## Pi-calculus

## types, bestiary

Francesco Zappa Nardelli
INRIA Rocquencourt, MOSCOVA research team
francesco.zappa_nardelli@inria.fr

MPRI Concurrency course with:
Pierre-Louis Curien (PPS), Roberto Amadio (PPS), Catuscia Palamidessi (INRIA Futurs)

## Plan (first part of the lecture)

Objective:
reason about concurrent systems using types.
Plan:

1. Types to prevent run-tme errors:
simply-typed pi-calculus, soundness, subtyping;
2. Types to reason about processes:
typed equivalences, a labelled characterisation.

## Types and sequential languages

In sequential languages, types are "widely" used:

- to detect simple programming errors at compilation time;
- to perform optimisations in compilers;
- to aid the structure and design of systems;
- to compile modules separately;
- to reason about programs;
- ahem, etc...


## Data types and pi-calculus

In pi-calculus, the only values are names. We now extend pi-calculus with base values of type int and bool, and with tuples.

Unfortunately (?!) this allows writing terms which make no sense, as

$$
\bar{x}\langle\text { true }\rangle . P \| x(y) . \bar{z}\langle y+1\rangle
$$

or (even worse)

$$
\bar{x}\langle\text { true }\rangle . P \| x(y) . \bar{y}\langle 4\rangle .
$$

These terms raise runtime errors, a concept you should be familiar with.

## Preventing runtime errors

We know that 3 : int and true : bool.
Names are values (they denote channels). Question: in the term

$$
P \equiv \bar{x}\langle 3\rangle . P^{\prime}
$$

which type can we assign to $x$ ?
Idea: state that $x$ is a channel that can transport values of type int. Formally

$$
x: \operatorname{ch}(\text { int }) .
$$

A complete type system can be developed along these lines...

## Simply-typed pi-calculus: syntax and reduction semantics

Types:

$$
T::=\operatorname{ch}(T) \quad|T \times T \quad| \text { unit } \mid \text { int } \mid \text { bool }
$$

Terms (messages and processes):

$$
\begin{aligned}
& M \quad:=x|(M, M)|()|1,2, \ldots| \text { true } \mid \text { false } \\
& P \quad::=\mathbf{0}|x(y: T) . P \quad| \quad \bar{x}\langle M\rangle . P \quad|\quad P \| P \quad| \quad(\boldsymbol{\nu} x: T) P \\
& \text { match } z \text { with }\left(x: T_{1}, y: T_{2}\right) \text { in } P \quad|\quad| P
\end{aligned}
$$

Notation: we write $w(x, y) . P$ for $w\left(z: T_{1} \times T_{2}\right)$.match $z$ with $\left(x: T_{1}, y: T_{2}\right)$ in $P$.

## Simply-typed pi-calculus: the type system

Type environment: $\Gamma::=\emptyset \mid \Gamma, x: T$.

Type judgements:

- $\Gamma \vdash M: T$ value $M$ has type $T$ under the type assignement for names $\Gamma$;
- $\Gamma \vdash P$ process $P$ respects the type assignement for names $\Gamma$.


## Simply-typed pi-calculus: the type rules (excerpt)

Messages:

$$
3 \text { : int } \quad \frac{\Gamma(x)=T}{\Gamma \vdash x: T} \quad \frac{\Gamma \vdash M_{1}: T_{1} \quad \Gamma \vdash M_{2}: T_{2}}{\Gamma \vdash\left(M_{1}, M_{2}\right): T_{1} \times T_{2}}
$$

Processes:

$$
\begin{array}{ccc}
\Gamma \vdash \mathbf{0} & \frac{\Gamma \vdash P_{1}}{\Gamma \vdash P_{1} \| P_{2}} & \frac{\Gamma, x: T \vdash P}{\Gamma \vdash(\boldsymbol{\nu} x: T) P} \\
\frac{\Gamma \vdash x: \operatorname{ch}(T)}{} \Gamma, y: T \vdash P & \frac{\Gamma \vdash x: \operatorname{ch}(T)}{\Gamma \vdash x(y: T) . P} & \Gamma \vdash M: T
\end{array} \quad \Gamma \vdash P
$$

## Soundness

The soundness of the type system can be proved along the lines of Wright and Felleisen's syntactic approach to type soundness.

