
Concurrency theory

proof-techniques for syncronous and asynchronous pi-calculus

Francesco Zappa Nardelli

INRIA Rocquencourt, MOSCOVA research team

francesco.zappa nardelli@inria.fr

together with

Frank Valencia (INRIA Futurs) Catuscia Palamidessi (INRIA Futurs) Roberto Amadio (PPS)

MPRI - Concurrency October 15, 2007

Summary of last episode

• The syntax and reduction semantics of pi-calculus.

• A general and intuitive contextual equivalence.

• Relationship between lts + bisimulation and contextual equivalence.
with proofs for CCS

1

Summary of actions in pi-calculus LTS

` kind fn(`) bn(`) n(`)

x〈y〉 free output {x, y} ∅ {x, y}
(νy)x〈y〉 bound output {x} {y} {x, y}

x(y) input {x, y} ∅ {x, y}
τ internal ∅ ∅ ∅

2

Back on pi-calculus LTS

x〈v〉.P x〈v〉−−−−→ P x(y).P
x(v)−−−−→ {v/y}P

P
x〈v〉−−−−→ P ′ Q

x(v)−−−−→ Q′

P
f

Q
τ−−→ P ′ f

Q′

P
`−−→ P ′ bn(`) ∩ fn(Q) = ∅

P
f

Q
`−−→ P ′ f

Q

P
`−−→ P ′ v 6∈ n(`)

(νv)P `−−→ (νv)P ′

P
f

!P `−−→ P ′

!P `−−→ P ′

P
x〈v〉−−−−→ P ′ x 6= v

(νv)P
(νv)x〈v〉−−−−−−−→ P ′

P
(νv)x〈v〉−−−−−−−→ P ′ Q

x(v)−−−−→ Q′ v 6∈ fn(Q)

P
f

Q
τ−−→ (νv)(P ′ f

Q′)

3

Subtleties of pi-calculus LTS

Exercise: derive a τ transition corresponding to this reduction:

(νx)a〈x〉.P
n

a(y).Q _ (νx)(P
n

Q{x/y})

Exercise: each side condition in the definition of the LTS is needed to have the
theorem

P _ Q iff P
τ−−→≡ Q

Remove on side condition at a time and find counter-examples to this theorem.

4

Weak bisimulation is a sound proof technique
for reduction barbed congruence

• Prove that weak bisimulation is reduction closed.
...at the blackboard

• Prove that weak bisimulation is barb preserving.
...at the blackboard

• Prove that weak-bisimulation is a congruence.
...ahem, think twice...

5

On soundness of weak bisimilarity

Exercise: Consider the terms (in a pi-calculus extended with +):

P = x〈v〉
n

y(z)

Q = x〈v〉.y(z) + y(z).x〈v〉

1. Prove that P ≈ Q1.

2. Does P ' Q?2

1Does this hold if we replace + by −1 ⊕−2 = (νw)(w〈〉
f

w().−1
f

w().−2) in Q?
2Hint: define a context that equates the names x and y.

6

Bisimilarity is not a congruence

In pi-calculus, bisimilarity (both strong and weak) is not preserved by input
prefixes, that is contexts of the form C[−] = x(y).−.

Question: how to recover the soundness of the bisimilarity with respect to the
reduction barbed congruence? Two solutions:

1. close the reduction barbed congruence under all non input prefix contexts;

2. close the bisimilarity under substitution: let P ≈c Q (P is fully bisimilar with
Q) if Pσ ≈ Qσ for all substitutions σ.

Exercise: Show that P 6≈c Q, where P and Q are defined in the previous slide.

7

And completeness?

Completeness of bisimulation with respect to barbed congruence3 (closed under
non-input prefixes, denoted '−) holds in the strong case. In the weak case, we
have that for

P = a〈x〉
n

Exy Q = a〈y〉
n

Exy

where
Exy = !x(z).y〈z〉

n
!y(z).x〈z〉

it holds that P 6≈ Q but P '− Q for each context C[−].

