
Strong static typing
and advanced functional programming

Francesco Zappa Nardelli

Moscova Project — INRIA Rocquencourt

BISS 2005, Bertinoro, Italy — March 14-18, 2005

Around 1949...

“As soon as we started programming, we found to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had
to be discovered. I can remember the exact instant when I realised that
a large part of my life from then on was going to be spent in finding
mistakes in my own programs.”

Sir Maurice Wilkes (1913 -)

1

...in 2005?

How to ensure that a system behaves correctly with respect to some
specification (implicit or explicit)?

Answer: formal methods.

• powerful: Hoare logic, modal logics, denotational semantics...

• lightweight: model checkers, run-time monitoring, type systems...

2

What type systems are good for

• Detecting errors;

• enforcing abstraction;

• documentation;

• efficiency;

• guarantee (to some extent) language safety.

3

Language safety

A safe language is one that protects its own abstractions.

Statically checked Dynamically checked

Safe ML, Haskell, Java, ... Lisp, Scheme, Postscript, Perl,...

Unsafe C, C++, ...

4

This course

“Formal methods will never have a significant impact
until they can be used by people that don’t understand them.”

attributed to Tom Melham

Type systems can be used by people that don’t understand them!

But we are computer scientists: the objective of this course is to

understand (a subset of) the Objective Caml type system.

5

Outline

1. mini-ML
syntax, big-step reduction semantics, monomorphic types, the Curry-Howard correspondence,

polymorphic types, run-time errors, small-step reduction semantics, safety

2. Type inference
the W algorithm, constraint-based type inference, HM(X)

3. Simple extensions of mini-ML
tuples, sums, recursive types, algebraic types

4. Imperative programming
references, exceptions

5. Extensible records
row polymorphism, constraint-based unification, a simple object system, subtyping

6. The OCaml module system

6

The syntax of mini-ML

Expressions:

a ::= x identifier∣∣ c constant∣∣ op primitive unary operator∣∣ fun x → a function abstraction∣∣ a a function application∣∣ (a, a) pair construction∣∣ fst a left projection∣∣ snd a right projection∣∣ let x = a in a local binding

Constants: 0, 1, 2, ... true, false, "foo", ...

Operators: +,−, ... &&, not, ... ^, ... fix, ...

7

α-conversion and substitution

Free variables:

L(x) = {x}
L(c) = L(op) = ∅
L(fun x → a) = L(a) \ {x}

L(a1 a2) = L((a1, a2)) = L(a1) ∪ L(a2)

L(fst a) = L(snd a) = L(a)

L(let x = a1 in a2) = L(a1) ∪ (L(a2) \ {x})

We identify α-equivalent terms (that is, we consider terms up-to renaming of
bound variables).

8

α-conversion and substitution [2]

Capture avoding substitution:

x[x ← a′] = a′
y[x ← a′] = y if y &= x
c[x ← a′] = c

op[x ← a′] = op
(fun y → a)[x ← a′] = fun y → (a[x ← a′])

if y &= x and y &∈ L(a′)
(a1 a2)[x ← a′] = a1[x ← a′] a2[x ← a′]

(let y = a1 in a2)[x ← a′] = let y = a1[x ← a′] in a2[x ← a′]
if y &= x and y &∈ L(a′)

9

Reduction rules (big step semantics)

Values: v ::= fun x → a functions
| c constants
| op un-applied operators
| (v1, v2) pairs of values

The big-step semantics relates expressions and values: (a, v) ∈ ! is written a ! v.

c ! c op ! op (fun x → a) ! (fun x → a)

a1 ! (fun x → a) a2 ! v2 a[x ← v2] ! v

a1 a2 ! v

a1 ! v1 a2 ! v2

(a1, a2) ! (v1, v2)

a ! (v1, v2)

fst a ! v1 snd a ! v2

a1 ! v1 a2[x ← v1] ! v

(let x = a1 in a2) ! v

10

Reduction rules [2]

Examples of reduction rules of operators:

a1 ! + a2 ! (n1, n2)

a1 a2 ! n1 + n2

a ! (fun f → a1) a1[f ← fix (fun f → a1)] ! v

fix a ! v

11

Big-step vs. small-step semantics

The big-step semantics associates a value v, or err1, to all expressions a:

a ! v

but does not give any information on the intermediary steps of the computation.

The small-step semantics relates two expressions:

a → a1 .

A computation is a sequence of steps:

a → a1 → a2 → . . . → an &→ .
1the rules for err are missing in the slides.

