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Compilers vs. programmers

Compilers and programmers should cooperate,

 don't they?
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Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;  

3Wednesday 16 December 15



Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

Consider the two threads below:

Intuitively, this program always prints 0

x = y = 0x = y = 0

x = 1
if (y == 1)
  print x

if (x == 1) {
  x = 0
  y = 1 }

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;  
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Constant propagation (an optimising compiler breaks your program)

A simple and innocent looking optimization:

Consider the two threads below:

Sun HotSpot JVM or GCJ: always prints 1.

x = y = 0x = y = 0

x = 1
if (y == 1)
  print x

if (x == 1) {
  x = 0
  y = 1 }

int x = 14;
int y = 7 - x / 2;

int x = 14;
int y = 7 - 14 / 2;  

  print 1  
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Background: lock and unlock

• Suppose that two threads increment a shared memory location:

• If both threads read 0, (even in an ideal world) x == 1 is possible:

x = 0x = 0

tmp1 = *x;
*x = tmp1 + 1;

tmp2 = *x;
*x = tmp2 + 1;

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1 
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Background: lock and unlock

• Lock and unlock are primitives that prevent the two threads from 
interleaving their actions.

• In this case, the interleaving below is forbidden, and we are 
guaranteed that x == 2 at the end of the execution.

x = 0x = 0

lock();
tmp1 = *x;
*x = tmp1 + 1;
unlock();

lock();
tmp2 = *x;
*x = tmp2 + 1;
unlock();

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1 
FORB

IDDEN
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Lazy initialisation (an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never 
used (e.g. device drivers code).  Compare:

  int x = computeInitValue();     // eager initialization 
  …                               // clients refer to x 

with:

int xValue() {
  static int x = computeInitValue(); // lazy initialization 
  return x;
} ...                      // clients refer to xValue() 
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The singleton pattern

Lazy initialisation is a pattern commonly used.  In C++ you would write:

  class Singleton {
  public:
    static Singleton *instance (void) {
!     if (instance_ == NULL)
! !   !instance_ = new Singleton;
!   ! return instance_;
    }
! …                               // other methods omitted
  private:
!   static Singleton *instance_;  // other fields omitted
  };

  … 
  Singleton::instance () -> method ();

But this code is not thread safe! Why?
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Making the singleton pattern thread safe

A simple thread safe version:

class Singleton {
public:
! static Singleton *instance (void) {
! ! Guard<Mutex> guard (lock_); // only one thread at a time
! ! if (instance_ == NULL)
! ! ! instance_ = new Singleton;
! ! return instance_;
! }!
private:
! static Mutex lock_;
! static Singleton *instance_; 
};

Every call to instance must acquire and release the lock: excessive overhead.
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Obvious (broken) optimisation

class Singleton {
public:
! static Singleton *instance (void) {
! ! if (instance_ == NULL) {
! ! ! Guard<Mutex> guard (lock_); // lock only if unitialised 
! !   instance_ = new Singleton; }
! ! return instance_;
! }
!
private:
! static Mutex lock_;
! static Singleton *instance_; 
};

Exercise: why is it broken?
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Clever programmers use double-check locking
class Singleton {

public:
! static Singleton *instance (void) {
! ! // First check
! ! if (instance_ == NULL) {
! ! ! // Ensure serialization 
! ! ! Guard<Mutex> guard (lock_);
! ! ! // Double check
! ! ! if (instance_ == NULL)
! ! ! ! instance_ = new Singleton;
! ! }
! ! return instance_;
! }
private: [..]
};

Idea: re-check that the Singleton has not been created after acquiring the lock.
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Double-check locking: clever but broken

The instruction 
instance_ = new Singleton; 

does three things:
1) allocate memory
2) construct the object
3) assign to instance_ the address of the memory

Not necessarily in this order!  For example:

instance_ =                        // 3
  operator new(sizeof(Singleton)); // 1 
new (instance_) Singleton          // 2 

If this code is generated, the order is 1,3,2.
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Broken…

    if (instance_ == NULL) {               // Line 1
      Guard<Mutex> guard (lock_);
      if (instance_ == NULL) {
        instance_ =                        
           operator new(sizeof(Singleton));   // Line 2 
        new (instance_) Singleton; }} 

Thread 1:
   executes through Line 2 and is suspended; at this point, instance_ is non-
NULL, but no singleton has been constructed.

