Concurrency theory

proof-techniques for syncronous and asynchronous pi-calculus

Francesco Zappa Nardelli
INRIA Rocquencourt, MOSCOVA research team
francesco.zappa_nardelli@inria.fr
together with
Frank Valencia (INRIA Futurs) Catuscia Palamidessi (INRIA Futurs) Roberto Amadio (PPS)

Summary of last episode

- The syntax and reduction semantics of pi-calculus.
- A general and intuitive contextual equivalence.
- Relationship between Its + bisimulation and contextual equivalence. with proofs for CCS

Summary of actions in pi-calculus LTS

ℓ	kind	$\operatorname{fn}(\ell)$	$\operatorname{bn}(\ell)$	$\mathrm{n}(\ell)$
$\bar{x}\langle y\rangle$	free output	$\{x, y\}$	\emptyset	$\{x, y\}$
$(\boldsymbol{\nu} y) \bar{x}\langle y\rangle$	bound output	$\{x\}$	$\{y\}$	$\{x, y\}$
$x(y)$	input	$\{x, y\}$	\emptyset	$\{x, y\}$
τ	internal	\emptyset	\emptyset	\emptyset

Back on pi-calculus LTS

$$
\begin{aligned}
& \bar{x}\langle v\rangle . P \xrightarrow{\bar{x}\langle v\rangle} P \quad x(y) . P \xrightarrow{x(v)}\{v / y\} P \quad \xrightarrow{P\left\|Q \xrightarrow{\bar{x}\langle v\rangle} P^{\prime} \quad Q \xrightarrow{x(v)} P^{\prime}\right\| Q^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& P\left\|Q \xrightarrow{\ell} P^{\prime}\right\| Q \quad(\boldsymbol{\nu} v) P \xrightarrow{\ell}(\boldsymbol{\nu} v) P^{\prime} \quad!P \xrightarrow{\ell} P^{\prime} \\
& P \xrightarrow{\bar{x}\langle v\rangle} P^{\prime} \quad x \neq v \quad P \xrightarrow{(\nu v) \bar{x}\langle v\rangle} P^{\prime} \quad Q \xrightarrow{x(v)} Q^{\prime} \quad v \notin \operatorname{fn}(Q) \\
& (\boldsymbol{\nu} v) P \xrightarrow{(\boldsymbol{\nu} v) \bar{x}\langle v\rangle} P^{\prime} \\
& P \| Q \xrightarrow{\tau}(\boldsymbol{\nu} v)\left(P^{\prime} \| Q^{\prime}\right)
\end{aligned}
$$

Subtleties of pi-calculus LTS

Exercise: derive a τ transition corresponding to this reduction:

$$
(\boldsymbol{\nu} x) \bar{a}\langle x\rangle \cdot P \| a(y) \cdot Q \rightarrow(\boldsymbol{\nu} x)(P \| Q\{x / y\})
$$

Exercise: each side condition in the definition of the LTS is needed to have the theorem

$$
P \rightarrow Q \text { iff } P \xrightarrow{\tau} \equiv Q
$$

Remove on side condition at a time and find counter-examples to this theorem.

Weak bisimulation is a sound proof technique for reduction barbed congruence

- Prove that weak bisimulation is reduction closed.

...at the blackboard

- Prove that weak bisimulation is barb preserving.
...at the blackboard
- Prove that weak-bisimulation is a congruence.
...ahem, think twice...

On soundness of weak bisimilarity

Exercise: Consider the terms (in a pi-calculus extended with +):

$$
\begin{aligned}
P & =\bar{x}\langle v\rangle \| y(z) \\
Q & =\bar{x}\langle v\rangle . y(z)+y(z) \cdot \bar{x}\langle v\rangle
\end{aligned}
$$

1. Prove that $P \approx Q^{1}$.
2. Does $P \simeq Q ?^{2}$
[^0]
Bisimilarity is not a congruence

In pi-calculus, bisimilarity (both strong and weak) is not preserved by input prefixes, that is contexts of the form $C[-]=x(y)$. - .

Question: how to recover the soundness of the bisimilarity with respect to the reduction barbed congruence? Two solutions:

1. close the reduction barbed congruence under all non input prefix contexts;
2. close the bisimilarity under substitution: let $P \approx^{c} Q$ (P is fully bisimilar with Q) if $P \sigma \approx Q \sigma$ for all substitutions σ.