12

Reduction rules (small-step semantics)

Axioms:
(fun x → a) v

ε→ a[x ← v] (β)
(let x = v in a) ε→ a[x ← v] (let)

fst (v1, v2)
ε→ v1 (fst)

snd (v1, v2)
ε→ v2 (snd)

Delta rules:

+ (n1, n2)
ε→ n1 + n2 (δ+)

fix (fun x → a) ε→ a[x ← fix (fun x → a)] (δfix)

Reduction under an evaluation context:

a
ε→ a′

(context)
E[a] → E[a′]

13

Evaluation contexts

Evaluation contexts:
E ::= [] head

| E a left of an application
| v E right of an application
| let x = E in a left of a let
| (E, a) left of a pair
| (v,E) right of a pair
| fst E argument of a projection
| snd E

14

Types

Types: τ ::= T basic types (int, bool, etc)
| α type variable
| τ1 → τ2 type of functions from τ1 into τ2

| τ1 × τ2 type of pairs of τ1 and τ2

Type relation: (Γ, a, τ), traditionally written

Γ) a : τ

15

Type environment

Γ is a type environment: a partial function between variables and types, that
associates a type Γ(x) to all free identifiers of a.

• ∅ denotes the empty evironment,

• Γ, x : τ denotes the environment that associates τ to x, and Γ(y) to all other
identifiers y.

16

Monomorphic types

Γ) x : Γ(x) (var) Γ) c : TC(c) (const) Γ) op : TC(op) (op)

Γ;x : τ1) a : τ2 (fun)
Γ) (fun x → a) : τ1 → τ2

Γ) a1 : τ ′ → τ Γ) a2 : τ ′
(app)

Γ) a1 a2 : τ

Γ) a1 : τ1 Γ) a2 : τ2 (pair)
Γ) (a1, a2) : τ1 × τ2

Γ) a : τ1 × τ2 (proj)
Γ) fst a : τ1 Γ) snd a : τ2

Γ) a1 : τ1 Γ;x : τ1) a2 : τ2 (let)
Γ) (let x = a1 in a2) : τ2

17

A type derivation

x : int) x : int x : int) 1 : int

x : int) (x, 1) : int× int
x : int) + : int× int→ int

x : int) +(x, 1) : int

∅) fun x → +(x, 1) : int→ int

f : int→ int) f : int→ int
f : int→ int) 2 : int

f : int→ int) f 2 : int

∅) let f = fun x → +(x, 1) in f 2 : int

18

Where are we?

• mini-ML (lambda-calculus + pairs + let)

• monomorphic type system

Until here, the let construct is syntactic sugar:

let x = a1 in a2

is equivalent to
(fun x → a2) a1 .

19

Some type judgments

Valid judgments:
∅) fun x → x : α → α
∅) fun x → x : bool→ bool

Not valid judgements:

∅) fun x → +(x, 1) : int
∅) fun x → +(x, 1) : α → int

Expressions not typable (there is no Γ and no τ such that Γ) a : τ).

1 2
fun f → f f
let f = fun x → x in (f 1, f true)

20

Type scheme

Type schemes are a compact and finite representation for all the types that can
be given to a polymorphic expression.

Type scheme: σ ::= ∀α1, . . . , αn. τ

Example: in let f = fun x → x in (f 1, f true), we can associate the type
schema ∀α.α → α to the identifier f .

If the set of quantified variables is empty, we write τ instead of ∀. τ .

21

Free variables, again

Free variables of a type scheme:

L(T) = ∅
L(α) = {α}

L(τ1 → τ2) = L(τ1) ∪ L(τ2)

L(τ1 × τ2) = L(τ1) ∪ L(τ2)

L(∀α1, . . . , αn. τ) = L(τ) \ {α1, . . . , αn}

We identify type schemas up-to α-conversion.

Free variables of a type environment:

L(Γ) =
⋃

x∈Dom(Γ)

L(Γ(x))

22

Instantiation of a type schema

Intuition: ∀α. α → α can be seen as the set of types {τ → τ | τ is a type}.
Formally:

∀α1 . . . αn. τ ′ ≤ τ iff there exist τ1, . . . , τn s.t. τ = τ ′[α1 ← τ1, . . . , αn ← τn]

Examples:

int→ int and bool→ bool are instances of ∀α. α → α.

The type int→ bool is not.

∀.τ ′ ≤ τ is equivalent to τ = τ ′.

