## Concurrency theory

## Weak equivalences, axiomatizations, Hennessy-Milner logic

James Leifer Francesco Zappa Nardelli<br>INRIA Rocquencourt, MOSCOVA research team<br>james.leifer@inria.fr francesco.zappa_nardelli@inria.fr<br>together with<br>Frank Valencia (INRIA Futurs) Catuscia Palamidessi (INRIA Futurs) Roberto Amadio (PPS)

## Today's plan

- Weak bisimulation and "up-to" techniques
- Equational axiomatisation
- Hennessy-Milner logic


## A couple of useful pointers

- Aceto, Inglfsdttir, Larsen, Srba: Reactive systems: modelling, specification and verification.
http://www.cs.auc.dk/~luca/SV/intro2ccs.pdf
- Winskel: Chapter 4 of Set theory for computer science.
http://www.cl.cam.ac.uk/~gw104/DiscMath.pdf


## Weak bisimulation

Definition: a weak bisimulation is a binary relation $\mathcal{R}$ on the set of processes such that for all $P, Q$, if $P \mathcal{R} Q$ then

$$
\begin{aligned}
& -\forall \mu, P^{\prime}, P \xrightarrow{\mu} P^{\prime} \Rightarrow \exists Q^{\prime}, Q \xrightarrow{\hat{\mu}} Q^{\prime} \text { and } P^{\prime} \mathcal{R} Q^{\prime} ; \\
& -\forall \mu, Q^{\prime}, Q \xrightarrow{\mu} Q^{\prime} \Rightarrow \exists P^{\prime}, P \xrightarrow{\hat{\mu}} P^{\prime} \text { and } P^{\prime} \mathcal{R} Q^{\prime}
\end{aligned}
$$

where $\xrightarrow{\hat{\mu}}$ is $\xrightarrow{\tau}$ if $\mu=\tau$ and $\xrightarrow{\tau}{ }^{*} \mu \xrightarrow{\tau}$ otherwise.
We say that $P$ and $Q$ are weakly bisimilar, denoted $P \approx Q$, if there exists a bisimulation $\mathcal{R}$ such that $P \mathcal{R} Q$.

Exercise: Prove that weak bisimilarity is an equivalence relation.

## Some interesting examples

Some inequivalences:

$$
P=a+b \quad Q=a+\tau . b \quad R=\tau . a+\tau . b
$$

Some equivalences (for $P, Q, R$ arbitrary):

$$
\begin{gathered}
\tau \cdot a \approx a \quad a+\tau . a \approx \tau . a \quad a . c+a .(b+\tau \cdot c) \approx a .(b+\tau \cdot c) \\
\tau . P+R \approx P+\tau . P+R \quad a \cdot(\tau . P+Q)+R \approx a \cdot(\tau . P+Q)+a \cdot P+R
\end{gathered}
$$

## Up-to techniques for weak bisimulation

Definition: a weak bisimulation up-to $\sim$ is a binary relation $\mathcal{R}$ on the set of processes such that for all $P, Q$, if $P \mathcal{R} Q$ then

$$
\forall \mu, P^{\prime}, P \xrightarrow{\mu} P^{\prime} \Rightarrow \exists Q^{\prime}, Q \xrightarrow{\hat{\mu}} Q^{\prime} \text { and } P^{\prime} \sim \mathcal{R} \sim Q^{\prime} \text { and conversely. }
$$

Theorem If $\mathcal{R}$ is a weak bisimulation up-to $\sim$, then $\mathcal{R} \subseteq \approx$.
Exercise: Is weak bisimulation up-to $\approx$ a sound proof technique? Consider the processes $P=\tau . a .0$ and $Q=\tau .0$.

See Techniques of weak bisimulation up to by Milner and Sangiorgi.

## Specification and weak bisimulation

Consider the processes:

$$
\quad K=\text { in. } D \quad D=\overline{\text { out } . K}
$$

Exercise: show that $(\boldsymbol{\nu} g, p)(J\|J\| H) \approx K \| K$ using the up-to $\equiv$ proof technique.