Exercise: Show that $P \not \nsim^{c} Q$, where P and Q are defined in the previous slide.

And completeness?

Completeness of bisimulation with respect to barbed congruence ${ }^{3}$ (closed under non-input prefixes, denoted \simeq^{-}) holds in the strong case. In the weak case, we have that for

$$
P=\bar{a}\langle x\rangle\left\|E_{x y} \quad Q=\bar{a}\langle y\rangle\right\| E_{x y}
$$

where

$$
E_{x y}=!x(z) \cdot \bar{y}\langle z\rangle \|!y(z) \cdot \bar{x}\langle z\rangle
$$

it holds that $P \not \approx Q$ but $P \simeq^{-} Q$ for each context $C[-]$.
Completeness (for image-finite processes) holds if a name-matching operator is added to the language.

[^1]
How to prove...

To show that two processes are bisimilar, it is enough to fo find a bisimulation relating them. Easy?

Example: we want to show that (in the pi-calculus) bisimilarity is preserved by parallel composition. We naturally consider

$$
\mathcal{R}=\{(P\|R, Q\| R): P \approx Q\}
$$

as a candidate bisimulation. But...

The candidate bisimulation

1. may be larger than at first envisaged;
2. may be infinite;
example: to show that $x(z) \cdot \bar{y}\langle z\rangle \approx(\boldsymbol{\nu} w)(x(z) \cdot \bar{w}\langle z\rangle \| w(v) \cdot \bar{y}\langle v\rangle)$, we must consider:

$$
\begin{array}{ll}
& \{(x(z) \cdot \bar{y}\langle z\rangle,(\boldsymbol{\nu} w)(x(z) \cdot \bar{w}\langle z\rangle \| w(v) \cdot \bar{y}\langle v\rangle))\} \\
\cup & \{(\bar{y}\langle a\rangle,(\boldsymbol{\nu} w)(\bar{w}\langle a\rangle \| w(v) . \bar{y}\langle v\rangle)): a \text { arbitrary }\} \\
\cup & \{(\bar{y}\langle a\rangle,(\boldsymbol{\nu} w)(\mathbf{0} \| \bar{y}\langle a\rangle)): a \text { arbitrary }\} \\
\cup & \{(\mathbf{0},(\boldsymbol{\nu} w)(\mathbf{0} \| \mathbf{0}))\}
\end{array}
$$

3. hard to guess;
which is the smallest bisimulation relating $!!P$ and $!P$?
4. awkward to describe and to work with...

Up-to proof techniques

Idea: find classes of relations that:

1. are not themselves bisimulations;
2. can be automatically completed into bisimulations.

Idea, explained: if we had such a class then to prove that two processes are bisimilar it would be enough to exhibit a relation in this class ${ }^{4}$ that contains the two processes.

Example: bisimulation up to \equiv (analogous to what we did with CCS).

[^2]
Bisimulation up to non-input context

A symmetric relation R is a bisimulation up-to non-input context if whenever $P \mathcal{R} Q$ and $P \xrightarrow{\ell} P^{\prime}$ then there exists a process Q^{\prime} such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q^{\prime}$ and there exist a non-input context $C[-]$ and processes $P^{\prime \prime}$ and $Q^{\prime \prime}$ such that $P^{\prime} \equiv C\left[P^{\prime \prime}\right], Q^{\prime} \equiv C\left[Q^{\prime \prime}\right]$, and $P^{\prime \prime} \mathcal{R} Q^{\prime \prime}$.

Exercise: Prove that if \mathcal{R} is a bisimulation up to non-input context, then

$$
\{(C[P], C[Q]): P \mathcal{R} Q \text { and } C[-] \text { is a non-input context }\}
$$

is a bisimulation up to structural congruence.
Exercise: Prove that $!P \|!P \approx!P$ (hint: show that the relation $\mathcal{R}=$ $\{(!P \|!P,!P)\}$ is a bisimulation up to non-input context $)$.