Completeness (for image-finite processes) holds if a name-matching operator is
added to the language.

3barbed congruence is a variant of reduction-closed barbed congruence in which closure under context is allowed
only at the beginning of the bisimulation game.

8

How to prove...

To show that two processes are bisimilar, it is enough to fo find a bisimulation
relating them. Easy?

Example: we want to show that (in the pi-calculus) bisimilarity is preserved by
parallel composition. We naturally consider

R = {(P
n

R , Q
n

R) : P ≈ Q}

as a candidate bisimulation. But...

9

The candidate bisimulation

1. may be larger than at first envisaged;

2. may be infinite;

example: to show that x(z).y〈z〉 ≈ (νw)(x(z).w〈z〉
f

w(v).y〈v〉), we must consider:

{(x(z).y〈z〉, (νw)(x(z).w〈z〉
f

w(v).y〈v〉))}
∪ {(y〈a〉, (νw)(w〈a〉

f
w(v).y〈v〉)) : a arbitrary}

∪ {(y〈a〉, (νw)(0
f

y〈a〉)) : a arbitrary}
∪ {(0, (νw)(0

f
0))}

3. hard to guess;

which is the smallest bisimulation relating !!P and !P ?

4. awkward to describe and to work with...

10

Up-to proof techniques

Idea: find classes of relations that:

1. are not themselves bisimulations;

2. can be automatically completed into bisimulations.

Idea, explained: if we had such a class then to prove that two processes are
bisimilar it would be enough to exhibit a relation in this class4 that contains the
two processes.

Example: bisimulation up to ≡ (analogous to what we did with CCS).
4Hopefully, it is easier to find such relation than to find the candidate bisimulation directly.

11

Bisimulation up to non-input context

A symmetric relation R is a bisimulation up-to non-input context if whenever

P R Q and P
`−−→ P ′ then there exists a process Q′ such that Q

ˆ̀
=⇒ Q′

and there exist a non-input context C[−] and processes P ′′ and Q′′ such that
P ′ ≡ C[P ′′], Q′ ≡ C[Q′′], and P ′′ R Q′′.

Exercise: Prove that if R is a bisimulation up to non-input context, then

{(C[P], C[Q]) : P R Q and C[−] is a non-input context}

is a bisimulation up to structural congruence.

Exercise: Prove that !P
f

!P ≈ !P (hint: show that the relation R =
{(!P

f
!P, !P)} is a bisimulation up to non-input context).

12

Alternative LTS rules for replication

It is often convenient to replace the rule:

P
f

!P
`−→ P ′

!P
`−→ P ′

with the three rules:

P
`−→ P ′

!P
`−→ P ′ f

!P

P
x〈y〉−−−→ P1 P

x(y)−−−→ P2

!P
τ−→ (P1

f
P2)

f
!P

P
(νy)x〈y〉−−−−−−→ P1 P

x(y)−−−→ P2

!P
τ−→ (νy)(P1

f
P2)

f
!P

13

Theorems about replication

The equivalence !P
f

!P ≈ !P shows that duplication of a replicable resource has
no behavioural effect. Consider now

(νx)(P
n

!x(y).Q)

We may call !x(y).Q a private resource of P . Suppose P ≡ P1

f
P2. It holds

that

(νx)
(
P1

n
P2

n
!x(y).Q

)
≈ (νx)

(
P1

n
!x(y).Q

) n
(νx)

(
P2

n
!x(y).Q

)
provided that P1 and P2 never read over x.

14

Intermezzo: two applications of process languages

• Protocol verification using the Mobility Workbench
http://www.it.uu.se/research/group/mobility/mwb

• Post-hoc specification of TCP
http://www.cl.cam.ac.uk/~pes20/Netsem

Demos

15

Asynchronous communication

CCS and pi-calculus (and many others) are based on synchronized interaction,
that is, the acts of sending a datum and receiving it coincide:

a.P
n

a.Q _ P
n

Q .