## Weak bisimulation is not a congruence for unguarded sums

Consider CCS with prefix and sums instead of guarded sums, i.e. replace $\Sigma_{i \in I} \mu_{i} . P_{i}$ by $\Sigma_{i \in I} P_{i}$ and $\mu$. $P$, with rules

$$
\frac{P_{i} \xrightarrow{\mu} P_{i}^{\prime}}{\Sigma_{i \in I} P_{i} \xrightarrow{\mu} P_{i}^{\prime}}
$$

$$
\mu . P \xrightarrow{\mu} P
$$

Strong bisimilarity is a congruence, and weak bisimilarity is not a congruence.
Exercise: find a counter example to congruence of weak bisimulation in CCS + sums.

## Weak bisimulation is not a congruence for unguarded sums, ctd.

If you attempt to prove congruence, you will fail when dealing with the sum rule: Suppose $P \approx Q$ and our goal is to show $P+S \approx Q+S$. If $P+S \xrightarrow{\tau} P^{\prime}$ because $P \xrightarrow{\tau} P^{\prime}$ then there exists $Q^{\prime}$ such that $Q \xrightarrow{\tau} Q^{\prime}$, which may involve zero $\tau$ steps! In this case, there is no weak transition of $Q+S$ to reach a state matching $P^{\prime}$.

## Strong axiomatization

For finitary CCS (no recursion, finite guarded sums),

$$
P \sim Q \text { iff } \mathcal{A}_{1} \vdash P=Q
$$

where $\mathcal{A}_{1}$ is:

1. $\Sigma_{i \in I} \mu_{i} \cdot P_{i}=\Sigma_{i \in I} \mu_{f(i)} \cdot P_{f(i)} \quad$ ( $f$ permutation)
2. $\Sigma_{i \in I} \mu_{i} . P_{i}+\mu_{j} . P_{j}=\Sigma_{i \in I} \mu_{i} . P_{i} \quad$ for $j \in I \quad$ (idempotency)
3. $P \| Q=\Sigma\left\{\mu \cdot\left(P^{\prime} \| Q\right): P \xrightarrow{\mu} P^{\prime}\right\}+\Sigma\left\{\mu \cdot\left(P \| Q^{\prime}\right): Q \xrightarrow{\mu} Q^{\prime}\right\}$

$$
+\Sigma\left\{\tau .\left(P^{\prime} \| Q^{\prime}\right): P \xrightarrow{\alpha} P^{\prime} \text { and } Q \xrightarrow{\bar{\alpha}} Q^{\prime}\right\} \quad \text { (expansion) }
$$

4. $(\boldsymbol{\nu} a)\left(\Sigma_{i \in I} \mu_{i} . P_{i}\right)=\Sigma_{\left\{j \in I: \mu_{j} \neq a, \bar{a}\right\}} \mu_{j} .(\boldsymbol{\nu} a) P_{j}$
plus the rules for equational reasoning (reflexivity, symmetry, transitivity) and congruence wrt sum, parallel and restriction.

## Exercise on axiomatization

Show that

$$
\mathcal{A}_{1} \vdash(\boldsymbol{\nu} b)(a .(b \| c)+\tau .(b \| \bar{b} . c))=\tau . \tau . c+a . c
$$

## Proof of strong axiomatization

First step: each process is provably equal to a synchronization tree (guarded sums only), using only
3. $P \| Q=\Sigma\left\{\mu .\left(P^{\prime} \| Q\right): P \xrightarrow{\mu} P^{\prime}\right\}+\Sigma\left\{\mu .\left(P \| Q^{\prime}\right): Q \xrightarrow{\mu} Q^{\prime}\right\}$

The following weight function on processes decreases with each application of rules (3)-(4).

$$
\begin{aligned}
w\left(\Sigma_{i \in I} \mu_{i} \cdot P_{i}\right) & =1+\max _{i \in I} w\left(P_{i}\right) \\
w(P \| Q) & =2 \cdot(w(P)+w(Q)) \\
w((\boldsymbol{\nu} a) P) & =1+2 \cdot w(P)
\end{aligned}
$$

## Strong axiomatization, ctd.

Second step: if $P=\Sigma_{i \in 1 . . m} \mu_{i} . P_{i}$ and $Q=\Sigma_{j \in m+1 . . n} \mu_{j} . P_{j}$, and if $P \sim Q$, then $P$ and $Q$ are provably equal, using only