Alternative LTS rules for replication

It is often convenient to replace the rule:

$$
\frac{P \|!P \xrightarrow{\ell} P^{\prime}}{!P \xrightarrow{\ell} P^{\prime}}
$$

with the three rules:

$$
\xrightarrow[{!P \xrightarrow{\ell} P^{\ell} P^{\prime} \|!} P]{l} \quad \xrightarrow{P \xrightarrow{\bar{x}\langle y\rangle} P_{1} \quad P \xrightarrow{x(y)} P_{2}} \quad \xrightarrow{P \xrightarrow{\tau}\left(P_{1} \| P_{2}\right) \|!P} \quad \xrightarrow{(\boldsymbol{\nu} y) \bar{x}\langle y\rangle} P_{1} \quad P \xrightarrow{\tau(y)} P_{2}
$$

Theorems about replication

The equivalence $!P \|!P \approx!P$ shows that duplication of a replicable resource has no behavioural effect. Consider now

$$
(\boldsymbol{\nu} x)(P \|!x(y) \cdot Q)
$$

We may call ! $x(y) . Q$ a private resource of P. Suppose $P \equiv P_{1} \| P_{2}$. It holds that

$$
(\boldsymbol{\nu} x)\left(P_{1}\left\|P_{2}\right\|!x(y) \cdot Q\right) \approx(\boldsymbol{\nu} x)\left(P_{1} \|!x(y) \cdot Q\right) \|(\boldsymbol{\nu} x)\left(P_{2} \|!x(y) \cdot Q\right)
$$

provided that P_{1} and P_{2} never read over x.

Intermezzo: two applications of process languages

- Protocol verification using the Mobility Workbench http://www.it.uu.se/research/group/mobility/mwb
- Post-hoc specification of TCP
http://www.cl.cam.ac.uk/~pes20/Netsem

Demos

Asynchronous communication

CCS and pi-calculus (and many others) are based on synchronized interaction, that is, the acts of sending a datum and receiving it coincide:

$$
\bar{a} . P\|a \cdot Q \rightarrow P\| Q .
$$

In real-world distributed systems, sending a datum and receiving it are distinct acts:

$$
\bar{a} . P\|a . Q \ldots \rightarrow \ldots \bar{a}\| P\left\|a \cdot Q \ldots \rightarrow \ldots P^{\prime}\right\| Q .
$$

In an asynchronous world, the prefix . does not express temporal precedence.

Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is $\mathbf{0}$.
Intuition: an unguarded occurence of $\bar{x}\langle y\rangle$ can be thought of as a datum y in an implicit communication medium tagged with x.

Formally:

$$
\bar{x}\langle y\rangle \| x(z) . P \rightarrow P\{y / z\} .
$$

We suppose that the communication medium has unbounded capacity and preserves no ordering among output particles.

Asynchronous pi-calculus

Syntax:

$$
P::=\mathbf{0}|x(y) . P \quad| \bar{x}\langle y\rangle \left\lvert\, \begin{array}{ll|l|l}
& P \| P \mid & (\boldsymbol{\nu} x) P \mid & \mid P
\end{array}\right.
$$

The definitions of free and bound names, of structural congruence \equiv, and of the reduction relation \rightarrow are inherited from pi-calculus.

Examples

Sequentialization of output actions is still possible:

$$
(\boldsymbol{\nu} y, z)(\bar{x}\langle y\rangle\|\bar{y}\langle z\rangle\| \bar{z}\langle a\rangle \| R)
$$

Synchronous communication can be implemented by waiting for an acknoledgement:

$$
\begin{aligned}
\llbracket \bar{x}\langle y\rangle \cdot P \rrbracket & =(\boldsymbol{\nu} u)(\bar{x}\langle y, u\rangle \| u() \cdot P) \\
\llbracket x(v) \cdot Q \rrbracket & =x(v, w) \cdot(\bar{w}\langle \rangle \| Q) \quad \text { for } w \notin Q
\end{aligned}
$$

Exercise: implement synchronous communication without relying on polyadic primitives.

Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

- compare terms using only asynchronous contexts;
- restrict the observables to be co-names. To observe a process is to interact with it by performing a complementary action and reporting it: in asynchronous pi-calculus input actions cannot be observed.

A peculiarity of synchronous equivalences

The terms

$$
\begin{aligned}
P & =!x(z) \cdot \bar{x}\langle z\rangle \\
Q & =\mathbf{0}
\end{aligned}
$$

are not reduction barbed congruent, but they are asynchronous reduction barbed congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do not influence the computation.

A proof method

Consider now the weak bisimilarity \approx_{s} built on top of the standard (early) LTS for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, \approx_{s} is an equivalence for asynchronous pi-calculus terms.