In real-world distributed systems, sending a datum and receiving it are distinct
acts:

a.P
n

a.Q . . . _ . . . a
n

P
n

a.Q . . . _ . . . P ′
n

Q .

In an asynchronous world, the prefix . does not express temporal precedence.

16

Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is 0.

Intuition: an unguarded occurence of x〈y〉 can be thought of as a datum y in an
implicit communication medium tagged with x.

Formally:

x〈y〉
n

x(z).P _ P{y/z} .

We suppose that the communication medium has unbounded capacity and
preserves no ordering among output particles.

17

Asynchronous pi-calculus

Syntax:

P ::= 0
∣∣ x(y).P

∣∣ x〈y〉
∣∣ P

n
P

∣∣ (νx)P
∣∣ !P

The definitions of free and bound names, of structural congruence ≡, and of the
reduction relation _ are inherited from pi-calculus.

18

Examples

Sequentialization of output actions is still possible:

(νy, z)(x〈y〉
n

y〈z〉
n

z〈a〉
n

R) .

Synchronous communication can be implemented by waiting for an
acknoledgement:

[[x〈y〉.P]] = (νu)(x〈y, u〉
n

u().P)

[[x(v).Q]] = x(v, w).(w〈〉
n

Q) for w 6∈ Q

Exercise: implement synchronous communication without relying on polyadic primitives.

19

Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

• compare terms using only asynchronous contexts;

• restrict the observables to be co-names. To observe a process is to interact
with it by performing a complementary action and reporting it: in asynchronous
pi-calculus input actions cannot be observed.

20

A peculiarity of synchronous equivalences

The terms

P = !x(z).x〈z〉
Q = 0

are not reduction barbed congruent, but they are asynchronous reduction barbed
congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do
not influence the computation.

21

A proof method

Consider now the weak bisimilarity ≈s built on top of the standard (early) LTS
for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, ≈s is
an equivalence for asynchronous pi-calculus terms.

It holds ≈s ⊆ ', that is the standard pi-calculus bisimilarity is a sound proof
technique for '.

But
!x(z).x〈z〉 6≈s 0 .

Question: can a labelled bisimilarity recover the natural contextual equivalence?

22

A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage
with a context:

• if P
x〈y〉−−−−→ P ′ then P can interact with the context −

f
x(u).beep, where

beep is activated if and only if the output action has been observed;

• if P
x(y)−−−−→ P ′ then in no way beep can be activated if and only if the input

action has been observed!

Solutions:

1. relax the matching condition for input actions in the bisimulation game;

2. modify the LTS so that it precisely identifies the interactions that a term can
have with its environment.

23

Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.

Let asynchronous bisimulation ≈a be the largest symmetric relation such that
whenever P ≈a Q it holds:

1. if P
`−−→ P ′ and ` 6= x(y) then there exists Q′ such that Q

ˆ̀
=⇒ Q′ and

P ′ ≈a Q′;

2. if P
x(y)−−−−→ P ′ then there exists Q′ such that Q

f
x〈y〉 =⇒ Q′ and P ′ ≈a Q′.

Remark : P ′ is the outcome of the interaction of P with the context −
f

x〈y〉.
Clause 2. allows Q to interact with the same context, but does not force this
interaction.

24

Honda, Tokoro - 1992

x〈y〉 x〈y〉−−−→ 0 x(u).P
x(y)−−−→ P{y/u} 0

x(y)−−−→ x〈y〉

P
x〈y〉−−−→ P ′ x 6= y

(νy)P
(νy)x〈y〉−−−−−−→ P ′

P
α−−→ P ′ y 6∈ α

(νy)P
α−−→ (νy)P ′

P
x〈y〉−−−→ P ′ Q

x(y)−−−→ Q′

P
f

Q
τ−→ P ′ f

Q′

P
x〈(y)〉−−−−→ P ′ Q

x(y)−−−→ Q′ y 6∈ fn(Q)

P
f

Q
τ−→ (νy)(P ′ f

Q′)

P
α−−→ P ′ bn(α) ∩ fn(Q) = ∅

P
f

Q
α−−→ P ′ f

Q

P ≡ P ′ P ′ α−−→ Q′ Q′ ≡ Q

P
α−−→ Q

25

Honda, Tokoro explained

Ideas:

• modify the LTS so that it precisely identifies the interactions that a term can
have with its environment;

• rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of
HT LTS, and barbed congruence coincide.5

5ahem, modulo some technical details.

