements the reference count. When it hits 0, the queue is freed.
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Tasks Tasks are much more difficult to manage, as they can be accessed concurrently
by any other task that shares a queue with them, in addition to itself. In particular, in
algorithm H their status field can be read.

This is solved again with a reference count, initialized at one and incremented by every
queue the task is connected to. When a queue is reclaimed, it decrements the reference
count of both sides. When the task finishes, it also decrements its own reference count.
Whoever brings the reference count to 0 can safely free the task.

Vector of wait fields As explained in Section 6.2.5.3, the wait fields of all queues
connected to a given task are stored in an array that is owned by that task. This array
can be safely reclaimed at the same time that the task structure itself is.

6.2.5.5 Batching queue operations

The library we use for the queues offers batch operations: pushing or popping n values
at once. We expose these operations to the programmer, but they can introduce another
kind of spurious wake-ups:

• task A tries to pop 3 values from a queue q connecting it to task B. q is empty, so
it fails and A suspends.

• task B pushes one value to q, sees that A is suspended and wakes it up.

• task A tries again, but there is only one value in q, so it suspends again without
having made progress.

This can be solved by storing in the q->wait field the number of elements missing,
and only waking up a suspended task while it is reached. Since we already need to store
the epoch counter in this field (see Section 6.2.4), we can store one value in the high bits,
and the other in the low bits.

6.3 Proofs of correctness

6.3.1 Outline of the difficulties and methods

A common approach to proving concurrent algorithms is linearizability. However, because
it relies implicitly on a total order among operations it can only be directly used in a
sequentially consistent model and fails to capture the specific guarantees provided by
operations in a weak memory model. For example in our case, a successful pop happens-
after a successful push, but there is no (≺sc) edge in-between. There has been an attempt
to build a similar approach for modularly proving programs in C11 [BDG13], but it
becomes non-modular and rather complex for programs that use relaxed atomics (such as
LibKPN).

Another approach is to use a program logic. Sadly, none of those that have been
proposed for C11 [TVD14, VN13] cover the entire subset of C11 features we use (notably
sequentially consistent fences + relaxed atomics). So we went instead for a proof that is
specific to this program, and not modular, but can deal with all the parts of C11.

The most important thing to show is that tasks cannot be duplicated; in other words
a task gets suspended between every pair of (adjacent) wake-ups. If a task was awoken
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twice in a row, the two resulting task activations would race on every access, which would
make the whole program undefined.

Since the existence of a duplicated task can lead to more duplicated tasks, this proof
needs to proceed by induction: no task is duplicated at the beginning of time, and every
transition of the system preserves this property. However, the very existence of the ≺hb

order over the transitions of the system crucially depends on the absence of duplicated
tasks and races, making it unavailable as the order to do the induction over. We solve
this by building a custom ≺to order that is clearly well-founded, and only showing it to
be a subset of ≺hb at the very end of the proof.

This proof that tasks are never duplicated and have the illusion of sequentiality is
shared between the three algorithms. They differ in the proof of progress that follows
(Section 6.3.3).

6.3.2 Absence of races

Definition 17. Any task can be in one of 7 different states:
U uninitialised
N new
P posted
E executing
S suspended
W waking-up
F finished

Definition 18. Some instructions in the code are called transition points.
Each of these points is associated to a state that it transitions the task to.
Here is the list of these points:

spawn N: the increment of num_spawned when a task is created

finish F: the increment of num_collected in the scheduler loop when a task ends

post P: the call to WS_give by the creator of a task

take E: the call to WS_take in the scheduler loop

steal E: the call to WS_steal in the scheduler loop

suspend S: the first release store in suspend or suspend_select (so a store to
t->status for algorithm H, and to q->wait for the other two)

wakeup W: the Read-Modify-Write operation in tryawaken, when it reads a positive
value

repost P: the call to WS_give in tryawaken

Definition 19. We define (≺to) as an order on transition points that is compatible with
(≺hb) (i.e. (≺to ∪ ≺hb)+ is acyclic) and whose projection on the transition points of any
given task T is a total order.
(≺to) exists by the order-extension principle (any partial order can be extended into a total
one).
When before or after are used without precision in this document, they are meant to use
(≺to).
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Definition 20. A task T is said to be in a state A if the last transition by (≺to) that is
associated with T leads to A (is associated with A).
Before (by (≺to)) its first transition, a task is said to be in the state U.

Definition 21. We say that a transition t of a task T respects H if all the following
statements are true:

• ∀t2 ≺to t, t2 ≺hb t.

• If t is spawn, then T was in U just before

• If t is finish, then T was in E just before

• If t is post, then T was in N just before

• If t is take, then T was in P just before

• If t is steal, then T was in P just before

• If t is suspend, then T was in E just before

• If t is wakeup, then T was in S just before

• If t is repost, then T was in W just before

• If t is finish, suspend or repost then it is (≺sb)-after the (≺to)-last transition of T

• If t is take, steal or wakeup, then it reads from the latest transition to P

H is the induction hypothesis used in the proof. Most importantly, it says that tasks
states change according to the following automaton:

F Efinishoo suspend// S

wakeup
��

U spawn
// N

post
// P

take steal

OO

W
repost
oo

Lemma 2. (≺to ∪ ≺hb)+ is a well-founded order.

Proof. The relation is trivially transitive, as it is a transitive closure. It is also trivially
acyclic by definition of (≺to).

Let us show that it is well-founded.
Let there be an infinite decreasing sequence. We project it on every thread. Since there

is only a finite number of threads, at least one projection is also infinite. (≺sb) ⊂ (≺hb),
so every element of this sequence is either incomparable or smaller than every previous
element of the sequence.

Statements in C are always comparable according to (≺sb), while operands within an
expression may not be, because of unspecified evaluation order. Since expressions in the C
program are finite, we assume that every event is incomparable with only a finite number
of elements; i.e., that every operator chain has a finite arity.

Then we can quotient by the equivalence relation (“is incomparable with”)∪ (=), and
get an infinite, decreasing sequence in (≺sb), which cannot exist.

Lemma 3. Every transition respects H.
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Proof. We proceed by induction over (≺to ∪ ≺hb)+ (which is a well-founded order by the
previous lemma) with the induction hypothesis H. Let t be a transition of a task T , such
that ∀t2 ≺(to∪hb)+ t, t2 respects H, we must prove that t respect H.

By case analysis over t:

• If t is a spawn transition.
If there were any transition (≺to)before t, the first such transition would be a spawn
transition t2 by H. The spawn transition always happens on a task just (≺sb)-after
it is allocated. So the task would have been allocated both just before t and just
before t2. This is a contradiction, so t must be the first transition T . So t respects
H trivially.

• If t is a finish or suspend transition.
From the code of the scheduler loop, it is clear that there is a take or steal transition
t2 of T that is (≺sb)-before t, with no other transition (≺sb)-between them. By
contradiction: let’s assume that there is another transition t2 of T such that tE ≺to

t2 ≺to t. We pick the (≺to)-first such t2. We can apply H to t2, and T is in E after
tE, so t2 is necessarily another finish or suspend transition. Again by H, t2 must be
immediately (≺sb)-after the previous transition, that is tE. But that is absurd as t is
the transition of T immediately (≺sb)-after tE. This transition is unique, because we
kept (≺sb) total on the actions of each thread, by avoiding having memory accesses
either as arguments of functions or as operands to operators (the two main ways for
(≺sb) to split).

• If t is a post transition.
We assume that starnk_post() is only called once by task, and that it is called
(≺sb)-after the task is spawned.
So there is a ts ≺hb t spawn transition of T . By H, the only way to leave the state
N is by a post transition. But we just assumed that t is the only such transition.
So there cannot be any transition of T between ts and t, and t respects H.

• If t is a take or steal transition.
t gets the task T from a work-stealing deque, so by property of the work-stealing
deque, there is tP a post or repost transition of T to P with tP ≺hb t, and tP
justifying t. So tP ≺to t. By contradiction: assume that there is another transition
t2 (≺to)-between tP and t. We pick the first such t2. H applies to t2, so t2 is a take
or steal transition. By property of the work-stealing deque, there is a transition t2P
of T to P with t2P ≺hb t2 and t2P justifying t2. t2P 6= tP by property of the deque:
every transition to P can justify only one transition from P. t2 is the first transition
(≺to)-after tP , so t2P ≺to tP . Absurd by H. So t is just after tP by both (≺to)and
(≺hb), and reads from it: t respects H.

• If t is a wakeup transition.
t is a Read-Modify-Write (RMW) operation, from a positive value to 0. So it must
read from a store of a positive value to the same memory location. By examining
the code, it is clear that all such stores are suspend transitions of the same task. So
there is a suspend transition tS of T with tS

rf−→ t. As tS is a release store and t is
acquire, tS ≺hb t. Since ≺to ∪ ≺hb is acyclic, tS ≺to t By the AtRMW axiom tS is
immediately before t in mo order.
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Let’s prove by contradiction that there is no t2 with tS ≺to t2 ≺to t. We pick the
earliest such t2 (by ≺to). By H t2 must be a wakeup transition since it is just after
tS, and it reads from tS By the AtRMW axiom, t2 is immediately after tS in mo
order. But that is t: Contradiction

• If t is a repost transition.
By looking at the code it is clear that there is a wakeup transition tW with tW ≺sb t
(and so tW ≺to t). Let’s prove by contradiction that there is no t2 with tW ≺to t2 ≺to

t. By H, t2 is a repost transition of T and is (≺sb)-after tW . It is clear from the
code that tW ≺sb t2 ≺sb t is impossible. We have avoided having transition points
in complex expressions, so all those by a single thread are comparable by (≺sb). So
t ≺sb t2. So t ≺hb t2 ≺to t. Which is in contradiction with the construction of ≺to.

Corollary 1. All transitions of a task are ordered by (≺hb).

Theorem 14. No data races can occur when running LibKPN, under the following hy-
potheses:

• a single task ever push to each queue;

• a single task ever pops from each queue;

• every task that is spawned is posted exactly once.

Proof. We look at all the non atomic accesses:

• Accesses to the local variables of each task T
Let a and b be two such accesses. By looking at the code of the scheduler loop, it
is clear that there are two transitions ta1, ta2 of T with ta1 ≺sb a ≺sb ta2, and two
transitions tb1, tb2 of T with tb1 ≺sb b ≺sb tb2, and ta2 is immediately after ta1 in
(≺to), and tb2 is immediately after tb1 in (≺to). Three possibilities:

– ta2 ≺to tb1 Then a ≺hb b

– tb2 ≺to ta1 Then b ≺hb a

– ta1 = tb1 Then ta2 = tb2 and a and b are in the same thread and cannot be part
of a data race.

• Accesses to the queues’ content
By the same argument, accesses from the same side of the queue do not race with
each other. Accesses from the producer and consumer end do not race by a property
of the library we are using for the queues.