- extend the syntax with the wrong process, and add reduction rules to capture runtime errors:
where $x$ is not a name

$$
\bar{x}\langle M\rangle . P \xrightarrow{\tau} \text { wrong }
$$

where $x$ is not a name

$$
x(y: T) . P \xrightarrow{\tau} \text { wrong }
$$

- prove that if $\Gamma \vdash P$, with $\Gamma$ closed, and $P \rightarrow{ }^{*} P^{\prime}$, then $P^{\prime}$ does not have wrong as a subterm.


## Soundness, ctd.

Lemma Suppose that $\Gamma \vdash P, \Gamma(x)=T, \Gamma \vdash v: T$. Then $\Gamma \vdash P\{v / x\}$.
Proof. Induction on the derivation of $\Gamma \vdash P$.
Theorem Suppose $\Gamma \vdash P$, and $P \xrightarrow{\alpha} P^{\prime}$.

1. If $\alpha=\tau$ then $\Gamma \vdash P^{\prime}$.
2. If $\alpha=a(v)$ then there is $T$ such that $\Gamma \vdash a: \operatorname{ch}(T)$ and if $\Gamma \vdash v: T$ then $\Gamma \vdash P^{\prime}$.
3. If $\alpha=(\boldsymbol{\nu} \tilde{x}: \tilde{S}) \bar{a}\langle v\rangle$ then there is $T$ such that $\Gamma \vdash a: \operatorname{ch}(T), \Gamma, \tilde{x}: \tilde{S} \vdash v: T$, $\Gamma, \tilde{x}: \tilde{S} \vdash P^{\prime}$, and each component of $\tilde{S}$ is a link type.

Proof. At the blackboard.

## Subtyping

Idea: refine the type of channels $\operatorname{ch}(T)$ into

```
i}(T)\quad\mathrm{ input (read) capability
\circ}(T)\quadoutput (write) capabilit
```

This form a basis for subtyping.
Example: the term

$$
x: \mathrm{o}(\mathrm{o}(T)) \vdash(\boldsymbol{\nu} y: \operatorname{ch}(T)) \bar{x}\langle y\rangle!!y(z: T)
$$

is well-typed because $\operatorname{ch}(T)<: \mathrm{o}(T)$. Effect: well-typed contexts cannot interfere with the existing input, because they can only write at channel $y$.

## The subtyping relation, formally

- is a preorder

$$
T<: T
$$

$$
\frac{T_{1}<: T_{2} \quad T_{2}<: T_{3}}{T_{1}<: T_{3}}
$$

- capabilities can be forgotten

$$
\operatorname{ch}(T)<: \mathrm{i}(T)
$$

$$
\operatorname{ch}(T)<: \circ(T)
$$

- i is a covariant type constructor, o is contravariant, ch is invariant

$$
\frac{T_{1}<: T_{2}}{\mathrm{i}\left(T_{1}\right)<: \mathrm{i}\left(T_{2}\right)} \quad \frac{T_{2}<: T_{1}}{\mathrm{o}\left(T_{1}\right)<: \mathrm{o}\left(T_{2}\right)} \quad \frac{T_{2}<: T_{1} T_{1}<: T_{2}}{\operatorname{ch}\left(T_{1}\right)<: \operatorname{ch}\left(T_{2}\right)}
$$

## Subtyping, ctd.

Intuition: if $x: \mathrm{O}(T)$ then it is safe to send along $x$ values of of a subtype of $T$. Dually, if $x: \mathrm{i}(T)$ then it is safe to assume to assume that values received along $x$ belong to a supertype of $T$.