26

Properties of asynchronous bisimilarity in ACS style

• Bisimilarity is a congruence;

it is preserved also by input prefix, while it is not in the synchronous case;

• bisimilarity is an equivalence relation (transitivity is non-trivial);

• bisimilarity is sound with respect to reduction barbed congruence;

• bisimilarity is complete with respect to barbed congruence.6

6for completeness the calculus must be equipped with a matching operator.

27

Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:

P ::= 0
∣∣ a.P

∣∣ a
∣∣ P

n
P

∣∣ (νa)P .

Reduction semantics:

a.P
f

a _ P
P ≡ P ′ _ Q′ ≡ Q

P _ Q

where ≡ is defined as:

P
f

Q ≡ Q
f

P (P
f

Q)
f

R ≡ P
f

(Q
f

R)

(νa)P
f

Q ≡ (νa)(P
f

Q) if a 6∈ fn(Q)

28

Background: LTS and weak bisimilarity for asynchronous CCS

a.P
a−→ P a

a−→ 0
P

a−→ P ′ Q
a−→ Q′

P
f

Q
τ−→ P ′ f

Q′

P
`−→ P ′

P
f

Q
`−→ P ′ f

Q

P
`−→ P ′ a 6∈ fn(`)

(νa)P
`−→ (νa)P ′

symmetric rules omitted.

Definition: Asynchronous weak bisimilarity, denoted ≈, is the largest symmetric
relation such that whenever P ≈ Q and

• P
`−−→ P ′, ` ∈ {τ, a}, there exists Q′ such that Q

ˆ̀
=⇒ Q′ and P ′ ≈ Q′;

• P
a−−→ P ′, there exists Q′ such that Q

f
a =⇒ Q′ and P ′ ≈ Q′.

29

Sketch of the proof of transitivity of ≈

Let R = {(P, R) : P ≈ Q ≈ R}. We show that R ⊆ ≈.

• Suppose that P R R because P ≈ Q ≈ R, and that P
a−→ P ′.

The definition of ≈ ensures that there exists Q′ such that Q
f

a =⇒ Q′ and P ′ ≈ Q′.

Since ≈ is a congruence and Q ≈ R, it holds that Q
f

a ≈ R
f

a.

A simple corollary of the defintion of the bisimilarity ensures that there exists R′ such that

R
f

a =⇒ R′ and Q′ ≈ R′.

Then P ′ R R′ by construction of R.

• The other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.

30

Sketch of the proof of completeness

We show that ' ⊆ ≈.

• Suppose that P ' Q and that P
a−→ P ′.

We must conclude that there exists Q′ such that Q
f

a =⇒ Q′ and P ′ ' Q′.

Since ' is a congruence, it holds that P
f

a ' Q
f

a.

Since P
a−→ P ′, it holds that P

f
a

τ−→ P ′.

Since P
f

a ' Q
f

a, the definition of' ensures that there exists Q′ such that Q
f

a =⇒ Q′

and P ′ ' Q′, as desired.

• The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a

process. The case P
a−→ P ′ is straightforward because “there is nothing to observe”.

31

Some references

Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous
Communication. ECOOP 1991.

Kohei Honda, Mario Tokoro, On asynchronous communication semantics. Object-
Based Concurrent Computing 1991.

Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, 1992.

Roberto Amadio, Ilaria Castellani, Davide Sangiorgi, On bisimulations for the
asynchronous pi-calculus. Theor. Comput. Sci. 195(2), 1998.

32