Thread 2:
  executes Line 1, sees instance_ as non-NULL, returns, and dereferences 
the pointer returned by Singleton (i.e., instance_).

Thread 2 attempts to reference an object that is not there yet!
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The fundamental problem

Problem: You need a way to specify that step 3 come after steps 1 and 2.

There is no way to specify this in C++

Similar examples can be built for any programming language…
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That pesky hardware (1)

Consider misaligned 4-byte accesses

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

• n-bytes on an n-byte boundary (n = 1,2,4,16)

• P6 or later: … or if unaligned but within a cache line

Question: what about multi-word high-level language values?

int32_t a = 0int32_t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

This is called a out-of-thin air read: 

the program reads a value 
that the programmer never wrote.
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That pesky hardware (2)

Hardware optimisations can be observed by concurrent code:

Thread 0 Thread 1

x = 1 y = 1

print y print x

At the end of some executions:

 0  0

is printed on the screen, 
both on x86 and Power/ARM).
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That pesky hardware (2)

...and differ between architectures...

At the end of some executions:

 1   0

is printed on the screen on Power/ARM,
but not on x86.

Thread 0 Thread 1

x = 1 print y

y = 1 print x
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Compilers vs. programmers

Tension:
• the programmer wants to understand the code he writes
• the compiler and the hardware want to optimise it.

Which are the valid optimisations that the compiler or the hardware 
can perform without breaking the expected semantics of a concurrent 
program?

Which is the semantics of a concurrent program?
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This lecture

Programming language models

    1) defining the semantics of a concurrent programming language

    2) data-race freedom 

    3) soundness of compiler optimisations

Previous lecture: hardware models 

    1) why are industrial specs so often flawed?

          focus on x86, with a glimpse of Power/ARM

    2) usable models: x86-TSO, PowerARM
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A brief tour of compiler optimisations
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World of optimisations

         A typical compiler performs many optimisations.

gcc 4.4.1. with -O2 option goes through 147 compilation passes. 

computed using -fdump-tree-all and -fdump-rtl-all

Sun Hotspot Server JVM has 18 high-level passes with each pass 
composed of one or more smaller passes.

http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends
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World of optimisations

A typical compiler performs many optimisations.

– Common subexpression elimination 
       (copy propagation, partial redundancy elimination, value numbering) 
– (conditional) constant propagation 
– dead code elimination
– loop optimisations 
       (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.) 
– vectorisation 
– peephole optimisations 
– tail duplication removal
– building graph representations/graph linearisation 
– register allocation 
– call inlining 
– local memory to registers promotion
– spilling 
– instruction scheduling
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World of optimisations

However only some optimisations change shared-memory traces:

– Common subexpression elimination 
       (copy propagation, partial redundancy elimination, value numbering) 
– (conditional) constant propagation 
– dead code elimination
– loop optimisations 
       (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.) 
– vectorisation 
– peephole optimisations 
– tail duplication removal
– building graph representations/graph linearisation 
– register allocation 
– call inlining 
– local memory to registers promotion
– spilling 
– instruction scheduling
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Memory optimisations

Optimisations of shared memory can be classified as:

Eliminations (of reads, writes, sometimes synchronisation).

Reordering (of independent non-conflicting memory accesses).

Introductions (of reads and of writes – rarely).
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Eliminations

This includes common subexpression elimination, dead read 
elimination, overwritten write elimination, redundant write elimination.

Irrelevant read elimination: 
r=*x; C ! C

where r is not free in C. 

Redundant read after read elimination:
r1=*x; r2=*x ! r1=*x; r2=r1

Redundant read after write elimination:
*x=r1; r2=*x ! *x=r1; r2=r1

26Wednesday 16 December 15



Reordering

Common subexpression elimination, some loop optimisations, code 
motion.