Type rules must be updated as follows:

$$
\begin{array}{cc}
\Gamma \vdash x: \mathrm{i}(T) \quad \Gamma, y: T \vdash P \\
\Gamma \vdash x(y: T) . P & \frac{\Gamma \vdash x: \mathrm{o}(T) \quad \Gamma \vdash M: T}{} \quad \Gamma \vdash P \\
\Gamma \vdash \bar{x}\langle M\rangle . P
\end{array}
$$

$$
\frac{\Gamma \vdash M: T_{1} \quad T_{1}<: T_{2}}{\Gamma \vdash M: T_{2}}
$$

## Exercises

Show that:

1. $a: \operatorname{ch}($ int $), b: \operatorname{ch}($ real $) \vdash \bar{a}\langle 5\rangle \| a(x) . \bar{b}\langle x\rangle$, assuming int $<$ : real;
2. $x: \mathrm{o}(\mathrm{o}(T)) \vdash(\boldsymbol{\nu} y: \operatorname{ch}(T))(\bar{x}\langle y\rangle .!y(z))$
3. $x: \mathrm{o}(\mathrm{o}(T)), z: \mathrm{o}(\mathrm{i}(T)) \vdash(\boldsymbol{\nu} y: \operatorname{ch}(T))(\bar{x}\langle y\rangle \| \bar{z}\langle y\rangle)$
4. $b: \operatorname{ch}(S), x: \operatorname{ch}(\mathrm{i}(S)), a: \operatorname{ch}(\mathrm{o}(\mathrm{i}(S))) \vdash \bar{a}\langle x\rangle\|x(y) . y(z)\| a(x) . \bar{x}\langle b\rangle$

## Remarks on i/o types

- different processes may have different visibility of a name:

$$
\begin{aligned}
& (\boldsymbol{\nu} x: \operatorname{ch}(T)) \bar{y}\langle x\rangle \cdot \bar{z}\langle x\rangle \cdot P\|y(a: \mathrm{i}(T)) \cdot Q\| z(b: \mathrm{o}(T)) \cdot R \quad \rightarrow \rightarrow \\
& \quad(\boldsymbol{\nu} x: \operatorname{ch}(T))(P\|Q\{x / a\}\| R\{x / b\})
\end{aligned}
$$

$Q$ can only read from $x, R$ can only write to $x$.

- acquiring the o and i capabilities on a name is different from acquiring ch: the term

$$
(\boldsymbol{\nu} x: \operatorname{ch}(\text { unit })) \bar{y}\langle x\rangle \cdot \bar{z}\langle x\rangle \| y(a: \mathrm{i}(\text { unit })) \cdot z(b: \mathrm{o}(\text { unit })) \cdot \bar{a}\langle \rangle
$$

is not well-typed.

## Types for reasoning

Types can be seen as contracts between a process and its environment: the environment must respect the constraints imposed by the typing discipline.

In turn, types reduce the number of legal contexts (and give us more process equalities).

Example: an observer whose typing is

$$
\Gamma=a: \circ(T), b: T, c: T^{\prime} \quad T \text { and } T^{\prime} \text { unrelated }
$$

- can offer an output $\bar{a}\langle b\rangle$;
- cannot offer an output $\bar{a}\langle c\rangle$, or an input at $a$.


## A "natural" contextual equivalence, informally

Definition (informal): The processes $P$ and $Q$ are equivalent in $\Gamma$, denoted

$$
P \cong_{\Gamma} Q
$$

iff $\Gamma \vdash P, Q$ and they are equivalent in all the testing contexts that respect the types in $\Gamma$.

To formalize this equivalence we need to type contexts, at the blackboard...