• Accesses to the stack pointer
Because we take care to yield to the scheduler before doing the suspend or finish
transitions, the same argument as for accesses to local variables hold.
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6.3.3 Guarantee of progress

In order to prove that our algorithms neither deadlock nor livelock on valid KPNs we
must define both progress and what it means for a KPN to be valid. We define progress
as running in user code, and consider a KPN to be valid if there is a SC scheduling of it
that does not get stuck.

Definition 22. A task is said to be making progress if it is executing outside of the code
of LibKPN.

Definition 23. A single-thread scheduling of a KPN is obtained by repeatedly picking one
task that can make progress, and executing it for one task activation.

Definition 24. A KPN is said to be valid if there is a single-thread scheduling of it that
can always find tasks ready to make progress, or that eventually has all tasks done.

Lemma 4. If a scheduler loop exits, every task whose spawn was (≺hb)-before the
last read of num_spawned has a finish transition that was (≺hb)-before the last read of
num_collected.

Proof. If the scheduler loop exited, it means that the last loads of num_spawned and
num_collected returned the same value n. For every task, there are three different
possibilities when the scheduler loop exits:

• It is counted by neither num_spawned nor num_collected (for example because it
has not been spawned yet).

• It has been finished, and its increment of num_collected was watched in the sched-
uler loop. Then it has necessarily been spawned, and by Corollary 1, this spawn
transition happened-before the finish transition. As the load of num_collected is
acquire, and its increment is release, the spawn transition also happened-before the
load of num_spawned. So this task is counted in both loads.

• Its spawn transition was observed in the scheduler loop, but not its finish transition.

Since tasks in the third category increase the value read by the load of num_spawned but
not the value read by the load of num_collected, and tasks in the other two categories
do not change the difference between these two values, and these values had to be equal
for the scheduler loop to exit, it is impossible for any task to be in the third category.

Lemma 5. If the scheduler loop exits, then every task whose spawn transition happened
before the scheduler was started, and every task started by those tasks recursively have
finished (≺hb)-before the exit of the scheduler loop.

Proof. We say that a task has a spawn depth of 0 if it is spawned (≺hb)-before the start
of the scheduler loop, and otherwise of n+ 1 where n is the spawn depth of the task that
spawned it. We proceed by recurrence on the spawn depth d of each task T that verifies
the hypothesis.
If d = 0, the spawn transition of T was obviously visible to the read of num_spawned in
the scheduler loop. So by the previous lemma, it has finished (≺hb)-before the exit of the
scheduler loop.
If d = n + 1, by recurrence hypothesis, T was spawned by a task T0 that finished after
the spawn, and before the load of num_collected. By Corollary 1, this implies that the
spawn of T was (≺hb)-before the load of num_collected, and we conclude by the previous
lemma.
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Lemma 6. If the scheduler is stuck on every OS thread without waking up a task, then
every task is in states U, S or F.

Proof. We assume everywhere that if a task is spawned, it is immediately posted, so no
task can remain stuck in state N.
All transitions that bring a task in state E or W are (≺sb)-followed by transitions that
take the same task out of this state. So U, S or F are the only remaining options.

6.3.3.1 Proof of progress in algorithm F

Lemma 7. When running algorithm F on a valid KPN, there are no spurious wake-ups.
In other words, when a task T is woken up, it makes progress before suspending again.

Proof. In algorithm F, the call to tryawaken is conditional on
is_not_full_or_not_empty returning true on the same queue and with the same
direction parameter. So at some point (≺sb)-before the wakeup transition, there was
data in the queue q. (assuming without loss of generality that T had suspended in a pop
call). The queues are single-producer single-consumer, so only T could have removed
elements from q. This can only happen while T is in the E state. It is impossible for the
pop call to fail because of another pop call (≺hb)-after it, so we only need to consider
those before it. They are (≺hb)-before the suspend transition (by Corollary 1), so they
are (≺hb)-before the call to is_not_full_or_not_empty and were fully visible to it. So
there is still enough data in the queue for pop to succeed.

Theorem 15. When running algorithm F on a valid KPN, it is impossible for it to run
forever without making progress, assuming a minimally fair scheduling (i.e. assuming that
no thread is ever prevented from taking a step for an infinite amount of time).

Proof. By contradiction: The only unbounded loop in LibKPN is the scheduler loop. If
it finds tasks to take or steal, they will be able to make progress by the previous lemma.
So the scheduler loop must never find a task to take or steal. By Lemma 6, every task is
in one of states U, S or F. If every task is in states U or F, then num_spawned is equal
to num_collected and the scheduler would have eventually exited. So there must be at
least one task T0 that is stuck in state S. This task is suspended on another task T1. T1

is either finished, or suspended on a task T2, and so on. So either there is a task Tn that
is suspended on Tn+1 that is finished, or there is a cycle of tasks that are suspended on
each other (as there is a finite number of tasks that can be spawned in a finite amount of
time).

• In the first case, Tn+1 has pushed enough data for Tn to read, or it would not be a
valid KPN. Thanks to the presence of a sequentially consistent fence in both push
and suspend_done, either Tn+1 loaded a positive value for waitvar in tryawaken
and will wake-up Tn, or Tn saw that enough data was available in the call to
is_not_full_or_not_empty and cancelled its own suspension. In both cases, Tn

cannot remain stuck in the suspended state.

• In the second case, consider the amount of data pushed and pop on each channel in
the loop. If all suspensions were justified (i.e. there is no space left for any push, nor
any data left for any pop), then we would reach the same deadlock with a single-
thread scheduling, and the KPN is not valid. So there is at least one suspension
that is unjustified: that is a Tn that is suspended on a pop on a channel from Tn+1
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that has data (we only consider pop, as push is similar). Like above, this would
require Tn not to see the last push from Tn+1 on this channel, and Tn+1 not to see
the suspension of Tn in its push; and this is impossible thanks to the fences in push
(for Tn+1) and suspend (for Tn).

Remark: The requirement of a fair scheduling of the scheduler threads shows that
despite being built from lock-free data structures, LibKPN as a whole is not lock-free.

6.3.3.2 Proof of progress in algorithm S

Lemma 8. In a minimally fair implementation, it is impossible for no task to go through
any transition for an infinite time without the scheduler exiting or a task executing.

Proof. By contradiction. By a proof analogous to that of 15, we must have a cycle of tasks
suspended on each other. (≺sc)is a total order on the fences in these calls to suspend.
So there must be two tasks A and B, with the fence in the suspension of A (≺sc)-before
the one in the suspension of B and B suspended on A. But in that case, the scan in the
suspension of B would have seen the suspension of A, and would have woken up A.

Lemma 9. It is impossible for a task T0 to have an infinite number of wakeup transitions
without some task making progress.

Proof. These wake-up transition cannot come from push/pop, or they would lead to
progress. So they must all come from the scan in the suspension of another task T1.
Since each suspension is preceded by a wake-up, that task must itself have been woken up
each time by a suspension from a task T2, and so on. We build this way a loop of tasks
repeatedly suspending, waking up the next task in the cycle, and being woken up again.
Because the synchronisation on q->wait[d] is release/acquire, it creates synchronises-
with edges, and at some point all tasks in the cycle can see all the progress ever done by
all other tasks. If they still cannot make progress, this cycle would have caused a deadlock
in an SC implementation, and the KPN is invalid.

Theorem 16. When running algorithm S on a valid KPN, it is impossible for it to run
forever without making progress, assuming a minimally fair scheduling (i.e. assuming that
no thread is ever prevented from taking a step for an infinite amount of time).

Proof. Trivial by the previous two lemma.

6.3.3.3 Proof of progress in algorithm H

We consider only the last version of the algorithm, with support of select and no spurious
wake-ups (Section 6.2.4).

Lemma 10. When running algorithm H on a valid KPN, there are no spurious wake-ups.
In other words, when a task T is woken up, it makes progress before suspending again.

Proof. Here are the ways a task can be woken up in algorithm H:

• By the calls to tryawaken in push and pop.

• By the first call to tryawaken in suspend or suspend_select, that cancels a sus-
pension.
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• By the call to tryawaken in the scanning part of suspend, suspend_select or
suspend_done.

In all three cases, the call to tryawaken is guarded by a check of
is_not_full_or_not_empty with the same queue and direction. At this point the
proof is almost the same as that of Lemma 7 (that proves the same property for algo F).

The only new case is that of a suspension caused by select. In that case, the suspended
task may no longer be waiting on the same queue. This is not a problem because in that
case the compare-and-exchange in tryawaken will fail (see Section 6.2.4).

Theorem 17. When running algorithm H on a valid KPN, it is impossible for it to run
forever without making progress, assuming a minimally fair scheduling (i.e. assuming that
no thread is ever prevented from taking a step for an infinite amount of time).

Proof. This proof proceeds similarly to the proof for algorithm F (Theorem 15), relying
on the same property of the absence of spurious wake-ups. We show in the same way
that all tasks must be in one of the U, F or S states. If none of the suspended tasks are
suffering from a wrong suspension (i.e. trying to pop/select from a queue that has data
in it), then we could reach the same stalemate in a sequential execution: the KPN is not
valid So there are two tasks A and B and a queue q from A to B, with B suspended
on a pop/select from q and enough data pushed (by A) into q to satisfy it. A cannot
be in state U (since it pushed data), so it is either in F or S. Consider its last call to
suspend, suspend_select or suspend_done. It has a sequentially consistent fence, call
it f . If fA is (≺sc)-before the fence fB in the last call to suspend or suspend_select of
B, then B would have seen the push by A and cancelled its suspension. Reciprocally, if
fB is (≺sc)-before fA, then A would have seen that B is wrongly suspended in its scan
and would have woken it up.

6.4 Remarks on C11 programming
We have seen how to start from a sequentially consistent algorithm and progressively
relax it for performance. As we did so, we had to change not just the attributes on the
atomic accesses, but the algorithmic details, and the invariant respected by the algorithm
to avoid fences in the critical paths.

Several patterns were recognisable:

• A release store synchronising with an acquire load to create the happens-before
relation. This corresponds to the MP pattern (Figure 2.1). This is used to make
the activations of each task ordered, through the release in suspend, and the
acquire in tryawaken.

• Two threads each write to a different variable, and we want at least one to notice the
store by the other thread. This is achieved by adding a sequentially consistent fence
between the store and the load in each thread. It corresponds to the SB pattern
(Figure 1.1). In the algorithm F, it appears as shown in Figure 6.5. In algorithms
S and H, it appears between calls of suspend by adjacent tasks.