It holds $\approx_{s} \subseteq \simeq$, that is the standard pi-calculus bisimilarity is a sound proof technique for \simeq.

But

$$
!x(z) \cdot \bar{x}\langle z\rangle \not \chi_{s} \mathbf{0} .
$$

Question: can a labelled bisimilarity recover the natural contextual equivalence?

A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage with a context:

- if $P \xrightarrow{\bar{x}\langle y\rangle} P^{\prime}$ then P can interact with the context $-\| x(u)$.beep, where beep is activated if and only if the output action has been observed;
- if $P \xrightarrow{x(y)} P^{\prime}$ then in no way beep can be activated if and only if the input action has been observed!

Solutions:

1. relax the matching condition for input actions in the bisimulation game;
2. modify the LTS so that it precisely identifies the interactions that a term can have with its environment.

Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.
Let asynchronous bisimulation \approx_{a} be the largest symmetric relation such that whenever $P \approx_{a} Q$ it holds:

1. if $P \xrightarrow{\ell} P^{\prime}$ and $\ell \neq x(y)$ then there exists Q^{\prime} such that $Q \xrightarrow{\hat{\ell}} Q^{\prime}$ and $P^{\prime} \approx_{a} Q^{\prime} ;$
2. if $P \xrightarrow{x(y)} P^{\prime}$ then there exists Q^{\prime} such that $Q \| \bar{x}\langle y\rangle \Longrightarrow Q^{\prime}$ and $P^{\prime} \approx_{a} Q^{\prime}$.

Remark: P^{\prime} is the outcome of the interaction of P with the context $-\| \bar{x}\langle y\rangle$. Clause 2. allows Q to interact with the same context, but does not force this interaction.

Honda, Tokoro - 1992

$$
\begin{aligned}
& \bar{x}\langle y\rangle \xrightarrow{\bar{x}\langle y\rangle} \mathbf{0} \quad x(u) . P \xrightarrow{x(y)} P\{y / u\} \quad \mathbf{0} \xrightarrow{x(y)} \bar{x}\langle y\rangle \\
& P \xrightarrow{\bar{x}\langle y\rangle} P^{\prime} \quad x \neq y \\
& (\boldsymbol{\nu} y) P \xrightarrow{(\boldsymbol{\nu} y) \bar{x}\langle y\rangle} P^{\prime} \\
& \frac{P \xrightarrow{\alpha} P^{\prime} \quad y \notin \alpha}{(\boldsymbol{\nu} y) P \xrightarrow{\alpha}(\boldsymbol{\nu} y) P^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
P \xrightarrow{\alpha} P^{\prime} \quad \operatorname{bn}(\alpha) \cap \mathrm{fn}(Q)=\emptyset \\
P\left\|Q \xrightarrow{\alpha} P^{\prime}\right\| Q
\end{array} \\
& P \equiv P^{\prime} \quad P^{\prime} \xrightarrow{\alpha} Q^{\prime} \quad Q^{\prime} \equiv Q \\
& P \xrightarrow{\alpha} Q
\end{aligned}
$$

Honda, Tokoro explained

Ideas:

- modify the LTS so that it precisely identifies the interactions that a term can have with its environment;
- rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of HT LTS, and barbed congruence coincide. ${ }^{5}$

[^3]
Properties of asynchronous bisimilarity in ACS style

- Bisimilarity is a congruence;
it is preserved also by input prefix, while it is not in the synchronous case;
- bisimilarity is an equivalence relation (transitivity is non-trivial);
- bisimilarity is sound with respect to reduction barbed congruence;
- bisimilarity is complete with respect to barbed congruence. ${ }^{6}$

[^4]
Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:

Reduction semantics:

$$
a . P \| \bar{a} \rightarrow P
$$

$$
\begin{aligned}
P \equiv P^{\prime} \rightarrow Q^{\prime} \equiv Q \\
P \rightarrow Q
\end{aligned}
$$

where \equiv is defined as:

$$
\begin{gathered}
P\|Q \equiv Q\| P \quad(P \| Q)\|R \equiv P\|(Q \| R) \\
(\boldsymbol{\nu} a) P \| Q \equiv(\boldsymbol{\nu} a)(P \| Q) \text { if } a \notin \operatorname{fn}(Q)
\end{gathered}
$$