Normal memory access reordering:
r1=*x; r2=*y ! r2=*y; r1=*x
*x=r1; *y=r2 ! *y=r2; *x=r1 
r1=*x; *y=r2 ⇄ *y=r2; r1=*x

Roach motel reordering: 
memop; lock m ! lock m; memop

unlock m; memop ! memop; unlock m 
where memop is *x=r1 or r1=*x
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Memory access introduction

Can an optimisation introduce memory accesses? 

Yes, but rarely:

Note that the loop body is not executed.

i = 0;
...
while (i != 0) {
   j = *x + 1; 
   i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
   j = tmp + 1; 
   i = i-1 }

→

Back to our question now:

Which is the semantics of a concurrent program?
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Vote: topics for my next lecture

1. The lwarx and stwcx Power instructions   1              

2. Hunting compiler concurrency bugs     8

3. Operational and axiomatic formalisation of x86-TSO   2 

4. Fence optimisations for x86-TSO                           1  

5. The Java memory model                                         1 

6. The C11/C++11 memory model                               7

7. Static and dynamic techniques for data-race detection   6

8. What about the Linux kernel            3
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Naive answer: enforce sequential consistency
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Lamport, 1979.

Sequential consistency

Multiprocessors have a sequentially consistent shared memory when:

                                                                  

...the result of any execution is the same as if the operations of 
all the processors were executed in some sequential order, and 
the operations of each individual processor appear in this 
sequence in the order specified by its program...
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Compilers, programmers & sequential consistency

Simple and intuitive 
programming model

Expensive 
to implement
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Expensive 
to implement

An SC-preserving compiler, obtained by 
restricting the optimization phases in 
LLVM, a state-of-the-art C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs from the SPLASH-2, PARSEC, 
and SPEC CINT2006 benchmark suites.

And this study supposes that the hardware is SC.
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SC and hardware

The compiler must insert enough synchronising instructions to prevent 
hardware reorderings.  On x86 we have:

• MFENCE
   flush the local write buffer

• LOCK prefix (e.g. CMPXCHG)
   flush the local write buffer
   globally lock the memory

These consumes hundreds of cycles…  ideally should be avoided.
Naively recovering SC on x86 incurs in a ~40% overhead.
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Expensive 
to implement

An SC-preserving compiler, obtained by 
restricting the optimization phases in 
LLVM, a state-of-the-art C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs from the SPLASH-2, PARSEC, 
and SPEC CINT2006 benchmark suites.

And this study supposes that the hardware is SC.

What is an SC-preserving compiler?

When is a compiler correct?
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When is a compiler correct?	

i.e. for any execution of the compiled program, there is an execution of 
the source program with the same observable behaviour.

Intuition: we represent programs as sets of memory action traces, 
where the trace is a sequence of memory actions of a single thread.

Intuition: the observable behaviour of an execution is the subtrace of 
external actions.

A compiler is correct if any behaviour of the compiled 
program could be exhibited by the original program.
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Example

Is the transformation from P1 to P2 correct (in an SC semantics)?
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Example

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:
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Example

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:

It is correct to rewrite P1 into P2, but not the opposite!
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General CSE incorrect in SC

There is only one execution with a printing behaviour:
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General CSE incorrect in SC

But a compiler would optimise to:
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General CSE incorrect in SC

The only execution with a printing behaviour in the optimised code is:

So the optimisation is not correct.
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General CSE incorrect in SC

The observable behaviours are (note that 0 - 1 - 0 is not observable):

Our first example highlighted that CSE is incorrect in SC.

Here is another example.
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General CSE incorrect in SC

But a compiler would optimise as:
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General CSE incorrect in SC

Let's compare the behaviours of the two programs:

The optimised program exhibits a new, unexpected, behaviour.
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Reordering incorrect

Again, the optimised program exhibits a new behaviour:
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Elimination of adjacent accesses

There are some correct optimisations under SC. For example it is 
correct to rewrite:

The basic idea: whenever we perform the read r1 = *x in the 
optimised program, we perfom both reads in the source program.