• Finally, when two threads might notice that a task must be woken up, and we
want only one to do it (to avoid duplicating the task), we use either an exchange or
compare-and-exchange operation. This is used in tryawaken in all three algorithms.
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Interestingly, while the algorithms were designed mostly through these basic building
blocks, their proof of correctness is built by induction, and not modular. It has been
previously noted that the C11 model does not lend itself to modular proofs [BDG13, Lê16],
and it remains an open question how to do it.

6.5 Applications and experimental evaluation
The work presented in this section is not my own, it was mostly done by Nhat Minh
Lê and Adrien Guatto. I include this section as evidence that the design of LibKPN is
efficient in practice.

We present three sets of benchmarks:

• A few micro-benchmarks to compare the algorithms F and S. Sadly, there has not
been time to implement (and benchmark) the algorithm H, it is still work in progress.

• Two dataflow benchmarks to compare ourselves with a specialized language such as
StreamIt that statically schedules a subclass of KPNs.

• Two linear algebra benchmarks, to evaluate our overhead compared to OpenMP in
the worst case (less than 5%), and to show that KPNs are a model more widely
applicable than usually believed.

These benchmarks were run on the following machines:

i7. A 4-core desktop with an Intel Core i7-2600 at 3.4GHz, Linux version 3.15.

Xeon. A 12-core dual-socket workstation with two Intel Xeon E5-2300 at 2.6GHz, Linux
version 3.13.

Opteron. A 24-core blade with two AMD Opteron 6164 HE at 1.7GHz, Linux ver-
sion 3.2.

POWER. 16 cores out of 32 on an IBM POWER 730 with four POWER7 processors
running at 3.55GHz, and Linux version 3.8. The machine is shared, with only half
of the processors available for benchmarking purposes.

A15. A 2-core Arndale board with a Samsung Exynos 5250 SoC built on an ARM Cortex
15 MPCore at 1.7GHz, Linux version 3.13, throttled at 1GHz for thermal issues.

The linear algebra kernels rely on the MKL to provide fast BLAS routines and thus were
evaluated on x86 only.

We used ICC version 14 with options -O3 -ipo -xHost where possible, or GCC 4.9.1
with options -Ofast -march=native on Opteron and ARM, and -Ofast -mcpu=power7
on POWER. In particular, at the time of writing, SMPSs, Swan and OpenMP 4 require
GCC.

6.5.1 Micro-benchmarks

We considered three different KPN topologies:

map reduce a classic fork-join pattern. On all platforms, algorithm S is faster than
algorithm F. It is about twice as fast on the Opteron machine.
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clique a fully connected graph of tasks. Once again, algorithm S is faster than algorithm
F, but the gap is very small now. This was expected, as the suspend operation in
algorithm S has a cost that depends on the degree of the task.

cycles a small number of long pipelines that loop back on themselves. On most runs,
algorithm S is still faster, but we can observe here some pathological behaviours.
More precisely, when there is a small number of very long pipelines, the runtime of
algorithm S becomes extremely variable, occasionally up to orders of magnitudes
higher than for algorithm F.

This can easily be explained: algorithm S depends on a cascade of spurious wake-
ups to reach tasks that were missed in a push or pop and wake them up. In
this specific case, bad timing can cause this cascade to occur to every (or most)
pushes and pops, and it must loop all over the (arbitrarily long) pipeline. This rare
pathological behaviour motivates the design of algorithm H that strives to keep the
low overhead of algorithm S (shown useful on the other benchmarks) while avoiding
spurious wake-ups.

We also compared our implementation with two others: a reference Go implementation
(in Go 1.3) using goroutines and go channels, and an implementation using Linux native
threads with FIFO queues from the high-performance Intel TBB library. The Go code
was always slower than our algorithm F, often by a factor of about 5. Using native threads
was even worse, with a slowdown of 89 times on mapreduce.

The following caveat should be noted: both Go and TBB implement multiple-producer
multiple-consumer (MPMC) queues, which are intrinsically more costly than their SPSC
counterparts.

6.5.2 Dataflow benchmarks

6.5.2.1 FMRadio

We first consider FMRadio, the prototypical StreamIt benchmark [TKA, TA], inspired
by software radio applications. It is representative of signal processing workloads with
pipelines of data-parallel filters.

Any comparison against StreamIt itself is complicated by the fact that their compiler
outputs specialized C code depending on the characteristics of the target machine [GTA],
most importantly, the number of worker threads requested. It statically partitions and
schedules the program dataflow graph, which makes versions compiled for different num-
ber of processors difficult to compare. In this test, we evaluate two codes generated by
StreamIt: a sequential version, and a 4-core version. Accordingly, we also set up our run-
time with only four threads. The StreamIt programs have widely differing performance
curves depending on the platform, due to the static work estimation and partitioning
being—in all likelihood—mostly tuned for x86. They are mostly presented here for refer-
ence.

This experiment shows in Figure 6.10 that there are benchmarks larger than the
synthetic ones we showed earlier where the algorithm S offers a significant speedup (up
to 2) over the algorithm F.
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6.5.2.2 LDPC

Our second dataflow application is a Low-Density Parity Check (LDPC) decoder, which
implements the cheapest form of iterative belief propagation. Such error-correction codes
are ubiquitous in high-rate wired and radio communications. Interestingly, the algorithm
is not often thought of as belonging to the family of dataflow algorithms. Rather, most
implementations are imperative and iterative. However, the computation can be elegantly
described in terms of bouncing messages between nodes of a bipartite graph. At each
iteration, every vertex reads from all its neighbors, computes a confidence index, and
propagates back this index to its neighbors. The computation stops when a specific
criterion called the syndrome is satisfied.

This naturally leads to an implementation based on tasks aggregating vertices across
iterations, and channels to represent the communications between them. Depending on
topology of the coding graph, the algorithm will exhibit more or less parallelism. Sparser
graphs and less connected components lead to more potential parallelism.

We compare our dataflow implementation to a reference code provided by Thales C&S
to evaluate future hardware platforms for mobile and ad hoc radio communications. This
reference implementation is written in OpenMP following the iterative algorithm, using
parallel for loops and synchronization barriers.

The results in Figure 6.11, against a fixed matrix provided by Thales C&S, show
no clear winner between Algorithms F and S. This is because, although our version of
LDPC is written in a stream-oriented style, with long-running macro-tasks and channels,
pipelines are typically very short on this data set, spanning at best one or two iterations.

Compared to the OpenMP implementation by THALES, our dataflow LDPC performs
better on every platform, though the difference is less on A15 and i7. The three other
machines offer more processors, hence more opportunities for schedule gaps to form, while
a thread is waiting for an OpenMP barrier, something the dataflow version does not suffer
from.
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6.5.3 Linear algebra benchmarks

6.5.3.1 Cholesky factorization

The Cholesky matrix factorization is a well-known problem, with practical high-
performance parallel implementations readily available in LAPACK libraries such as
PLASMA [BLKD09] and Intel MKL. Efficient parallel versions of Cholesky are based
on the tiled algorithm. The input matrix is divided into tiles, and matrix operations are
applied on them. Each output tile is the result of a series of operations on both input
and previously computed output tiles. If each of these operations is a task, then the task
graph is clear: a task depends on the tasks that complete the computation of its required
operands (if they are output tiles).

In a first time, we reused an OpenMP 4 implementation through an OpenMP 4 emu-
lation layer (labeled KOMP) on top of our runtime. Interestingly, once the performance
curves plateau (i.e. for large matrices), KOMP is within 5% of the performance of the
OpenMP 4 runtime. For simplicity, we have opted for a naive dynamic interpretation of
OpenMP directives in our emulation layer, so part of the overhead can be attributed to
the cost of mapping and juggling sequentially with dependency objects within the parent
task. More importantly, the difference between KOMP and OpenMP is within the vari-
ations of Swan and SMPSs, which perform alternatively better and worse than OpenMP
on the two platforms. Therefore we conclude that allocating and managing individual
dependency objects do not incur any incomparably high cost.

In a second time we wrote an optimised version of the same algorithm, taking ad-
vantage of our richer model to aggregate tasks as much as possible. We won’t cover the
specific details of this implementation here as it is not relevant to this thesis. Figures 6.12
and 6.13 show the fruit of our efforts. On our test platforms, our enhanced version, labeled
KPN, consistently outperforms the competition, including the state-of-the-art Intel MKL
and PLASMA implementations. All three test codes have been compiled using the Intel C
Compiler with appropriate options, and are backed by the MKL BLAS and LAPACK. On
the bigger 12-core Xeon machine, the difference is more visible. Our enhanced algorithm
peaks earlier, exhibiting a throughput 19% higher at sizes 4000 and 5000, which progres-
sively tapers off; still, our FLOPS count remains 5% higher than the closest alternative
once all implementations plateau.

The MKL results deserve their own small paragraph. Contrary to other implemen-
tations of Cholesky, the MKL automatically selects its own tile size. Furthermore, it is
unknown what algorithms and schedulers are actually used by the library. As such, we
can only speculate as to the reason of the sharp drop in performance around 7000. The
most likely explanation is that smaller sizes use dedicated settings, ad hoc implementa-
tions, partially static schedules, or a combination thereof, which are abandoned at higher
matrix sizes in favor of more generic but maybe less well-tuned algorithms.

6.5.3.2 LU factorization

As a complementary result, Figures 6.14 and 6.15 present FLOPS measurement for five
implementations of the LU factorization: the SMPSs version and its OpenMP 4 port, the
MKL and PLASMA parallel LAPACK routines, and our own version.

Our algorithm is based on the ScaLAPACK task graphs [CDO+96]. In this respect,
it is similar to the SMPSs code. However, the latter implements a simpler variant where
synchronization barriers are used to divide the computation into big steps, with fine-
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Figure 6.12: Cholesky factorization on Xeon (see Figure 6.14 for legend)
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Figure 6.13: Cholesky factorization on i7
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Figure 6.14: LU factorization on Xeon

grained dependencies in each step. This prevents these versions from scaling on the
higher number of cores of the Xeon machine.