23

Polymorphic types à la ML

Γ(x) ≤ τ
(var-inst)

Γ) x : τ

TC(c) ≤ τ
(const-inst)

Γ) c : τ

TC(op) ≤ τ
(op-inst)

Γ) op : τ

Γ;x : τ1) a : τ2 (fun)
Γ) (fun x → a) : τ1 → τ2

Γ) a1 : τ ′ → τ Γ) a2 : τ ′
(app)

Γ) a1 a2 : τ

Γ) a1 : τ1 Γ) a2 : τ2 (pair)
Γ) (a1, a2) : τ1 × τ2

Γ) a : τ1 × τ2 (proj)
Γ) fst a : τ1 Γ) snd a : τ2

Γ) a1 : τ1 Γ;x : Gen(τ1,Γ)) a2 : τ2 (let-gen)
Γ) (let x = a1 in a2) : τ2

Gen(τ1,Γ) = ∀α1, . . . , αn. τ1 where {α1, . . . , αn} = L(τ1) \ L(Γ)

24

Example

α ≤ α

x : α) x : α

∅) fun x → x : α → α

∀α. α → α ≤ int→ int

f : ∀α. α → α) f : int→ int f : ∀α. α → α) 1 : int

f : ∀α. α → α) f 1 : int

∅) let f = fun x → x in f 1 : int

25

Another example

α ≤ α

x : α; z : β) x : α

x : α) fun z → x : β → α

∀β.β → α ≤ γ → α

x : α; y : ∀β.β → α) y : γ → α

x : α) let y = fun z → x in y : γ → α

∅) fun x → let y = fun z → x in y : α → γ → α

26

The side condition on the (let-gen) rule

Consider the valid type judgement

z : α) z : α

An unrestricted (let-gen) rule allows us to derive

z : α) let x = z in x : ∀α. α

Then, by (var-inst), we can also deduce

z : α) let x = z in x : β

By (fun), we derive

∅) fun z → let x = z in x : α → β

which does not make any sense (eg, the unrestricted (let-gen) rule is unsound).

27

Some facts

Proposition 1. [Judgements are stable under substitution on types] Let ϕ
be a substitution. If Γ) a : τ , then ϕ(Γ)) a : ϕ(τ).

Proposition 2. [Elimination of unused hypothesis] If for all identifier free in
a, the hypothesis in Γ1(x) and Γ2(x) coincide, then Γ1) a : τ is equivalent to
Γ2) a : τ .

Proposition 3. [Judgements are stable under strenghtening of hypothesis]
If Γ and Γ′ have the same domain and if for all x ∈ Dom(Γ) it holds Γ′(x) ≤ Γ(x),
then Γ) a : τ implies Γ′) a : τ .

28

Safety

Given a term a, one of the following holds:

1. a reduces in a finite number of steps to a value v:

a → a1 → . . . → an → v

2. a reduces forever:
a → a1 → . . . → an → . . .

3. a reduces to a stuck expression (run-time error):

a → a1 → . . . → an &→

Claim: if a is well-typed, case 3. cannot occur.

29

The relation “less typable of”

We say that a1 is less typable of a2, denoted a1 , a2, if

for all Γ and τ , (Γ) a1 : τ) implies (Γ) a2 : τ)

Proposition 4. [Congruence of ,] For all context C, a1 , a2 implies C[a1] ,
C[a2].

Proof: Let Γ and τ such that Γ) C[a1] : τ . Show that Γ) C[a2] : τ by
structural induction on the context C. !

30

Judgements and substitutions

Proposition 5. [Substitution Lemma] Suppose that

Γ) a′ : τ ′

Γ;x : ∀α1 . . . αn.τ ′) a : τ

where α1, . . . , αn are not free in Γ. Then,

Γ) a[x ← a′] : τ

Proof: By induction on the structure of the expression a. !

31

Hypothesis on the operators

Let cast be an operator of type ∀α, β. α → β, which reduces as cast v
ε→ v.

The type system is then unsound!

We made some hypothesis on the operators:

H0 Fo all operators op, TC(op) is of the form ∀(α.τ → τ ′. For all constant c,
TC(c) is a base type T .

H1 If a
ε→ a′ by a δ-rule, then a , a′.

H2 If ∅) op v : τ , then there is an expression a′ such that op v
ε→ a′ by a δ-rule.

32

Safety, at last

Proposition 6. If a
ε→ a′, then a , a′.

Proof: Case analysis on the reduction rule used. !

Proposition 7. [Subject reduction] If a → a′, then a , a′.

Proof: Follows from congruence of $. !

Proposition 8. [Progression Lemma] If ∅) a : τ , either a is a value or there
exists an expression a′ such that a → a′.

Proof: Induction on the structure of a. !

Theorem 1. [Safety] If ∅) a : τ and a →" a′ &→, then a′ is a value.