(More on this later)

Can we define a model that:
1) enables more optimisations than SC, and
2) retains the simplicity of SC?
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Alternative answer: data-race freedom
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Data-race freedom

Our examples again:

•the problematic transformations 
   (e.g. swapping the two writes in  
   thread 0) do not change the meaning of single-threaded programs;

•the problematic transformations are detectable only by code that 
allows two threads to access the same data simultaneously in 
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

...intuition...
Programming languages provide 

synchronisation mechanisms

if these are used (and implemented) correctly, 
we might avoid the issues above...
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      Prohibit data races

Defined as follows:

•two memory operations conflict if they access the same memory 
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting 
operations corresponding to different threads are adjacent (maybe 
executed concurrently).

Example: a data race in the example above:

The basic solution

The definition of data race quantifies only 
over the sequential consistent executions

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0
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How do we avoid data races? (focus on high-level languages)

• Locks
   No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l) calls 
from other threads balance.

• Atomic variables
  Allow concurrent access “exempt” from data races. Called volatile in Java.

Example: 

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y
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This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (focus on high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as 
potentially modifying any location, memory operations cannot be 
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware 
reordering across them and global orderering

Compiler/hardware can continue to reorder accesses  

Intuition: 
compiler/hardware do not know about threads, but only 

racing threads can tell the difference!
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Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!  

The writes cannot be executed in any SC execution, so they cannot 
participate in a data race.

Data-race freedom is not the ultimate panacea 

- the absence of data-races is hard to verify / test (undecidable)
- imagine debugging: my program ended with a wrong result, then 
either my program has a bug OR it has a data-race
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Validity of compiler optimisations, summary

  Jaroslav Sevcik
  Safe Optimisations for Shared-Memory Concurrent Programs

PLDI 2011  
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Compilers, programmers & data-race freedom

Intuitive programming 
model (but detecting 

races is tricky!)
Can be implemented 

efficiently
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Data-race freedom, formalisation
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A toy language: semantics
location, x          shared memory location
register, r         thread-local variable
integer, n                integers
thread_id, t           thread identifier

statement, s  ::=     statements
    | r := x            read from memory
    | x := r            write to memory
    | r := n            load constant into register
    | lock              lock
    | unlock            unlock
    | print r           output

program, p ::=   s;…;s     a program is a sequence of statements
    
system   ::=        concurrent system
    | t0:p0 | … | tn:pn      parallel composition of n threads

We work with a toy language, but all this scales to the full 
Java Memory Model.
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Traces and tracesets

Definition [trace]:  a sequence of memory operations (read, write, thread 
start, I/O, synchronisation).  Thread start is always the first action of 
thread.  All actions in a trace belong to the same thread.

Definition [traceset]:  a traceset is a prefix-closed set of traces.

Sample traceset: 

Remarks:

   1. Reads can read arbitrary values from memory.
   2. Tracesets should not be confused with interleavings.
   3. Tracesets do not enforce receptiveness or determinism:

        is also a valid traceset for the example below.
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Associate tracesets to toy language programs

< S, r := x; s >           < S[r=v], s >

<  S, x := r; s >              < S, s > 

< S, r := n; s >        < S[r=n], s >

< S, lock; s >        < S, s >

< S, unlock; s >        < S, s >

< S, print r; s >            < S, s >

< S,  t0:p0 | … | tn:pn >         < S, pi > 

R[x=v]

W[x=S(r)]

τ

L

U

X(S(r))

S(i)
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Tracesets and interleavings

Definition [interleaving]: an interleaving is a sequence of thread-identifier-
action pairs.

Example:

Given an interleaving I, the trace of tid in I is the sequence of actions of 
thread tid in I, e.g.:

     trace 1 I’ = [ S(1), R[v=0], X(0) ].

Conversely, given a traceset, we can compute all the well-formed 
interleavings (called executions)...  (next slide)
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Tracesets and interleavings

An interleaving I is an execution of a traceset T if:

- for all tid,  trace tid I ∈  T  (traces belong to the traceset)

- tids correspond to entry points S(tid)

- lock / unlock alternates correctly

- each read sees the most recent write to the same location (read/from).
(The last property enforce the sequentially consistent semantics for memory accesses).

Remarks:

  1. Interleavings order totally the actions, and do not keep track 
of which actions happen in parallel.  
  2. It is however possible to put more structure on interleavings, 
and recover informations about concurrency.  
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Happens-before

Definition [program order]: program order, <po, is a total order over the 
actions of the same thread in an interleaving.