Compared to the MKL and PLASMA, our implementation appears to be competitive
on moderate and large matrices, but suffers on smaller sizes. While we applied similar
optimization techniques to LU as we did to Cholesky, our implementation is missing one
improvement that we believe is mostly responsible for these relatively poor results: in the
LU factorization, the getf2 step that is fairly expensive can execute on large portions of
the matrix sequentially. We believe it would benefit from parallelization at a finer grain,
rather than being treated as a whole tile.
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Figure 6.15: LU factorization on i7
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Chapter 7

A fence elimination algorithm for
compiler backends

Currently, compilers translate atomics in a completely local fashion, following the map-
pings published on [C11]. The recommended mapping for an acquire load is to add a
branch and an isb fence (Instruction Synchronisation Barrier) after the load; but Clang
prefers the equally correct use of a dmb ish (Data Memory Barrier over the Inner SHare-
able domain) fence after the load as it is faster on at least some processors. So the
following code:

r = x.load(acquire );
y.store(release , 42);

gets translated to the following pseudo-assembly:

r = x;
dmb ish; // fence acquire
dmb ish; // fence release
y = 42;

We gave a precise account of the ARM memory model in Section 2.2.2, it is easy
to show that whenever there are two consecutive dmb ish instructions, the second acts
as a no-op. As such it can safely be optimised away without affecting the semantics of
the program in an arbitrary concurrent context. This simple peephole optimisation has
already been implemented in the LLVM ARM backend [Elh14]. However, more generally,
the compiler backend can rely on thread-local data-flow information to identify occasions
to optimise the generated code while preserving the expected semantics. Consider for
instance the snippet of C11 code below:

int i = x.load(memory_order_seq_cst );
if (foo())

z = 42;
y.store(1, memory_order_release );

and the ARMv7 pseudo-assembly generated by the mappings for atomic accesses:

bool a = foo ();
int i = x;
dmb ish;
if (a)

z = 42;
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dmb ish;
y = 1;

In the above code neither of the two dmb ish barriers can be eliminated. Intuitively,
the former fence ensures that the load of x is not reordered with the store of z, and the
latter fence ensures that the write to z is visible by all processors before the write to y is
performed. However this fence placement is not optimal : when a is false two barriers in
a row would be executed while one would suffice (to prevent the reordering of the load of
x with the write of y), and the pseudo-code could be optimised as:

bool a = foo ();
int i = x;
dmb ish;
if (a) {

z = 42;
dmb ish;

}
y = 1;

Now, the optimised pseudo-assembly cannot be obtained by applying a source-to-source
transformation to the original C11 program and then applying the reference mappings.
This suggests that a class of fence optimisations must be implemented in an architecture-
specific backend of a compiler, exploiting the precise semantics of the target architecture.
However, apart from some peephole optimisations like the already cited one [Elh14], at the
time of writing mainstream compilers are very conservative when it comes at optimising
atomic accesses or reordering atomic and non atomic accesses.

Contributions In this chapter we show how to instantiate Partial Redundancy Elimi-
nation (PRE) to implement an efficient and provably correct fence optimisation algorithm
for the x86, ARM and IBM Power architectures, improving and generalising the algorithm
proposed for x86 in [VZN11]. Although these architectures implement widely different
memory models, we identified a key property required for the correctness of our algorithm
and we prove formally that our algorithm is correct with respect the memory model of
the three architectures. We have implemented our optimisation algorithm in the x86,
ARM, and Power backends of the LLVM Compiler Infrastructure [LA04]. We evaluate it
on some benchmarks, including a signal processing application from the StreamIt suite,
on which we measure observe up-to 10% speedup on the Power architecture.

7.1 A PRE-inspired fence elimination algorithm
The design of our fence elimination algorithm is guided by the representation of fences
in the “Herding Cats" framework [AMT14] for weak memory models. This framework,
detailed in Section 2.2.2, represents all the allowed behaviours of a program in terms of the
sets of the memory events (atomic read or writes of shared memory locations) that each
thread can perform, and additional relations between these events. Fence instructions do
not generate events of their own, but are represented as a relation between events. This
relation relates all pairs of memory accesses such that a fence instruction is executed in
between by the sequential semantics of each thread.

This implies that any program transformation that moves/inserts/removes fence in-
structions while preserving the fence relation between events is correct. We can even go
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a bit further. The model is monotonic with respect to the fence relation: adding pairs of
events to the fence relation can only reduce the allowed concurrent behaviours of a pro-
gram. In turn any program transformation modifying the placement of fence instructions
will be correct provided that it does not remove pairs from the fence relation between
events.

Consider now the snippet of C11/C++11 code below, where x and y are global, po-
tentially shared, atomic variables and i is a local (not shared) variable:

int i = x.load(seq_cst );
for (; i > 0; --i) {

y.store(i, seq_cst );
}
return;

and the ARMv7 pseudo-code1 generated by desugaring the loop and applying the map-
pings for the atomic accesses:

int i = x;
dmb ish;
loop:

if (i > 0) {
dmb ish;
y = i;
dmb ish;
--i;
goto loop;

} else {
return;

}

A sequential execution of this code with x = 2 executes the following instructions:

i = 2; dmb ish; dmb ish; y = 2; dmb ish; i = 1;
dmb ish; y = 1; dmb ish; i = 0; return

resulting in two events related by the fence relation (omitting the fence arrows from the
entry point and to the return point):

W y 2 W y 1
fences

If one fence is removed and the program transformed as in:

int i = x;
loop:
dmb ish;
if (i > 0) {
y = i;
--i;

1Our optimisation runs on the LLVM IR at the frontier between the middle end and the architecture
specific backend. This IR extends the LLVM IR with intrinsics to represent architecture specific mem-
ory fences; the pseudo-code we rely-on carries exactly the same information as the IR over which our
implementation works.
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goto loop;
} else {
return;

}

then a sequential execution of this code with x = 2 executes the following instructions:

i = 2; dmb ish; y = 2; i = 1;
dmb ish; y = 1; i = 0; dmb ish; return

and both the events generated and the fence relation remain unchanged, and we are guar-
anteed that the two programs will have the same behaviours in any concurrent context.
However the latter will execute fewer potentially expensive dmb ish instructions in any
run.

7.1.1 Leveraging PRE

At a closer look, our problem is reminiscent of the Partial Redundancy Elimination (PRE)
optimisation. Given a computation that happens at least twice in the source file (say x+y),
PRE tries to insert, move or delete instances of the computation, while enforcing the
property that there is still at least one such instance on each path between the definitions
of its operands (say x and y) and its uses. Similarly, we want to insert, move or delete
fences such that there is still at least one fence on each path between memory accesses
that were before a fence and those that were after a fence in the original program.

How to implement PRE is a well-studied problem. Approaches can be classified into
conservative (roughly speaking, the amount of computation the program does cannot
be increased) and speculative. Speculative PRE (SPRE) is allowed to introduce some
extra computation on rarely taken paths in the program to remove additional computa-
tions from the more common paths. We follow this latter approach because it can offer
better results [HH97] in presence of accurate profiling information. Such profile-guided
optimisations require compiling the program under consideration twice: first without op-
timisations, then a second time after having executed the program on a representative
benchmark with profiling instrumentation on. Our algorithm can be adapted to avoid
this complex process at a cost in performance, as discussed in Section 8.2.2.

We build on the elegant algorithm for SPRE presented in [SHK04] (later generalised
to conservative PRE in [XK06]), based on solving a min-cut problem. Given a directed
weighted graph (V,E) with two special vertices Source and Sink, the min-cut problem
consists in finding a set of edges C ⊆ V such that there is no path from Source to Sink
through E\C and C has the smallest possible weight.

Following [SHK04], our algorithm first builds a graph from the SSA control-flow graph
internally used by LLVM. In the built graph, nodes identify all program placements
before and after each instructions and there is an edge from after instruction A to before
instruction B with weight w if control went directly from A to B w times in the profiling
information. Two special nodes are added, called Source and Sink. Edges with weight ∞
are added from the Source node and to the Sink node, following the strategy below.

For each fence instruction in the program,

• connect all the placements after all memory accesses that precede the fence to
Source;

• connect all the placements before all memory accesses that follow the fence to Sink ;
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• delete the fence instruction.

Once all fences have been deleted, a min-cut of the resulting graph is computed: the
min-cut identifies all the places where fences must be inserted to guarantee that there is
still a fence across every computation path between memory accesses originally separated
by a fence. Each edge in the min-cut identifies two placements in the program, the former
after a memory access and the latter before another memory access: the algorithm inserts
a fence instruction just before the latter memory access.

Algorithm 1 reports the details of our implementation in LLVM, the entry point is the
function TransformFunction. Our optimisation runs after all the middle-end transforma-
tions; at this level, the IR is in SSA form but includes the architecture-specific intrinsics for
fence instructions which have been inserted by the expansion of the C11/C++11 atomic
memory accesses. It differs slightly from the description above inasmuch. Instead of cre-
ating two nodes for every instruction, it lazily constructs nodes (with the LLVM GetNode
functions) at the beginning and end of basic blocks, and before and after memory accesses.
Considering only these points is correct, because fences commute with instructions that
do not affect memory. The GetNode functions refers to a hashtable that map locations in
the code to nodes: if a node has already been generated for a location, a pointer to that
same node is returned, it is not duplicated.

7.1.2 The algorithm on a running example

Let us illustrate our algorithm on the code snippet shown at the beginning of this section,
assuming that some profiling data are available. Its control-flow graph (CFG) is shown
in Figure 7.1a.

In the first phase, the algorithm considers each fence in order and builds an ad-hoc
flow graph that for each fence connects all the memory accesses before the fence to all
the memory accesses after the fence. The terms “before” and “after” are relative to the
original control-flow of the function.

In the running example, after processing the first fence, we get the flow-graph in
Figure 7.1b. The node in green (after i = x) is connected to the Source and the nodes in
red (before y = i and return) are connected to the Sink. The percentages next to the
edges are weights, set proportionally to the frequency of execution of these edges in the
profiling data. After processing all the fences, we obtain the flow-graph in Figure 7.1c
(where the node after y = i is connected to the Source).

At this point, all fences are removed from the program and the min-cut is computed.
Figure 7.1d shows one possible min-cut on this graph (through bold red edges).

In the second phase fences are inserted on each edge that is part of the cut. The
resulting optimised CFG is shown in Figure 7.1e.