1. $\Sigma_{i \in I} \mu_{i} \cdot P_{i}=\Sigma_{i \in I} \mu_{f(i)} . P_{f(i)} \quad$ ( $f$ permutation)
2. $\Sigma_{i \in I} \mu_{i} \cdot P_{i}+\mu_{j} \cdot P_{j}=\Sigma_{i \in I} \mu_{i} . P_{i} \quad$ for $j \in I \quad$ (idempotency)

Induct on $\operatorname{size}(P)+\operatorname{size}(Q)$ : let $\rightleftharpoons$ be the equivalence relation on $\{1 . . n\}$ defined by $i \rightleftharpoons j$ iff $\mu_{i}=\mu_{j}$ and $P_{i} \sim P_{j}$. By induction $i \rightleftharpoons j$ implies $\vdash P_{i}=P_{j}$. By strong bisimilarity each $\rightleftharpoons$ equivalence class contains at least one element of $[1, m]$ and at least one element of $[m+1, n]$. Now for each of the equivalence classes we pick one representative in $[1, m]$ and one in $[m+1, n]$. Call them $p_{1}, \ldots, p_{k}$ and $q_{1}, \ldots q_{k}$ respectively. Then using (1)-(2) and congruence we have:

$$
\vdash \Sigma_{i=1 . . m} \mu_{i} . P_{i}=\Sigma_{l=1 . . k} \mu_{p_{l}} . P_{p_{l}}=\Sigma_{l=1 . . k} \mu_{q_{l}} . P_{q_{l}}=\Sigma_{j=m+1 . . n} \mu_{j} . P_{j}
$$

## Weak axiomatization

For finitary CCS,

$$
P \approx Q \text { iff } \mathcal{A}_{1}+\mathcal{A}_{2} \vdash P=Q
$$

where $\mathcal{A}_{2}$ is:

1. $P=\tau . P$
2. $\tau . P+R=P+\tau . P+R$
3. $\mu \cdot(\tau . P+Q)+R=\mu \cdot(\tau \cdot P+Q)+\mu \cdot P+R$
(In general, we do not have $\vdash P+Q=\tau . P+Q$ ).
(We postpone the proof of the completness of this axiomatization to a later lecture).

## Image finite LTS

We revert to an arbitrary LTS, with its set of actions $\mathbf{A}$. We make the assumption that the LTS is image finite:

$$
\forall P, \mu\left(\left\{P^{\prime}: P \xrightarrow{\mu} P^{\prime}\right\} \text { is finite }\right)
$$

We write Proc for the set of all states/processes.

## Hennessy-Milner logic

The set of formulas of Hennessy-Milner logic is defined by:

$$
A::=T \quad|\quad A \wedge A \quad| \neg A \quad \mid \quad\langle\mu\rangle A
$$

A formula $A$ is interpreted by the set of processes that satisfy it, whence two notations: $\llbracket A \rrbracket=\{P: P \Vdash A\}$.

$$
\begin{aligned}
\llbracket T \rrbracket & =\operatorname{Proc} \\
\llbracket A \wedge B \rrbracket & =\llbracket A \rrbracket \cap \llbracket B \rrbracket \\
\llbracket \neg A \rrbracket & =\operatorname{Proc} \backslash \llbracket A \rrbracket \\
\llbracket\langle\mu\rangle A \rrbracket & =\left\{P: \exists P^{\prime} P \xrightarrow{\mu} P^{\prime} \text { and } P^{\prime} \Vdash A\right\}
\end{aligned}
$$

Derived operators: $A \vee B=\neg(\neg A \wedge \neg B),[\mu] A=\neg(\langle\mu\rangle(\neg A))$.

## Hennessy-Milner logic, ctd.

Theorem: Under the image finitness assumption,

$$
P \sim Q \text { iff }\{A: P \Vdash A\}=\{A: Q \Vdash Q\}
$$

The theorem can be applied to finitary CCS (both strong and weak bisimulation). When weak bisimulation is meant, we write $\langle\langle\mu\rangle\rangle A$ and $[[\mu]] A$.

It works also for the larger fragment of CCS with finite sums and recursive definitions where each recursively defined $K$ is guarded and sequential in its definition.

More generally it works for all pair of $P, Q$ that are both hereditarily image finite, i.e. say, whenever $P \xrightarrow{\tilde{\mu}} Q\left(\tilde{\mu} \in \mathbf{A}^{*}\right)$, then $Q$ is image finite.