## Semantic consequences of i/o types

Example: the processes

$$
\begin{aligned}
P & =(\boldsymbol{\nu} x) \bar{a}\langle x\rangle . \bar{x}\langle \rangle \\
Q & =(\boldsymbol{\nu} x) \bar{a}\langle x\rangle .0
\end{aligned}
$$

and different in the untyped or simply-typed pi-calculus.
With i/o types, it holds that

$$
P \cong_{\Gamma} Q \quad \text { for } \Gamma=a: \operatorname{ch}(\mathrm{o}(\text { unit }))
$$

because the residual $\bar{x}\rangle$ of $P$ is deadlocked (the context cannot read from $x$ ).

## Semantic consequences of $i / o$ types, ctd.

Specification and an implementation of the factorial function:
Spec $=!f(x, r) \cdot \bar{r}\langle\operatorname{fact}(x)\rangle$
$\operatorname{Imp}=!f(x, r)$.if $x=0$ then $\bar{r}\langle 1\rangle$ else $\left(\boldsymbol{\nu} r^{\prime}\right) \bar{f}\left\langle x-1, r^{\prime}\right\rangle \cdot r^{\prime}(m) . \bar{r}\langle x * m\rangle$

In general, Spec $\neq$ Imp. (Why?)
With i/o types, we can protect the input end of the function, obtaining

$$
(\boldsymbol{\nu} f) \bar{a}\langle f\rangle . \mathrm{Spec} \cong_{\Gamma}(\boldsymbol{\nu} f) \bar{a}\langle f\rangle . \operatorname{Imp}
$$

for $\Gamma=a: \operatorname{ch}(\mathrm{o}($ int $\times \mathrm{o}($ int $)))$.

## Semantic consequences of $i / o$ types, ctd.

$$
\begin{aligned}
P & =(\boldsymbol{\nu} x, y)(\bar{a}\langle x\rangle\|\bar{a}\langle y\rangle\|!x() \cdot R \|!y() \cdot R) \\
Q & =(\boldsymbol{\nu} x)(\bar{a}\langle x\rangle\|\bar{a}\langle x\rangle\|!x() \cdot R)
\end{aligned}
$$

In the untyped calculus $P \not \approx Q$ : a context that tells them apart is

$$
-\| a\left(z_{1}\right) \cdot a\left(z_{2}\right) \cdot\left(z_{1}() \cdot \bar{c}\langle \rangle \| \overline{z_{2}}\langle \rangle\right) .
$$

With i/o types

$$
P \cong_{\Gamma} Q \quad \text { for } \Gamma=a: \operatorname{ch}(\mathrm{o}(\text { unit })) .
$$

Notation: I will often omit redundant type informations.

## Exercise

1. Extend the syntax, the reduction semantics, and the type rules of pi-calculus with i/o types with the nondeterministic sum operator, denoted + ;
2. Show that the terms

$$
\begin{aligned}
P & =\bar{b}\langle x\rangle \cdot a(y) \cdot(y() \| \bar{x}\langle \rangle) \\
Q & =\bar{b}\langle x\rangle \cdot a(y) \cdot(y() \cdot \bar{x}\langle \rangle+\bar{x}\langle \rangle \cdot y())
\end{aligned}
$$

are not equivalent in the untyped calculus. Propose a i/o typing such that $P \simeq_{\Gamma} Q$.

## References

Milner: The polyadic pi-calculus - a tutorial, ECS-LFCS-91-180.
Pierce, Sangiorgi: Typing and subtyping for mobile processes, LICS '93.
Boreale, Sangiorgi: Bisimulation in name-passing calculi without matching, LICS '98.

Sangiorgi, Walker: The pi-calculus, CUP.
...there is a large literature on the subject. The articles above have been reported because they are explicitely mentioned in this lecture.

## Navigating through the literature

Pi-calculus literature describes zillions of slightly different languages, semantics, equivalencies.

Some slides for not getting lost.