This algorithm generates a solution that is optimal in terms of the number of execu-
tions of fences at runtime; in some cases we might instead minimize the code size. As
explained Section 8.2.2, we can modify this by modifying artificially the weights on the
edges. In particular, adding a tiny constant C to each edge breaks ties among possible
min-cuts according to the number of fences in the generated code. This approach is shown
in Figure 7.1f, with the resulting CFG in Figure 7.1g; observe that here the fence in the
first block has been removed.
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(a) Original CFG

(b) After processing the first fence (c) After processing all fences

(d) Example of a min-cut
(e) Resulting CFG

(f) Min-cut to minimise code-size
(g) Resulting CFG

Figure 7.1: Running example of the fence elimination algorithm
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1 Function TransformFunction(fun)
2 for f a fence in fun do
3 nodeBeforeFence ←MakeGraphUpwards(f)
4 nodeAfterFence ←MakeGraphDownwards(f)
5 if nodeBeforeFence 6= NULL && nodeAfterFence 6= NULL then
6 MakeEdge (nodeBeforeFence, nodeAfterFence)

7 DeleteFence (f)

8 cuts ←ComputeMinCut ()
9 foreach location ∈ cuts do

10 InsertFenceAt(location)

11 Function MakeGraphUpwards(root)
12 basicBlock ←GetBasicBlock(root)
13 for inst an instruction before root in basicBlock, going upwards do
14 if inst a memory access then
15 node ←GetNodeAfter(inst)
16 ConnectSource(node)
17 return node

18 node ←GetNodeAtBeginning(basicBlock)
19 if basicBlock is first block in function then
20 ConnectSource(node)
21 return node

22 for basicBlock2 a predecessor of basicBlock do
23 node2 ←GetNodeAtEnd(basicBlock2)
24 inst2 ←GetLastInst(basicBlock2)
25 node3 ←MakeGraphUpwards(inst2)
26 if node3 6= NULL then
27 MakeEdge(node3, node2)
28 MakeEdge(node2, node)

29 Function MakeGraphDownwards(root)
30 basicBlock ←GetBasicBlock(root)
31 for inst an instruction after root in basicBlock, going downwards do
32 if inst a memory access or a return instruction then
33 node ←GetNodeBefore(inst)
34 ConnectSink(node)
35 return node

36 node ←GetNodeAtEnd(basicBlock)
37 for basicBlock2 a successor of basicBlock do
38 node2 ←GetNodeAtBeginning(basicBlock2)
39 inst2 ←GetFirstInst(basicBlock2)
40 node3 ←MakeGraphDownwards(inst2)
41 if node3 6= NULL then
42 MakeEdge(node, node2)
43 MakeEdge(node2, node3)

Algorithm 1: Pseudocode of the fence elimination algorithm
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(a) Critical edge in red (b) Breaking the critical edge

Figure 7.2: Breaking critical edges

7.1.3 Corner cases

Function boundaries on the control-flow graph Our program transformation is
invoked on each function, and currently does not perform any whole program analysis.
In the previous paragraphs we did not detail what to do when the control-flow graph
hits the limits of the function being optimised (either the function entry point, or a
return instruction). Since a function can be called in an arbitrary context, and a context
can perform memory accesses before and after it, the function boundaries are treated as
memory accesses (see lines 19 and 32), ensuring that fences at the beginning or end of the
function are preserved. Similarly, a function call that may access the memory is treated
as if it always modifies the memory. See Section 8.2.2 for ideas on making the algorithm
interprocedural.

Critical edges Algorithm 1 does not precisely detail how fences are inserted once the
min-cut has been computed. If there is a cut required between the last instruction of a
block A and the first instruction of a block B, there are three possibilities:

• block A is the only predecessor of block B: the fence can be inserted at the beginning
of block B;

• block B is the only successor of block A: the fence can be inserted at the end of
block A;

• if A has several successors, and B has several predecessors, then the edge between A
and B is called a critical edge since there is no block in which a fence can be inserted
ensuring that it is only on the path from A to B. The critical edge is broken by
inserting an extra empty basic block between A and B.

This last case is illustrated in Figure 7.2a, inserting a fence at the location of the red edge
is problematic, as inserting it either at A or at B puts it on a path without the red edge.
This is solved by breaking the red edge in two, with a block in between, as in Figure 7.2b.
The fence can now be safely inserted in block C.

Why two nodes for the each instruction Algorithm 1 systematically creates a node
before and a node after each instruction. Perhaps surprisingly, a simpler solution where
only one node is created for each instruction would not be be correct. A simple example
illustrates this:

y = 1;
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fence;
x = 42;
fence;
y = 2;

We report the flow graphs for this program, two nodes per memory access on the left,
and one node per memory access on the right:

y = 1

W x 42

W x 42

W y 2

Source

Sink
+∞

+∞ 10

10

+∞

+∞

y = 1

W x 42

W y 2

Source

Sink

+∞

+∞

10

10
+∞

+∞

In the flow-graph on the left, the min-cut procedure finds a cut of finite weight (shown
by the dotted lines). The edges in this cut are exactly where the fences are in the original
program, so the optimisation correctly recognise that the program cannot be optimised.

If instead there is only one node for the store in the middle (flow-graph shown on
the right), all cuts between Source and Sink have an infinite weight, and the min-cut
procedure would pick a cut that contains edges involving Source and Sink. Such edges
do not directly correspond to a location in the code, and cannot guide the successive
fence-insertion-along-the-cut phase.

7.1.4 Proof of correctness

To show the correctness of our algorithm we first prove a key lemma that states that we
may add a fence on a path that had none, but never remove all fences from a path that
had at least one. This captures the main intuition that drove our design. The rest of the
proof then proceeds by a monotonicity argument. The proof applies to ARM, Power, and
x86 instantiations of the “Herding cats” model (Section 2.2.2).

Lemma 11. For any candidate execution X ′ of a program P ′ obtained by applying
TransformFunction to a program P , there is a candidate execution X of P with
fences(X) ⊆ fences(X ′), and every other part of X is the same as X ′ (including the
events, the po and dependency relations, and the rf−→ and co relations).

Proof. Since the algorithm only affects fence placements, we can build X from X ′ such
that it has the same events, po, dependencies, and rf−→ and co relations. Let a, b be
two memory accesses such that (a, b) ∈ fences(X). By the Herding Cats construction
this implies that there is a path through the control-flow graph that goes first through
a, then through a fence f , and finally through b. Since MakeGraphUpwards stops at
the first memory access encountered (or may stop earlier if it hits the beginning of the
function), this path goes through a node connected to the Source at some point between
a and f . Symmetrically, it goes through a node connected to the Sink between f and b.
Because MakeGraphUpwards and MakeGraphDownwards follow the control-flow path, these
two nodes must be connected along the path. So the min-cut procedure will have to cut
along the path to separate the Source from the Sink. The algorithm inserts a fence at
this point, ensuring (a, b) ∈ fences(X ′).
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This result lifts to executions.

Corollary 2. For any execution E ′ of a program P ′ obtained by applying
TransformFunction to a program P , there is an execution E of P with hb(E) ⊆ hb(E ′)
and prop(E) ⊆ prop(E ′), and every other part of E is the same as E ′.

Proof. The relation fences appears in a positive position in the definition of the hb and
prop relations, and every other relation that appears in their definitions (rfe, com, ppo)
is invariant by our transformation (since they do not depend on fences, and by Lemma 1
fences are the only part of the program execution that is transformed).

Given a valid execution of a program, its final state is obtained by taking the last write
event in the co order for each shared memory location. We state that an optimisation
that transform the program P into the program P ′ is correct if for every final state of the
memory reached by a valid execution of P ′, there exists a valid execution of P that ends
with the same final state.

Theorem 18. The program transformation TransformFunction is correct.

Proof. We must show that for any valid execution of a program after TransformFunction,
there is a valid execution of the source program that has the same final state. Corollary
1 provides an effective way to construct an execution E of the source program from an
execution E ′ of the transformed program. Since co is unchanged by the construction and
the events are identical, the final state of E and E ′ is the same. It remains to show that
the execution is valid, that is, we must check that the four axioms of the Herding Cats
model hold on E. We know that hb(E) ⊆ hb(E ′) and prop(E) ⊆ prop(E ′). We know that
the axioms hold on E ′. It is straightforward to check that, whenever pairs of elements
are added to prop or hb, the four axioms can only be made false, and never true. In turn,
since they hold on E ′ they must also hold on E, ensuring that E is a valid execution of
the source program.

7.2 Implementation and extensions to other ISAs
We have implemented our optimisation as the first optimisation pass in the x86, ARM
and IBM Power backends of LLVM 4.0. Min-cut is known to be equivalent to finding
a maximum flow in a flow network (via the max-flow min-cut theorem of [FF56]), so
our implementation uses the standard push-relabel algorithm of [GT88] to compute the
min-cut of a graph.

LLVM internally provides the BlockFrequency class, that exports a relative metric
that represents the number of times a block executes. By default the block frequency
info is derived from heuristics, e.g., loop back edges are usually taken, but if profile
guided optimisation is enabled then it can rely on runtime profile information. Our
implementation accesses the BlockFrequency class to compute the weight of the edges
(all edges inside a basic block have the weight of the basic block) of the flow graph.

In Section 7.1 we have described the ARM implementation. The IBM Power and x86
passes differ slightly, as detailed below.
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Extension to IBM Power As we have seen, the IBM Power memory model is very
similar to the ARM one, but is gives to the programmer two different synchronising fence
instructions. Heavyweight fences (instruction hwsync) are equivalent to the dmb ish
instruction on ARM, but IBM Power also provides lightweight synchronising fences (in-
struction lwsync) that are faster but offer strictly less guarantees.

We can adapt our algorithm to IBM Power fence instructions by running it in two
passes. In a first pass, the heavyweight fences are optimised, while ignoring the lightweight
fences. In a second pass, the lightweight fences are optimised, considering every path with
a heavyweight fence already cut (since heavyweight fences subsume lightweight ones). This
second pass can be implemented by adding the following code snippet after both line 17
and line 35 of Algorithm 1:

else if(inst is a heavyweight fence)
return NULL;

This processing in two phases is sound. The first pass preserves the hwsync relation
(by the same argument as before). Then the second pass may lose parts of the lwsync
relation, but it preserves the fences relation, defined as:

fences
def
= (lwsync\WR) ∪ hwsync

which is the only place where the relation lwsync is used. The proof then proceeds as
before based on the monotonicity of the model with respect to both the hwsync and
fences relations.

Extension to x86 In the x86 memory model fences prevent write-read reorderings and
only matter between stores and loads. This is evident from the axioms: the relation
mfence only appears in the definition of hb:

hb = po\WR ∪mfence ∪ fre

where po\WR is the program order relation from which every pair from a write to a read
has been removed. So we can relax our algorithm without affecting its correctness, and
make it preserve WR ∩mfence rather than mfence. This enables optimising the program
on the left into the program on the right (which would have not been possible with the
original algorithm):

x = 1
mfence
x = 2
mfence
tmp = x
mfence
tmp = y

x = 1
x = 2
mfence
tmp = x
tmp = y

To implement this more aggressive optimisation, we alter our algorithm to connect
the Source to the latest stores before each fence, and connect the earliest loads after them
to the Sink. Algorithm 1 can be modified by replacing “memory access” by “store” on
line 14, and “memory access” by “load” on line 32 of algorithm 1. The proof structure is
unaltered: we can still show that for every execution of the optimised program, there is
an execution of the original program with hb and prop that are no larger.
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7.3 Experimental evaluation
The table in Figure 7.3 considers several concurrent algorithms, including Dekker and
Bakery mutual exclusion algorithms, Treiber’s stack, as well as a more realistic code-
base, LibKPN (See Chapter 6 and [Lê16]). The code of the first three benchmarks is
taken from [VZN11], with all shared memory accesses converted to sequentially consis-
tent atomic accesses. The latter is a much larger C11 program (about 3.5k lines) that
implements a state-of-the-art dynamic scheduler for lightweight threads communicating
through First-In First-Out queues. Atomic qualifiers have been cleverly hand-picked to
use the minimum of synchronisation required for correctness.