Definition [synchronises with]: in an interleaving I, index i synchronises-
with index j, i <sw j, if i < j and A(Ii) = U (unlock), A(Ij) = L (lock).

Definition [happens-before]: Happens-before is the transitive closure of 
program order and synchronises with.
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Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

Examples of happens before

       0:W[y=1], 0:L, 0:W[x=1], 0:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1], 1:X(1) 

po po po po po po po

swhb

0:W[y=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U 

po popo po

po

swhb

S(tid) actions omitted.
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Data-race freedom

Definition [data-race-freedom]:  A traceset is data-race free if none of 
its executions has two adjacent conflicting actions from different 
threads.  

Equivalently, a traceset is data-race free if in all its executions all pairs of 
conflicting actions are ordered by happens-before.

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

0:W[y=1], 1:R[x=0], 0:W[x=1]

po

Two conflicting accesses
not related by happens before.A racy program
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Peter Thiemann, University of Freibourg, Germany

   1. Gradual typing for session types;  2. manifestation for types and effects.

Mooly Sagiv, Tel Aviv University, Israel    

   Applying formal methods to Network Verification
 

Lars Birkedal, Aarhus University, Denmark 

    Programming logics for reasoning about concurrent, higher-order, imperative programs

Peter Mueller, Swiss Federal Institute of Technology, Zurich, Switzerland   

   1. Techniques and tools for the specification and verification of concurrent programs.
   2. Static analysis of mobile apps

Cesare Tinelli, University of Iowa, USA

   Formal Methods For Critical Systems: Mutation-based Testing and Model Checking
   Formal Verification Of Critical Systems: Property-Directed Invariant Discovery By Backward Analysis
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Data-race freedom: equivalence of definitions

Given an execution                                 

of a traceset T where [a] and [b] are the first conflicting actions not 
related by happen-before, we build the interleaving   

where β' are all the actions from β  that strictly happen-before [b].  

It remains to show that                                is an execution of T.

The formal proof is tedious and not easy (see Boyland 2008, Bohem & Adve 2008, 
Sevcik ), here will give the intuitions of the construction on an example.

α ++ [a] ++ β ++ [b]

α ++ β' ++ [a] ++ [b]

α ++ β' ++ [a] ++ [b]
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Data-race freedom: equivalence of definitions

Thread 1: x := 1; r1 := x; print r1; 
Thread 2: r2 := z; print r2; x := 2;

read first

write first
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Defining programming language memory models
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Option 1

Don't.
No concurrency.

  Poor match for current trends
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Option 2

Don't.
No shared memory

  

A good match for some problems (see Erlang, MPI, …)
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Option 3

Don't.
But language ensures data-race freedom

  

Possible (e.g. by ensuring data accesses protected by associated 
locks, or fancy effect type systems), but likely to be inflexible.
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Option 3

Don't.
But language ensures data-race freedom

  

Possible (e.g. by ensuring data accesses protected by associated 
locks, or fancy effect type systems), but likely to be inflexible.

                          What about these fancy racy algorithms?
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Option 4

Don't.
Leave it (sort of) up to the hardware

  

Example: MLton (a high performance ML-to-x86 compiler, with 
concurrency extensions).  

Accesses to ML refs will exhibit the underlying x86-tso behaviour (at 
least they are atomic).
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Option 5

Do.
Use data race freedom as a definition

  

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way

                      Sarita Adve & Mark Hill, 1990
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Option 5

Do.
Use data race freedom as a definition

  

Pro: 
   - simple
   - strong guarantees for most code
   - allows lots of freedom for compiler and hardware optimisations

Cons:
   - undecidable premise
   - can't write racy programs (escape mechanisms?)
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Data race freedom as a definition

• Posix is sort-of DRF

Applications shall ensure that access to any memory location by 
more than one thread of control (threads or processes) is 
restricted such that no thread of control can read or modify a 
memory location while another thread of control may be 
modifying it. Such access is restricted using functions that 
synchronize thread execution and also synchronize memory with 
respect to other threads.	