## Barbed congruence vs. reduction-closed barbed congruence

Let barbed equivalence, denoted $\cong^{\bullet}$, be the largest symmetric relation that is barb preserving and reduction closed. Barbed equivalence is not preserved by context, so define barbed congruence, denoted $\cong^{c}$, as

$$
\{(P, Q): C[P] \cong \bullet C[Q] \text { for every context } \mathrm{C}[-] .\}
$$

- Barbed congruence is more natural and less discriminating than reductionclosed barbed congruence (for pi-calculus processes).
- Completeness of bisimulation for image-finite processes holds with respect to barbed congruence, but its proof requires transifinite induction.


## Late bisimulation

Change the definition of the LTS:

$$
x(y) . P \xrightarrow{x(y)} P \quad \frac{P \xrightarrow{\bar{x}\langle v\rangle} P^{\prime} \quad Q \xrightarrow{x(y)} Q^{\prime}}{P\left\|Q \xrightarrow{\tau} P^{\prime}\right\| Q^{\prime}\{v / y\}}
$$

and extend the definition of bisimulation with the clause: if $P \approx_{l} Q$ and $P \xrightarrow{x(y)} P^{\prime}$, then there is $Q^{\prime}$ such that $Q \stackrel{x(y)}{\Longrightarrow} Q^{\prime}$ and for all $v$ it holds $P^{\prime}\{v / y\} \approx_{l} Q^{\prime}\{v / y\}$.

- Late bisimulation differs (slightly) from (early) bisimulation. More importantly, the label $x(y)$ does not denote an interacting context.


## Ground bisimulation

Idea: play a standard bisimulation on the late LTS. Or,
Let ground bisimulation be the largest symmetric relation, $\approx_{g}$, such that whenever $P \approx_{g} Q$, there is $z \notin \mathrm{fn}(P, Q)$ such that if $P \xrightarrow{\alpha} P^{\prime}$ where $\alpha$ is $\bar{x}\langle y\rangle$ or $x(z)$ or $(\boldsymbol{\nu} z) \bar{x}\langle z\rangle$ or $\tau$, then $Q \xlongequal{\hat{\alpha}} \approx_{g} P^{\prime}$.

Contrast it with bisimilarity: to establish $x(z) \cdot P \approx x(z) \cdot Q$ it is necessary to show that $P\{v / z\} \approx Q\{v / z\}$ for all $v$. Ground bisimulation requires to test only a single, fresh, name.

However, ground bisimilarity is less discriminating than bisimilarity, and it is not preserved by composition (still, it is a reasonable equivalence for sublanguages of pi-calculus).

## Open bisimulation

Full bisimilarity is the closure of bisimilairty under substitutions, and is a congruence with respect to all contexts. Unfortunately, full bisimilarity is not defined co-inductively.

Question: can we give a co-inductive definition of a useful congruence?
Yes, with open bisimulation.
Idea: (on the restriction free calculus) let $\bowtie$ be the largest symmetric relation such that whenever $P \bowtie Q$ and $\sigma$ is a substitution, $P \sigma \xrightarrow{\alpha} P^{\prime}$ implies $Q \sigma \xrightarrow{\hat{\alpha}} \bowtie P^{\prime}$. It is possible to avoid the $\sigma$ quantification by means of an appropriate LTS.

## Subcalculi

Idea: In pi-calculus contexts have a great discriminating power. It may be useful to consider other languages in which contexts "observe less", so that we have more equations.

Asynchronous pi-calculus: no continuation after an output prefix.
Localized pi-calculus: given $x(y) . P$, the name $y$ is not used as subject of an input prefix in $P$.

Private pi-calculus: only output of new names.

## Conclusion: back to programming languages

Design choice:
bake into the definition of the language specific communication primitives?

- yes: Pict (Pierce et al.), NomadicPict (Sewell et al.), JoCaml (Moscova), ...
- no: Acute (Sewell et al., Moscova), ...

Some demos
...crossing fingers...