We report on the number of fences deleted by the x86, ARM, and IBM Power, backend.
This is not an ideal metric for our algorithm, because it does not capture cases where a
fence is hoisted out of a loop: in this case there is one fence deleted and one inserted,
but at run-time a fence per loop iteration might have been optimised away. However it is
easily computable and gives some indications on the behaviour of the algorithm.

LLVM’s x86 backend does not map sequentially consistent atomic writes to mov;
mfence but relies on the locked xchg instruction, which is believed to be faster. We thus
modified the x86 backend to implement an alternative mapping for sequentially consistent
accesses: either mov; mfence is used for all stores, or mfence; mov is used for all loads.
We report on both mappings.

The compile time overhead due to running our optimisation is not measurable and
buried in statistical noise, even when compiling larger applications like LibKPN.

Observe that on x86 our algorithm mimics the results of the x86-tailored fence opti-
misation presented in [VZN11].

For LibKPN we test both the hand-optimised version, and a version where all atomic
accesses are replaced by sequentially consistent accesses. On the hand-optimised code,
our algorithm still finds opportunities to move and delete a few fences, e.g. reducing it
from 25 to 22 on x86, or to move a few around according to the profiling information
available. As our optimisation cannot be expressed as a source to source program trans-
formation it is possible that a few fences can be eliminated or moved, even if the qualifier
annotations were “optimal”. The test where all LibKPN atomic accesses are downgraded
to seq_cst might suggest that, even though the optimisation pass can eliminate a fair
number of redundant fences, the resulting code is not competitive with the hand-tuned
implementation.

To investigate this point, and to evaluate the runtime speedup (or slowdown) induced
by our of fence optimisation pass, we rely on LibKPN benchmarks. These include both
microbenchmarks to test some library constructions, and a larger signal processing appli-
cation, called radio, taken from the streamIt benchmark suite2 and ported to LibKPN.
For testing we used a commodity x86 Intel Xeon machine with 12 cores and no hyper-
threading, and a 48-core IBM Power7 (IBM 8231-E2C). Unfortunately we do not have an
ARM machine available for testing.

Microbenchmarks timings do not benefit from running our optimisations. We con-
jecture that these stress-test tight loops involving synchronisation and barriers, and as
such do not leave much space for improvement of the fence placement. Replacing all the
atomic qualifiers with seq_cst atomics does not degrade the performance measurably
either: this supports our conjecture.

The larger benchmark is much more informative. We report the average and stan-
2http://groups.csail.mit.edu/cag/streamit/
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Benchmark Configuration Fences before after inserted deleted

Bakery ARM 18 16 0 2
Bakery Power 24 19 10 15
Bakery x86: all seq-cst, mfence after stores 4 3 0 1
Bakery x86: all seq-cst, mfence before loads 10 2 1 9

Dekker ARM 11 9 1 3
Dekker Power 10 9 5 6
Dekker x86: all seq-cst, mfence after stores 4 3 0 1
Dekker x86: all seq-cst, mfence before loads 3 2 2 3

Treiber’s stack ARM 14 13 2 3
Treiber’s stack Power 14 12 4 6
Treiber’s stack x86: all seq-cst, mfence after stores 2 1 0 1
Treiber’s stack x86: all seq-cst, mfence before loads 4 2 2 4

LibKPN ARM: default 110 110 4 4
LibKPN ARM: all seq-cst 451 411 11 51
LibKPN Power: default 92 90 2 4
LibKPN Power: all seq-cst 448 394 54 108
LibKPN x86: default 25 22 4 7
LibKPN x86: all seq-cst, mfence after stores 189 144 5 50
LibKPN x86: all seq-cst, mfence before loads 326 137 25 214

Figure 7.3: Experimental results (static)

dard deviation (in parentheses) of the performances observed (time in seconds, smaller is
better), over 100 invocations of the benchmark:

x86_64 IBM Power7
original code, not optimised: 252 (67) 1872 (852)
original code, optimised: 248 (55) 1766 (712)
all seq cst, not optimised: 343 (57) 3170 (1024)
all seq cst, optimised: 348 (46) 2701 (892)

The large standard deviation observed is due to the dependance of the benchmark on
the scheduling of threads. As a result on x86 performance change due to fence opti-
misation is hidden in statistical noise, matching the experiments in [VZN11]. Similarly
performance improvement due to passing profiling information rather that relying on the
default heuristics is also hidden in statistical noise (e.g. we observe 246 (53) for x86_64
on original code, optimised). On Power the results are more encouraging: speedup is
observable and it is up to 10% on the code written by a non expert programmer who
systematically relies on the sequentially consistent qualifier for atomic accesses.
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Chapter 8

Perspectives

The work I presented in this thesis fits in three axes.

Studying the C11 model First, I looked at theoretical properties of the C11 model,
and more precisely what compiler optimisations it allows. While doing this, we found
several flaws in the standard and proposed fixes to some of them (Chapter 3).

We then proved some criteria of correctness for common compiler optimisations under
both the current standard and our proposed fixes (Chapter 4). These criteria are based
on local transformations of the traces of memory events, and depend on which fixes are
applied to the model.

Improving support of atomics in compilers In a second time, I focused on actual
C/C++ compilers and how to improve their support for C11 atomics. As modern C
and C++ compilers are very large software projects, made of many different optimisation
passes, it is not obvious whether they respect these correctness criteria. And it is even
less clear if the criteria change because of issues with the model. So we developed a fuzzy-
testing tool that found several bugs in GCC, that could not be found with any other
automated tool (Chapter 5).

Following the same goal of improving the support of atomics in real-life compilers, we
have proposed, proved correct, and implemented in LLVM, a backend fence optimisation
pass (Chapter 7). Our optimisation pass cannot be implemented as a source-to-source
transformation in the C11/C++11 memory model, but builds on the precise semantics of
the barrier instructions in each targeted architecture (x86, ARM and Power). We have
seen that in practice the pass can be effective in removing redundant barriers inserted by
a conservative programmer who relies on strong qualifiers (e.g. seq_cst) for the atomic
accesses.

LibKPN Finally, I worked on LibKPN (Chapter 6), a user-space scheduler for Kahn
Process Networks that makes extensive use of C11 atomics. It shows both that C11
atomics are usable in practice, with a few especially useful patterns; and that it is possible
to prove algorithms in this model, although in a non modular way.

Artefact availability The formal proofs in Coq of the theorems in Section 4.2 are
available from http://plv.mpi-sws.org/c11comp/. The fuzzy-testing tool is available
from http://www.di.ens.fr/~zappa/projects/cmmtest/. Our implementation of the
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fence elimination optimisation optimisation, together with the code of the benchmarks,
is available from http://www.di.ens.fr/~zappa/projects/llvmopt.

8.1 Related work

8.1.1 About optimisations in a concurrent context

As we discussed in Section 4, soundness of optimizations in an idealised DRF model was
studied by Ševčík [Sev08, Sev11]. We reuse Ševčík’s classification of optimizations as
eliminations, reorderings and introductions, but moving from an idealised DRF model to
the full C11/C++11 memory model brings new challenges:

• we cannot identify a program with the set of linear orders of actions it can realise
because in C and C++ the sequenced-before order is not total; although reasoning
about opsems seems unintuitive, partial orders turn out be be easier to work with
than the explicit manipulation of trace indices that Ševčík performs;

• the semantics of low-level atomic accesses and fences must be taken into account
when computing synchronisations; in particular the weaker consistency and co-
herency conditions of the release/acquire/relaxed attributes made the soundness
proof much more complex.

There are other minor differences, for instance Ševčík assumes that every variable has a
default value, while C/C++ forbids accessing an uninitialised variable. Initially Ševčík
gave a more restrictive condition for soundness of eliminations [Sev08], namely elimina-
tions are forbidden if there is an intervening release or acquire operation rather than a
release/acquire pair. This simpler condition appears to be too strong as we have observed
compilers eliminate accesses across a release or acquire access. All our analysis was driven
by what optimizations we could actually observe: this led to identifying WaW eliminations
and RaR/RaW introductions, and motivated us to omit roach-motel reorderings.

There is a long tradition of research on compiler optimizations that preserve sequential
consistency dating back to Shasha and Snir [SS88b], mostly focusing on whole program
analyses. While these works show that a restricted class of optimizations can maintain
the illusion of sequential consistency for all programs, we show that common compiler
transformations maintain the illusion of sequential consistency for correctly synchronised
programs.

8.1.2 About fuzzy-testing of compilers

Randomised techniques for testing compilers have been popular since the 60’s and have
been applied to a variety of languages, ranging from Cobol [Sol62] and Fortran [BS96] to
C [McK98, Lin05, She07] and C++ [ZXT+09]. A survey (up to 1997) can be found in
Boujarwah and Saleh [BS97], while today the state of art is represented by Yang et al.’s
work on Csmith [YCER11]. None of these works addresses concurrency compiler bugs
and the techniques presented are unable to detect any of our bug reports.

The notable exception is Eide and Regehr’s work [ER08] on hunting miscompilation
of the volatile qualifier in production-quality C compilers. Eide and Regehr generate
random well defined deterministic, sequential programs with volatile memory accesses:
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miscompilations are detected by counting how many accesses to volatile variables are per-
formed during the execution of an unoptimized and an optimized binary of the program.
The semantics of the volatile attribute requires that accesses to volatile variables are never
optimized away, so comparing the number of runtime accesses is enough to detect bugs
in the optimizer. We were inspired by Eide and Regehr’s approach to reduce hunting
concurrency compilation bugs to analysis to differential testing of sequential code, but
the complexity of the C11/C+11 memory model requires a theory of sound optimizations
and makes the analysis phase far more complicated.

A paper written after this research was complete used a variant of our method for
testing LLVM specifically and found several bugs [CV16]. There are a few differences
with the work presented in this chapter:

• They wrote their own program generator instead of using CSmith

• They compare CFGs directly instead of working on traces

• They can check for the LLVM memory model, which differs from the C11 one by
allowing write-read races

• They can use compiler instrumentation to help in the matching problem

• The bugs they found are in version 3.6 of LLVM, which was not yet out when we
did this research.

8.1.3 About LibKPN

Our runtime lies at the intersection of two research topics: task-based parallelism and
dataflow programming.

A large part of task-parallel languages and runtime systems can be classified as
discussed in Section 6.1.1, including Cilk [BL99], Swan [VCN], OpenMP [Ope13],
SMPSs [PBAL09], Codelet [SZG13], the task engine of Intel TBB, and the mdf pattern
of FastFlow [ADKT08].