Background: LTS and weak bisimilarity for asynchronous CCS

$$
\begin{array}{cc}
a . P \xrightarrow{a} P & \begin{array}{c}
\bar{a} \xrightarrow{\bar{a}} \mathbf{0} \\
P \xrightarrow{\ell} P^{\prime} \\
P\left\|Q \xrightarrow{\ell} P^{\prime}\right\| Q
\end{array} \\
\underset{(\boldsymbol{\nu} a) P \xrightarrow{\ell}(\boldsymbol{\nu} a) P^{\prime}}{P \xrightarrow{\ell} P^{\prime} \quad Q \xrightarrow{\bar{a}} Q^{\prime}} \\
& \begin{array}{l}
P \notin \mathrm{fn}(\ell)
\end{array} \\
\text { symmetric rules omitted. }
\end{array}
$$

Definition: Asynchronous weak bisimilarity, denoted \approx, is the largest symmetric relation such that whenever $P \approx Q$ and

- $P \xrightarrow{\ell} P^{\prime}, \ell \in\{\tau, \bar{a}\}$, there exists Q^{\prime} such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$;
- $P \xrightarrow{a} P^{\prime}$, there exists Q^{\prime} such that $Q \| \bar{a} \Longrightarrow Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.

Sketch of the proof of transitivity of \approx

Let $\mathcal{R}=\{(P, R): P \approx Q \approx R\}$. We show that $\mathcal{R} \subseteq \approx$.

- Suppose that $P \mathcal{R} R$ because $P \approx Q \approx R$, and that $P \xrightarrow{a} P^{\prime}$.

The definition of \approx ensures that there exists Q^{\prime} such that $Q \| \bar{a} \Longrightarrow Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.
Since \approx is a congruence and $Q \approx R$, it holds that $Q\|\bar{a} \approx R\| \bar{a}$.
A simple corollary of the defintion of the bisimilarity ensures that there exists R^{\prime} such that $R \| \bar{a} \Longrightarrow R^{\prime}$ and $Q^{\prime} \approx R^{\prime}$.
Then $P^{\prime} \mathcal{R} R^{\prime}$ by construction of \mathcal{R}.

- The other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.

Sketch of the proof of completeness

We show that $\simeq \subseteq \approx$.

- Suppose that $P \simeq Q$ and that $P \xrightarrow{a} P^{\prime}$.

We must conclude that there exists Q^{\prime} such that $Q \| \bar{a} \Longrightarrow Q^{\prime}$ and $P^{\prime} \simeq Q^{\prime}$.
Since \simeq is a congruence, it holds that $P\|\bar{a} \simeq Q\| \bar{a}$.
Since $P \xrightarrow{a} P^{\prime}$, it holds that $P \| \bar{a} \xrightarrow{\tau} P^{\prime}$.
Since $P\|\bar{a} \simeq Q\| \bar{a}$, the definition of \simeq ensures that there exists Q^{\prime} such that $Q \| \bar{a} \Longrightarrow Q^{\prime}$ and $P^{\prime} \simeq Q^{\prime}$, as desired.

- The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a process. The case $P \xrightarrow{a} P^{\prime}$ is straightforward because "there is nothing to observe".

Some references

Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous Communication. ECOOP 1991.

Kohei Honda, Mario Tokoro, On asynchronous communication semantics. ObjectBased Concurrent Computing 1991.

Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, 1992.
Roberto Amadio, Ilaria Castellani, Davide Sangiorgi, On bisimulations for the asynchronous pi-calculus. Theor. Comput. Sci. 195(2), 1998.

[^0]: ${ }^{1}$ Does this hold if we replace + by $-_{1} \oplus-{ }_{2}=(\boldsymbol{\nu} w)\left(\bar{w}\langle \rangle\left\|w() .-_{1}\right\| w() .-_{2}\right)$ in Q ?
 ${ }^{2}$ Hint: define a context that equates the names x and y.

[^1]: ${ }^{3}$ barbed congruence is a variant of reduction-closed barbed congruence in which closure under context is allowed only at the beginning of the bisimulation game.

[^2]: ${ }^{4}$ Hopefully, it is easier to find such relation than to find the candidate bisimulation directly.

[^3]: ${ }^{5}$ ahem, modulo some technical details.

[^4]: ${ }^{6}$ for completeness the calculus must be equipped with a matching operator.