33

Type inference

(Pure) verification : all subexpressions have been explicitely annotated:

fun (x : int) → (
let y : int = (+ : int×int→int) ((x : int, 1 : int) : int×int) in
y : int

) : int

Declaration of the types of identifiers and propagation of types : the
programmer specifies the types of the parameters of functions and of local
variables:

fun (x : int) → let y : int = + (x, 1) in y

Inference of all types :

fun x → let y = + (x, 1) in y

34

Monomorphic type inference

Two phases:

1. Starting from the source program, we build a system of equations between
types that characterizes all its possible typings;

2. We solve this system of equations: if there are no solutions the program is
badly typed, otherwise we obtain a principal solution. This gives us a principal
type of the program.

35

Equation generation

• If a is a variable x, then C(a) = {αa
?= αx}.

• If a is a constant c, then C(a) = {αa
?= TC(c)}.

• If a is an operator op, then C(a) = {αa
?= TC(op)}.

• If a is a function fun x → b, then C(a) = {αa
?= αx → αb} ∪ C(b).

• If a is an application b c, then C(a) = {αb
?= αc → αa} ∪ C(b) ∪ C(c).

• if a is a pair (b, c), then C(a) = {αa
?= αb × αc} ∪ C(b) ∪ C(c).

• If a is a projection fst b, then C(a) = {αa × βa
?= αb} ∪ C(b).

• If a is a projection snd b, then C(a) = {βa × αa
?= αb} ∪ C(b).

• If a is let x = b in c, then C(a) = {αx
?= αb; αa

?= αc} ∪ C(b) ∪ C(c).

36

Example

Consider the program:

a = (fun x → fun y → 1︸︷︷︸
d︸ ︷︷ ︸

c︸ ︷︷ ︸
b

) true︸ ︷︷ ︸
e

We have:
C(a) = { αb

?= αe → αa;
αb

?= αx → αc;
αc

?= αy → αd;
αd

?= int;
αe

?= bool}

37

Typings and equations

A solution of a set of equations C(a) is a substitution ϕ such that for all equations

τ1
?= τ2 in C(a), it holds ϕ(τ1) = ϕ(τ2).

Proposition 9. [Correction of equations] If ϕ is a solution of C(a), then
Γ) a : ϕ(αa) where Γ is the type environment {x : ϕ(αx) | x ∈ L(a)}.
Proposition 10. [Completeness of equations] Let a be an expression. If there
exists an environment Γ and a type τ such that Γ) a : τ , then the system of
equations C(a) has a solution ϕ such that ϕ(αa) = τ and ϕ(αx) = Γ(x) for all
x ∈ L(a).

38

Equation solution

mgu(∅) = id

mgu({α ?= α} ∪ C) = mgu(C)

mgu({α ?= τ} ∪ C) = mgu(C[α ← τ]) ◦ [α ← τ] if α not free in τ

mgu({τ ?= α} ∪ C) = mgu(C[α ← τ]) ◦ [α ← τ] if α not free in τ

mgu({τ1 → τ2
?= τ ′1 → τ ′2} ∪ C) = mgu({τ1

?= τ ′1; τ2
?= τ ′2} ∪ C)

mgu({τ1 × τ2
?= τ ′1 × τ ′2} ∪ C) = mgu({τ1

?= τ ′1; τ2
?= τ ′2} ∪ C)

In all other cases, mgu(C) fails.

39

Back to the last example

The principal solution is

αx ← bool αe ← bool
αa ← αy → int αc ← αy → int
αd ← int

All other solutions can be obtained by replacing αy by an arbitrary type.

40

Properties of mgu

1. Correct: if mgu(C) = ϕ, then ϕ is a solution of C.

2. Completeness: if C has a solution ψ, then mgu(C) does not fail, and returns a
solution ϕ such that ϕ ≤ ψ.

The inequality ϕ ≤ ψ holds iff there exists a substitution θ such that ψ = ϕ ◦ θ.

41

The algorithm I

Input: an expression a.

Output: a typing Γ, τ , or fails.

Algorithm: compute ϕ = mgu(C(a)) (failure possible). If success, return the
environment {x : ϕ(αx) | x ∈ L(a)} and the type ϕ(αa).

Proposition 11. [Properties of the algorithm I]

1. Correction: if I(a) = (Γ, τ), then Γ) a : τ .

2. Principality: if Γ′) a : τ ′, then I(a) succeeds and returns a typing (Γ, τ) more
general than (Γ′, τ ′), that is, there exists a substitution θ such that τ ′ = θ(τ)
and Γ′(x) = θ(Γ(x)) for all x ∈ L(a).