Among lightweight runtime systems, a notable exception is CnC [BBC+10]. It offers a
dataflow model with first-class association with synchronization objects and expressivity
on par with our proposed model. However, whereas we emphasize reuse, CnC has un-
bounded and unlimited broadcast on each synchronization object, which prohibits reuse.
This is in contrast with SMPSs-style dependencies, which, despite having unbounded
broadcast, are not unlimited due to sequential versioning [VCN]. We lack sequential ver-
sioning but instead constrain our objects to be uniquely bound. In other words: Swan
hyperobjects aggregate multiple dependencies with broadcast, and reuse through sequen-
tial versioning and renaming; CnC tags are first-class and support broadcasting, but no
reuse; we concentrate on the streaming case, though our objects are first-class yet reusable.

More largely, our work relates to dynamic scheduling in general. Attempts at user-
level scheduling can be traced back to m-to-n thread scheduling [ABLL, NM95]. Unlike
general m-to-n threading and other user-level threads, all synchronization between tasks
in our runtime system is limited to dependencies, with a focus on performance rather
than generality (e.g., blocking I/O, system calls, preemption).

Furthermore, our present focus is on dependency tracking and management. Top-
ics such as work queues [FLR, BL99, CL05, LPCZN13], dependence-aware scheduling
heuristics [ME], or efficient communication channels [Lam77, GMV08, ADKT08, LBC,
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LGCP13], while interesting and certainly useful in conjunction with the techniques we
describe, are rather orthogonal and not directly related to this work.

The other branch of research, dataflow programming, views programs as graphs of
processes communicating through channels (i.e. KPNs [Kah74]). Much prior work in
this area has gone into the class of KPNs that are (ultimately) periodic: Synchronous
DataFlow (SDF) graphs [LM87] and their derivatives. They have traditionally been the
focus of static analysis, optimization and bulk scheduling with barriers [TKA, GTA, KM],
as opposed to relying on a runtime scheduler such as ours. Moreover, arbitrary KPNs can
be run on top of our runtime, including non periodic and dynamically evolving ones.

8.1.4 About fence elimination

Fence optimisation as a compiler pass When we started this work, the only fence
elimination algorithm implemented in LLVM was described in [Elh14]. This is an ARM-
specific pass, that proposes both the straightforward elimination of adjacent dmb ish
instructions in the same basic block with no memory access in between (trivially performed
by our algorithm too), and a more involved interblock algorithm. This second algorithm
was not integrated into LLVM, making it hard to understand and evaluate. It does
not seem to have been proven correct either, and does not take into account profiling
information.

Vafeiadis and Zappa Nardelli [VZN11] defined two algorithms (called FE1 and FE2)
for removing redundant mfence instructions on x86 and proved them correct against the
operational description of the x86-TSO memory model. The definition of the optimisa-
tions is specific to x86 and the correctness proof leverages complicated simulation-based
techniques. Additionally, they proposed a PRE-like step that saturates with mfences all
branches of conditionals, in the hope that FE2 will later optimise these away later. Their
algorithm does not take into account any profiling information. Our algorithm, once tai-
lored for x86 as described in Section 7.2, subsumes both their optimisation passes, and
additionally takes into account profiling information while performing partial redundancy
elimination. Our correctness proof, building on an axiomatic model, turns out to be much
simpler than theirs.

Fence synthesis based on whole program analysis Several research projects, in-
cluding [KVY10], [BDM13], [AKNP14], [LNP+12], and [AAC+13], attempt to recover se-
quential consistency, or weaker safety specifications, by inserting fences in racy programs
without atomics annotations. These projects attempt to compute optimal fence inser-
tions but rely on whole program analyses : as such these are not directly implementable
as optimisation passes in a compiler that performs separate compilation. Also they are
too expensive to perform in a general-purpose compiler.

Despite the complementary goals, we remark that the algorithm in [AKNP14] is related
to ours: to solve the global optimisation problem it uses an integer linear program solver, of
which min-cut is a special case, and correctness follows along similar lines. Our algorithm
can thus be seen as a variant of theirs, that trades off optimality for the ability to apply
in separate compilation, and to make use of atomics annotation by the programmer. It
is interesting to remark that [AKNP14] gives an explicit cost to each fence and lets the
solver decide on how to mix them, instead of the heuristic based on profiling information
we rely on. Obviously, this is only possible because they do an optimisation based on
solving an ILP problem, instead of the simpler min-cut procedure we rely on.
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Working inside a compiler, the work by Sura et al. [SFW+05], show how to approximate
Sasha and Snir’s delay sets and synthesising barriers so that a program has only SC
behaviours: they performs much more sophisticated analyses than the ones we propose,
but do not come with correctness proofs.

8.2 Future work

8.2.1 About the C11 model

The biggest issue we found in the C11 model is the presence of causality cycles (Sec-
tion 3.1.2). In addition to the problems we highlighted, they also break attempts at
modular verification of C11 programs [BDG13, BD14]. While we proposed some fixes,
they all come with serious trade-offs, so the search for a more satisfying solution to this
problem is still on, with lots of recent publications [KHL+17, CV17, PS16]. Out of these,
I consider [KHL+17] especially remarkable as it seems to fix the causality cycles, while
allowing all the optimisations we want to be valid. It achieves this through a complete
rewrite of the C11 model to follow an operational model. Repairing the C11 model is
especially important, because several other models seem to be looking at borrowing parts
of it.

• There are discussions of adding weaker forms of synchronisation to Java (similar to
C11 atomic attributes) for performance reasons.While Java memory model is quite
different from the C11 one, it is likely to encounter similar problems in the future.

• The Linux kernel currently uses its own macros for atomic accesses, with only in-
formally defined semantics. More primitives have recently been added, including
release/acquire accesses reminiscent of C11 for performance reasons. At the same
time, some researchers are trying to formalize this memory model to be able to
formally prove some parts of the kernel [MAM+16].

• Rust, a new language developed at Mozilla, uses the relaxed memory operations in
the style of C11 [Rus]. So any fix to the C11 model would also benefit Rust users.

• Finally, the LLVM compiler used to claim that the memory model of its middle-end
IR is the same as C11. It has been recently found that it is slightly different, and
possibly better [CV17].

In terms of compiler optimisations of memory accesses, some of those we proved un-
sound in some models might be sound under some additional constraint. The most obvious
such constraint is that the affected memory-location be local memory. I conjecture that
all common optimisations of non-atomic accesses are sound in this context.

8.2.2 About the fence elimination algorithm

Speaking of LLVM, it would be interesting to further investigate experimentally in which
cases there is a benefit in replacing the xchg mapping for sequentially consistent stores
used by LLVM with the mov; mfencemapping backed by an aggressive fence optimisation
pass. More generally, large benchmarks to test performance of concurrent C11/C++11
code bases with our fence elimination algorithm are still missing, and highly needed to
perform a more in-depth performance evaluation.

Our algorithm can be improved in several ways, detailed below.
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Interprocedural analysis As mentioned in Section 7.1.3, our algorithm is intrapro-
cedural and treats any function call that may touch memory as a memory access. It is
possible to slightly improve this by building function dictionaries. For this, starting from
the leaves of the call-graph, we can annotate each function with:

• whether all paths from the first instruction hit a fence before a memory access or
return instruction;

• whether all paths flowing backwards from a return instruction hit a fence before a
memory access or the starting instruction.

Then, anytime a function call is encountered while looking for an access after (resp.
before) a fence, and the first (resp. second) flag is set on that function, that path can be
cut. I believe this improvement is probably the one with the highest impact.

Leveraging coherency It is possible to implement a more aggressive optimisation if
the algorithm keeps track of the C11/C++11 atomic access responsible for inserting each
fence instruction. Consider a release store to a variable x on ARM: this is compiled to a
dmb ish barrier followed by the store instruction. Since the semantics of release forces only
to order previous accesses with this store and not with every later access, and accesses to
the same location are already ordered locally (by the SC-per-loc rule of the Herding Cats
framework), it is possible to ignore all accesses to x when looking for memory accesses to
connect the Source node to.

The same idea can be applied to acquire or sequentially consistent loads. In particular,
this would allow sinking the fence out of the loop when a loop contains only an acquire
load, having the effect of transforming:

while (!x.load(acquire)) {};

into:

while(!x.load(relaxed)) {};
fence(acquire);

This might be more efficient, but would need benchmarking. It is also not clear at this
time if there are other common patterns that could be optimised in this way.

Optimising for code size Following an idea from [SHK04], it is possible to optimise for
code size instead of runtime. Our algorithm can be easily adapted by using the constant
1 for the weight of all edges, instead of the frequency in the profiling information. The
min-cut procedure will then minimise the number of fences in the generated code. A
tradeoff between code-size and runtime can easily be obtained by using a hybrid metric
(this idea comes from [SHK04]).

A conservative variant of the algorithm As presented above, our algorithm is fun-
damentally speculative: it relies on the profiling information and can significantly worsen
the performance of the code if this information is unreliable.

However any path that goes through a location dominated or post-dominated by
a fence necessarily goes through that fence (by definition of dominators and post-
dominators). Consequently, it is safe to put fences in all of these locations: there is
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no risk of introducing a fence on a path that had none. We conjecture that we can get
a conservative variant of our algorithm by connecting the first node (resp. the last node)
of any block in MakeGraphUpwards (resp. MakeGraphDownwards) that has at least one
predecessor (resp. successor) that is not post-dominated (resp. dominated) by the original
fence to the source (resp. the sink).

The paper [XK06] proposes a better solution to get a conservative algorithm, relying
on dataflow analyses. Unfortunately this approach is hard to integrate with our currently
implemented algorithm.

8.2.3 About LibKPN

The part of the thesis I would most like to expand in the next few months is LibKPN
(Chapter 6). While there is already a complete implementation of algorithms F and S,
and some very promising benchmarks, the algorithm H has not been fully implemented
yet. I also hope to build some high level API/DSL for describing KPNs, as the current
interface is extremely low-level and consequently error-prone.
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Appendix A

Proof of Theorem 4

Construction A.0.1. From a consistent execution (O′,W ′) of a program P ′ which is an
elimination of a well defined program P we want to build a candidate execution (O,W ).
First, we pick an opsem O ∈ P such that O′ is an elimination of O. Then we build a
related witness W by taking W ′, and computing <hb. Finally we modify W as follows:

• RaR: If i is a RaR justified by a read r, then for every write w such that w <rf r, we
add w <rf i

• RaW: If i is a RaW justified by a write w, then we add w <rf i

• IR: If i is a IR, then if there is a write w to the same location with w <hb i we pick
an opsem O such that i reads the same value, and add w <rf i to W .