Single Unix SPEC V3 & others
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Data race freedom as a definition

• Core of the C11/C++11 standard.
Hans Boehm & Sarita Adve, PLDI 2008.  

• Part of the JSR-133 standard. 

Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.  
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Isn't this all obvious?

Perhaps it should have 
been.  

But a few things went 
wrong in the past...
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1. Uncertainity about details

Is the outcome r1=r2=1 allowed?

r1 := [x];
if (r1=1) 
    [y] := 1 

r2 := [y];
if (r2=1) 
    [x] := 1 

||

Initially x = y = 0

•  If the threads speculate that the values of x and y are 1, then each 
thread writes 1, validating the other thread speculation;  

•  such execution has a data race on x and y;

•  however programmers would not envisage such execution when 
they check if their program is data-race free…
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2. Compiler transformations introduce data races

•Many compilers perform transformations similar to the one above 
when a is declared as a bit field;

•May be visible to client code since the update to x.b by T2 may be 
overwritten by the store to the complete structure x.

And many more interesting examples...

struct s 
  { char a; char b; } x;

Thread 1:              Thread 2:
x.a = 1;   x.b = 1;

 

Thread 1 is not equivalent to: 
  struct s tmp = x; 
  tmp.a = 1; 
  x = tmp;

FORBIDDEN
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2b. Compiler transformations introduce data races 

•The vectorisation above might introduce races, but

•most compilers do things along these lines (introduce speculative stores).

for (i = 1; i < N; ++i) 
  if (a[i] != 1) a[i] = 2;

 
for (i = 1; i < N; ++i) 
  a[i] = ((a[i] != 1)? 2 : a[i]);

FORBIDDEN
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3. "escape" mechanisms

Some frequently used idioms (atomic counters, flags, …) do not require 
sequentially consistency.

Programmers wants optimal implementations of these idioms.

Speed, much more than safety, makes programmers happier.

82Wednesday 16 December 15



Data race freedom as a definition

• Core of the C11/C++11 standard. 
Hans Boehm & Sarita Adve, PLDI 2008.  

    with some escape mechanism called "low level atomics".
Mark Batty & al., POPL 2011.  

• Part of the JSR-133 standard. 
Jeremy Manson & Bill Pugh & Sarita Adve, PLDI 2008.  

DRF gives no guarantees for untrusted code: a disaster for Java, which 
relies on unforgeable pointers for its security guarantees.

JSR-133 is DRF + some out-of-thin-air guarantees for all code.
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A word on JSR-133

Goal 1: data-race free programs are sequentially consistent;

Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.
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Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements.

Programs should never read values that cannot be written by the 
program:

the only possible result should be printing two zeros because no other 
value appears in or can be created by the program.
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Out-of-thin-air

Goal 2: all programs satisfy some memory safety requirements.

Programs should never read values that cannot be written by the 
program:

the only possible result should be printing two zeros because no other 
value appears in or can be created by the program.
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Out-of-thin-air

Under DRF, it is correct to speculate on values of writes:

The transformed program can now print 42.  This will be theoretically 
possible in C++11, but not in Java.

The program above looks benign, why does Java care so much about 
out-of-thin-air?  
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Out-of-thin-air

Out-of-thin-air is not so bening for references.  Compare:

What should r2.run() call? 

If we allow out-of-thin-air, then it could do anything!

and

r2.run()
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Goal 1: data-race free programs are sequentially consistent;

Goal 2: all programs satisfy some memory safety requirements;

Goal 3: common compiler optimisations are sound.

A word on JSR-133

The model is intricate, and fails to meet goal 3.  

An example: should the source program print 1? can the optimised 
program print 1?

Jaroslav Ševčík, David Aspinall, ECOOP 2008

x = y = 0x = y = 0

r1 = x
y = r1

r2 = y
x=(r2==1)?y:1
print r2

x = y = 0x = y = 0

r1 = x
y = r1

x = 1
r2 = y
print r2

HotSpot Optimization
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Resources

http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

Starting point:

J. Sevcik
Safe Optimisations for Shared Memory Concurrent Programs

PLDI 2011

H. Bohem
Threads Cannot Be Implemented as a Library

PLDI 2005
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