42

Polymorphic type inference

If we apply the algorithm I to

let f = fun x → x in (f 1, f true)

the algorithm will fail, because it will end up with an equation

int
?= bool

that does not have a solution.

43

The algorithm W

Damas, Milner, 1982

Input: a type environment Γ and one expression a.

Output: the inferred type τ , or fails.

We give an algorithmic presentation that relies on a...

State: a current substitution ϕ and an infinite set of variables V .

44

Definition:

fresh = doα ∈ V
doV ← V \ {α}
returnα

W (Γ) x) = let∀α1 . . . αn.τ = Γ(x)
doβ1, . . . , βn = fresh, . . . , fresh
return τ [α1 ← β1, . . . , αn ← βn]

W (Γ) fun x → a1) = doα = fresh
do τ1 = W (Γ;x : α) a1)
returnα → τ1

W (Γ) a1 a2) = do τ1 = W (Γ) a1)
do τ2 = W (Γ) a2)
doα = fresh

doϕ ← mgu(ϕ(τ1)
?= ϕ(τ2 → α)) ◦ ϕ

returnα

45

W (Γ) let x = a1 in a2) = do τ1 = W (Γ) a1)
letσ = Gen(ϕ(τ1), ϕ(Γ))
returnW (Γ;x : σ) a2)

W (Γ) (a1, a2)) = do τ1 = W (Γ) a1)
do τ2 = W (Γ) a2)
return τ1 × τ2

W (Γ) fst a) = do τ = W (Γ) a)
doα1, α2 = fresh, fresh

doϕ ← mgu(ϕ(τ) ?= α1 × α2) ◦ ϕ
returnα1

W (Γ) snd a) = do τ = W (Γ) a)
doα1, α2 = fresh, fresh

doϕ ← mgu(ϕ(τ) ?= α1 × α2) ◦ ϕ
returnα2

46

Example

Let a = fun x → +(x, 1).

W (x : α) +, id ,V \ {α}) = (int× int→ int, id ,V \ {α})
W (x : α) x, id ,V \ {α}) = (α, id ,V \ {α})
W (x : α) 1, id ,V \ {α}) = (int, id ,V \ {α})

W (x : α) (x, 1), id ,V \ {α}) = (α× int, id ,V \ {α})
W (x : α) +(x, 1), id ,V \ {α}) = (β, [α ← int, β ← int],V \ {α, β})

W (∅) a, id,V) = (α → β, [α ← int, β ← int],V \ {α, β})

(mgu is used to unify int× int→ int with α× int→ β).

47

Properties of the algorithm W

Invariant: ϕ is of the form mgu(C) for some C; no variable in V is free in C or
in Γ.

Theorem 2. [Correctness] If W (Γ) a) terminates in the state (ϕ, V) and
returns τ , then ϕ(Γ)) a : ϕ(τ) is derivable.

Theorem 3. [Completeness and principality] Let Γ be a type environment;
let (ϕ0, V0) the initial state of the algorithm such that the invariant is satisfied.
Suppose we have θ0 and τ0 such that θ0ϕ0(Γ)) a : τ0 (J0). Then, the execution
of W (Γ) a) succeeds: let (ϕ1, V1) be the final state and τ1 the returned type.
As the algorithm is correct, we have ϕ1(Γ)) a : ϕ1(τ1) (J1). Then it exists a
substitution θ1 such that θ0ϕ0 and θ1ϕ1 coincide out of V0 and τ0 = θ1ϕ1(τ1).

48

A better approach?

The proof of completeness remained folklore for many years...

The complexity lies in the fact that the algorithm W interleaves the phases of
equation generation and equation solving.

Question: Is it possible to separate these two phases (as we did for the algorithm
I)?

Answer : Yes! With the system HM(X) by Odersky, Sulzmann, and Wehr. Also
studied by Skalka and Pottier (and by others).

49

Polymorphics typing of ML by expansion of let

Γ) a1 : τ1 Γ) a2[x ← a1] : τ
(let-subst)

Γ) let x = a1 in a2 : τ

Example:

∅) let f = fun x → x in (f 1, f true) : int× bool

because ∅) fun x → x : α → α, and because ∅) ((fun x → x) 1, (fun x →
x) true) : int× bool.

We are back to the monomorphic type system...

50

let expansion

Theorem 4. [Expansion of let] The judgement Γ) let x = a1 in a2 : τ
is derivable in polymorphic mini-ML if and only if there exists τ1 such that
Γ) a1 : τ1 and Γ) a2[x ← a1] : τ .

But...

• explosion of the size of the term;

• very hard to give informative error messages;

• when we add references, the above is no longer true.

51