• OW: No change to W

• WaW: If a is a WaW justified by a write w, then for every read r such that w <rf r
and a <hb r we replace w <rf r by a <rf r

• WaR: If a is a WaR, then for every read r of the same value at the same location
such that a <hb r and either w <rf r with w <hb a or r reads from no write, we add
a <rf r. (replacing w <rf r if it exists)

Lemma A.0.1. If (O′,W ′) is a consistent execution, then so is (O,W )

Proof. As we preserve everything but <rf from W ′, consistent non atomic read values
is the only predicate that is hard to prove. It is wrong if there is w1 and w2 two non
atomic writes at the same location, and i a non atomic read at the same location with
w1 <hb w2 <hb i and w1 <rf i. We check every case below to prove that this is impossible.

• RaR:
If i is not the RaR it is impossible as exactly the same pattern would occur in
(O′,W ′). So we assume that i is a RaR justified by a read r. Because of how
the construction works, w1 <rf r. So because (O′,W ′) is a candidate execution,
w1 <hb r. Three cases must be examined:

– w2 and r are not comparable by <hb:
We use the prefix-closedness of opsemsets to find an opsem Õ ∈ P that is a
prefix of O that does include w2 and r but not i. As it does not contain i, the
restriction of W to it makes it a candidate execution and it exhibits a data-race
between w2 and r. Absurd as P is well defined.
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– w2 <hb r:
Then w1 <hb w2 <hb r and w1 <rf r in (O′,W ′) as well which is impossible as
it is a candidate execution.

– r <hb w2:
If w2 is in the same thread as r and i, then r <sb w2 <sb i, which is impossible
by definition of RaR. Otherwise, there must be a release action a, and an
acquire action b such that r <sb a <hb w2 <hb b <sb i, which is also impossible
by definition of RaR

• RaW:
Again, if the eliminated access is not i, the same problem would happen in (O′,W ′),
so we assume i is the eliminated access. So there must be a write w that justifies
i being a RaW and w <rf i. By construction we only add one <rf edge, so w = w1

and w1 <sb i. w2 can’t be in the same thread by definition of RaW and if it is in
another thread, there must be a release-acquire pair between w1 and r to justify the
<hb edges, which is again impossible.

• IR:
Impossible by construction, as we chose a write that is maximal with regards to <hb

as the origin of the <rf edge.

• OW:
Because in this case we do not change any <rf edge, the only hard case (for which
the problem is not directly present in (O′,W ′), is if w2 is the OW. So there is a write
w3 that justifies it, and w2 <sb w3. There are three cases to be looked at:

– w3 and i are not comparable by <hb:
By receptiveness of opsemsets we can pick a new one where i reads the same
value as w2. Then we use prefix-closedness to get a prefix Õ from that opsem,
that contains w3 and i but nothing after i. By restricting W to that opsem,
and replacing w1 <rf i by w2 <rf i, we get a candidate execution. It has a
data-race (or an unsequenced-race) between w3 and i, which is impossible as
P is well defined.

– w3 <hb i:
Then we also have w1 <hb w3 <hb i and w1 <rf i in (O′,W ′) which is impossible
as (O′,W ′) is a candidate execution

– i <hb w3:
Either i is in the same thread (impossible by definition of OW) or there is a
release-acquire pair between w2 and w3 to explain the <hb edges (impossible
for the same reason)

• WaW:
Either of the writes can be the eliminated one:

– If w1 is the WaW:
It is justified by a write w, with w <hb w2 <hb i and w <rf i in (O′,W ′), which
is impossible as (O′,W ′) is a candidate execution.

– If w2 is the WaW, justified by a write w:
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∗ If w and w1 are not comparable by <hb:
We use the prefix-closedness of opsemsets to find an opsem Õ ∈ P that is
a prefix of O that does include w and w1 but not w2 or i. As it does not
contain i, the restriction of W to it makes it a candidate execution and it
exhibits a data-race between w and w1. Absurd as P is well defined.
∗ If w <hb w1:

Either w1 is in the same thread as w and w2 or there is a release-acquire
pair between them to account for the <hb edges. Both are impossible by
the definition of WaW
∗ If w1 <hb w:

Then w1 <hb w <hb i and w1 <rf i in (O′,W ′) which is impossible because
it is a candidate execution.

• WaR:

– If w1 is the WaR:
In (O′,W ′), w2 <hb i, so imust be from some write w0 as (O′,W ′) is a candidate
execution. By construction, w0 <hb w1 So w0 <hb w2 <hb i and w0 <rf i in
(O′,W ′), which is impossible as it is a candidate execution.

– If w2 is the WaR, justified by a read r:
∗ If w1 and r are not comparable by <hb:

We use the prefix-closedness of opsemsets to find an opsem Õ ∈ P that is
a prefix of O that does include w1 and r but not w2 or i. As it does not
contain i, the restriction of W to it makes it a candidate execution and it
exhibits a data-race between w1 and r. Absurd as P is well defined.
∗ If w1 <hb r:

By construction, there must exist some write w3 such that w3 <rf r. Four
cases follow:
· w3 and w1 are not comparable by <hb:
We use the prefix-closedness of opsemsets to find an opsem Õ ∈ P
that is a prefix of O that does include w3 and w1 but not w2 or i. As
it does not contain i, the restriction of W to it makes it a candidate
execution and it exhibits a data-race between w3 and w1. Absurd as
P is well defined.
· w3 <hb w1:
We would have w3 <hb w1 <hb r and w3 <rf r in (O′,W ′), which is
impossible as it is a candidate execution
· w1 <hb w3:
We would have w1 <hb w3 <hb i and w1 <rf i in (O′,W ′), which is
impossible as it is a candidate execution
· w1 = w3:
As (O′,W ′) is a candidate execution, and w1 <rf r in it, w1 is of the
same value as r, and thus of the same value as w2. So by construction
i would read from w2 instead of w1.

Lemma A.0.2. If (O′,W ′) a candidate execution exhibits an undefined behavior, then so
does (O,W ) (built by the construction above).
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Proof. We look at the the four possible cases:

• Unsequenced race:
If a and b are in an unsequenced race in (O′,W ′), they still are in it in (O,W ) as
we do not change <sb in the construction

• Data race:
The same: <hb is preserved during the construction

• Indeterminate read:
We mostly add <rf edges in the construction to new reads, or we replace already-
existing edges. The only exception is in the case for WaR: If w is a WaR justified by
a read r, i is an indeterminate read and w <hb i, then w <rf i in (O,W ) and not in
(O′,W ′). However, if there exists w1 such that w1 <rf i in (O′,W ′), then w1 <hb r,
as (O′,W ′) is a candidate execution. And thus w1 <hb i as r <sb w <hb i, which is
impossible as (O,W )′ is a candidate execution. So there is no such w1, and r is also
an indeterminate read, in both (O′,W ′) and (O,W )

• Bad mutexes:
Trivial as we do not affect synchronisation actions in any way.

Theorem A.0.1. Let the opsemset P ′ be an elimination of an opsemset P . If P is well
defined, then so is P ′ and any execution of P ′ has the same behavior as some execution
of P .

Proof. First, if P ′ were to be ill-defined, there would be a candidate execution (O′,W ′) of
P ′ that exhibits an undefined behaviour. By the above lemmata, it is possible to build a
corresponding candidate execution (O,W ) of P that also exhibits an undefined behaviour,
which is impossible as P is assumed to be well defined. So P ′ is well defined
And by the lemmata above, for every execution (O′,W ′) of P ′ we can build an execution
(O,W ) of P , that have the exact same observable behavior (by construction, we do not
affect in any way synchronisation actions).
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Résumé
Les architectures modernes avec des processeurs mul-
ticoeurs, ainsi que les languages de programmation
modernes, ont des mémoires faiblement consistentes.
Leur comportement est formalisé par le modèle mémoire
de l’architecture ou du langage de programmation; il
définit précisément quelle valeur peut être lue par chaque
lecture dans la mémoire partagée. Ce n’est pas toujours
celle écrite par la dernière écriture dans la même
variable, à cause d’optimisation dans les processeurs,
telle que l’exécution spéculative d’instructions, des effets
complexes des caches, et des optimisations dans les
compilateurs.

Dans cette thèse, nous nous concentrons sur le modèle
mémoire C11 qui est défini par l’édition 2011 du standard
C. Nos contributions suivent trois axes.

Tout d’abord, nous avons regardé la théorie autour
du modèle C11, étudiant de façon formelle quelles
optimisations il autorise les compilateurs à faire. Nous
montrons que de nombreuses optimisations courantes
sont permises, mais, surprenamment, d’autres, impor-
tantes, sont interdites.

Dans un second temps, nous avons développé une
méthode à base de tests aléatoires pour détecter quand
des compilateurs largement utilisés tels que GCC et
Clang réalisent des optimisations invalides dans le modèle
mémoire C11. Nous avons trouvés plusieurs bugs dans
GCC, qui furent tous rapidement fixés. Nous avons
aussi implémenté une nouvelle passez d’optimisation dans
LLVM, qui recherchent des instructions des instructions
spéciales qui limitent les optimisations faites par le
processeur - appelées instructions barrières - et élimine
celles qui ne sont pas utiles.

Finalement, nous avons développé un ordonnanceur
enmode utilisateur pour des threads légers communicants
via des canaux premier entré-premier sorti à un seul
producteur et un seul consommateur. Ce modèle de
programmation est connu sous le nom de réseau de Kahn,
et nous montrons comment l’implémenter efficacement,
via les primitives de synchronisation de C11. Ceci
démontre qu’en dépit de ses problèmes, C11 peut être
utilisé en pratique.

Mots Clés
Modèle mémoire, C11, Optimisations, Compilateur,
Barrière.

Abstract
Modern multiprocessors architectures and programming
languages exhibit weakly consistent memories. Their
behaviour is formalised by the memory model of the
architecture or programming language; it precisely
defines which write operation can be returned by each
shared memory read. This is not always the latest store
to the same variable, because of optimisations in the
processors such as speculative execution of instructions,
the complex effects of caches, and optimisations in the
compilers.

In this thesis we focus on the C11 memory model that
is defined by the 2011 edition of the C standard. Our
contributions are threefold.

First, we focused on the theory surrounding the C11
model, formally studying which compiler optimisations it
enables. We show that many common compiler optimisa-
tions are allowed, but, surprisingly, some important ones
are forbidden.

Secondly, building on our results, we developed
a random testing methodology for detecting when
mainstream compilers such as GCC or Clang perform an
incorrect optimisation with respect to the memory model.
We found several bugs in GCC, all promptly fixed. We
also implemented a novel optimisation pass in LLVM,
that looks for special instructions that restrict processor
optimisations - called fence instructions - and eliminates
the redundant ones.

Finally, we developed a user-level scheduler for
lightweight threads communicating through first-in first-
out single-producer single-consumer queues. This
programming model is known as Kahn process networks,
and we show how to efficiently implement it, using C11
synchronisation primitives. This shows that despite its
flaws, C11 can be usable in practice.

Keywords
Memory model, Memory consistency model, C11,
Compiler optimisations, Fence.
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