## Hennessy-Milner logic, ctd.

Let $L_{n}$ be the subset of formulas with depth of at most $n$, where depth is defined by

$$
\begin{array}{ll}
\operatorname{depth}(T)=0 & \operatorname{depth}(A \wedge B)=\max (\operatorname{depth}(A), \operatorname{depth}(B)) \\
\operatorname{depth}(\neg A)=\operatorname{depth}(A) & \operatorname{depth}(\langle\mu\rangle A)=\operatorname{depth}(A)+1
\end{array}
$$

Remember that $\sim$ is the greatest fixed point of some operator $G_{K}$. Since we suppose image finiteness, $G_{K}$ is anti-continuous and

$$
\sim=\bigcap_{n \in \omega} \sim_{n} \text { where } \sim_{0}=\operatorname{Proc} \times \operatorname{Proc} \text { and } \sim_{n+1}=G_{K}\left(\sim_{n}\right)
$$

## Hennessy-Milner logic, ctd.

Remark: unfolding the definition of $G_{K}$, we have:
$P \sim_{n+1} Q$ iff $\forall \mu, P^{\prime}\left(P \xrightarrow{\mu} P^{\prime} \Rightarrow \exists Q^{\prime}\left(Q \xrightarrow{\mu} Q^{\prime}\right.\right.$ and $\left.\left.P^{\prime} \sim_{n} Q^{\prime}\right)\right)$ and conversely

We set $L_{n}(P)=\left\{A \in L_{n}: P \Vdash A\right\}$. We prove by induction on $n$ :

$$
P \sim_{n} Q \Leftrightarrow L_{n}(P)=L_{n}(Q)
$$

Case $n=0$. Notice that for every $A \in L_{0}$ we have either $\llbracket A \rrbracket=\emptyset$ or $\llbracket A \rrbracket=$ Proc. It follows that $P \in \llbracket A \rrbracket$ iff $Q \in \llbracket A \rrbracket$ for arbitrary $P, Q$.

## Hennessy-Milner logic, ctd.

$$
P \not \nsim n+1 Q \Rightarrow L_{n+1}(P) \neq L_{n+1}(Q) .
$$

Since $P \not \chi_{n+1} Q$ there exists $\mu, P^{\prime}$ such that $P \xrightarrow{\mu} P^{\prime}$ and for all $Q_{1}^{\prime}, \ldots, Q_{k}^{\prime}$ (we are using image-finiteness) such that $Q \xrightarrow{\mu} Q_{i}^{\prime}$ we have $P^{\prime} \not \chi_{n} Q_{i}^{\prime}$ for all $i \leq k$.

Now $L_{n}\left(P^{\prime}\right) \neq L_{n}\left(Q_{i}^{\prime}\right)$ by induction. Hence there exists $A_{i} \in L_{n}\left(P^{\prime}\right) \backslash L_{n}\left(Q_{i}^{\prime}\right)$ or there exists $B_{i} \in L_{n}\left(Q_{i}^{\prime}\right) \backslash L_{n}\left(P^{\prime}\right)$. But in the latter case we can take $A_{i}=\neg B_{i}$, hence we may assume that there exists $A_{i} \in L_{n}\left(P^{\prime}\right) \backslash L_{n}\left(Q_{i}^{\prime}\right)$. Let $A=A_{1} \wedge \cdots \wedge A_{k}$.

Then $P^{\prime} \Vdash A$, and since $Q_{i}^{\prime} \Vdash A_{i}$ we have $Q_{i}^{\prime} \Vdash A$ for all $i$. It follows that $P \Vdash\langle\mu\rangle A$ and $Q \Vdash\langle\mu\rangle A$.

## Hennessy-Milner logic, ctd.

$P \sim_{n+1} Q \Rightarrow L_{n+1}(P)=L_{n+1}(Q)$.
Let $A \in L_{n+1}(P)$. We proceed by structural induction on $A$. The only non trivial case is $A=\langle\mu\rangle B$.

Since $P \Vdash A$ there exists $\mu, P^{\prime}$ such that $P \xrightarrow{\mu} P^{\prime}$ and $P^{\prime} \Vdash B$. By the hypothesis that $P \sim_{n+1} Q$, there exists $Q^{\prime}$ such that $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \sim_{n} Q^{\prime}$.

By induction, since $B \in L_{n}$ we get $Q^{\prime} \Vdash B$ and hence $A \in L_{n+1}(Q)$.

