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Abstract
We present a compiler for generating custom cryptographic proto-
cols from high-level multiparty sessions.

Sessions specify pre-arranged patterns of message exchanges
between distributed participants and their data accesses to a shared
store. We define integrity and confidentiality properties of sessions,
in a setting where the network and arbitrary compromised parties
may be controlled by an adversary. Our compiler enforces these
security properties by guarding the sending and receiving of session
messages by efficient cryptographic operations and checks.

Given a session, our compiler generates an ML module and an
interface that exposes send and receive functions that can be called
by application code for each party. We prove that this generated
code is secure by relying on a recent refinement type system for
ML. Functions in the module interface are given dependent types
that express invariants of the session state. We typecheck the pro-
gram against this interface, and complete the proof by a brief, hand-
crafted argument.

We illustrate and evaluate our implementation on a series of typ-
ical protocols, inspired by web services. In comparison with prior
work, our source language is more expressive, our implementation
more efficient, and our proof technique novel. Most of the proof
is performed by mechanized type checking of the generated code,
and does not rely on the correctness of our compiler. We obtain
the strongest session security guarantees to date in a model that
accounts for the actual details of protocol code.

1. Security by compilation
Taking advantage of modern programming tools and generic wire
formats, one can sometimes design, develop, and deploy complex
distributed protocols in a matter of hours—relying on automated
proxy generators, for example, to rapidly expose existing applica-
tions as networked services. The situation is less favorable when at-
tempting to ensure application security subject to realistic assump-
tions on the network and remote parties. The problem is that most
widely-available protocols for cryptographic communications (say
TLS or IPSEC) operate at a lower level; they provide authentic-
ity and confidentiality guarantees only for messages exchanged be-
tween two endpoints (URLs or IP addresses), but they leave the
interpretation of these messages and endpoints to the application
programmer. Hence, any guarantee that involves more than two
parties (say, a multi-tiered web application with a client, a gateway,
and two servers) must be carefully established by linking lower-
level guarantees on related messages, or by layering ad hoc cryp-
tographic mechanisms on top of communications, for instance by
embedding certificates in message payloads.

When considering protocols between participants in an open,
networked environment, each participant may belong to a different
domain, with its own configuration and security policy; although all

participants are willing to run the protocol, they may not trust one
another. Although it is straightforward to protect the participants of
the protocol from network intruders (using for instance a VPN), it
is more delicate to design and verify cryptographic infrastructure
to protect these participants from one another.

Rather than hand-crafted protocol design, we advocate the use
of compilers and automated verification tools for systematically
generating secure, efficient cryptographic protocols from high-level
descriptions. We outline first our approach as regards design, im-
plementation, and security verification.

Multiparty sessions We design a language for specifying struc-
tured communications protocols between distributed parties, also
known as sessions, or workflows. This language enables simple,
abstract reasoning on authentication and secrecy properties of ses-
sions. It features a clear notion of control flow, expressed as asyn-
chronous messages, with a shared, global store that may be updated
and read during communication, as well as dynamic selection of
additional parties to join the protocol. The global store is subject
to fine grained read/write access control and may be used to selec-
tively share and hide data and to commit to values which are are ini-
tially blinded and only revealed later during protocol execution. As
an example, the correspondence properties traditionally established
for cryptographic protocols can be read off session specifications.

A session implementation exposes to the application program-
mer certain application level choices, such as which session to join,
which session messages to send (when the session allows a choice),
and which local authorization policy to enforce.

A compiler from sessions to cryptographic protocols for ML
Two central design goals guide our work on session implemen-
tation. First, all the cryptography required to protect compromised
participants is completely hidden from the application programmer,
who may reason about the behaviour of a distributed system as if
it followed precisely the high level specification. Second, all low-
level network activity is in a one-to-one relationship with high-level
communication, thus no additional messages are introduced.

We implement a compiler from the session language to custom
cryptographic protocols, coded as ML modules, both for F# (Syme
et al. 2007) with .NET cryptographic libraries, and for Ocaml
with OpenSSL libraries, which can be linked to application code
for each party of the protocol. Our compiler combines a variety
of cryptographic techniques and primitives to produce compact
message formats and fast processing. We illustrate and evaluate our
implementation on a series of protocols, inspired by web services.

We shift most of the complexity of our implementation to the
compiler, which generates efficient, custom protocols, with the
least amount of dynamic processing. Any deviation from the com-
piled message format is considered hostile and the message silently
discarded.
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Security verification Cryptographic protocols are notoriously
difficult to design and implement correctly; in particular, we need
solid correctness properties for the cryptographic code generated
by our protocol compiler.

Various work addresses this problem. We build on a recent ap-
proach proposed by Bhargavan et al., who aim at verifying exe-
cutable protocol code, rather than abstract protocol models to nar-
row the gap between what is verified and what is deployed. Specif-
ically, we use the extend typechecker of Bengtson et al. (2008),
which is based on the Z3 SMT solver (de Moura and Bjørner 2008).
This is a good match for our present purposes: for each session
specification, our compiler generates type annotations (from a pred-
icate logic), which are then mechanically checked against the actual
executable code. By doing this, we overcome a significant limita-
tion of protocol code verification techniques: our verification by
typechecking is modular, so each function can be checked sepa-
rately and verification time grows linearly with the number of func-
tions.

We define compromised principals as those whose keys are
known to the adversary; they include malicious principals as well
as principals whose keys have been inadvertently leaked. We say
that all other principals are compliant. Our goal is to protect com-
pliant principals from an adversary who controls all compromised
principals and the network. To this end, we verify the generated
protocols, showing strong security for all runs, even when some
of the parties involved are compromised. Our proof combines in-
variants established through typechecking with a general argument
on the structure of the protocol (but independent of the code). In
combination, we obtain strong security guarantees in a model that
accounts for the actual details of our code, without the need to trust
our protocol compiler.

An alternative approach would be to verify (or even certify) our
compiler. This task appears much more complex; it is beyond the
capability of automatic tools at present and would require long, del-
icate, handwritten proof, such as those we did in prior work (Corin
et al. 2007) for a much simpler protocol description language. This
approach is also brittle when experimenting with language design,
and would not provide direct guarantees at the level of the gener-
ated code.

We obtain additional functional properties by typing: any well-
typed application code (for ordinary ML typing) linked to our
protocol implementation complies with the session specification:
at any point in the session, it may send only one of the messages
indicated in the global sessions, and it must provide a message
handler for every message that may be subsequently received.

On the other hand, we do not consider many other properties of
interest, such as liveness (any participant may block our sessions),
resistance to traffic analysis (only our payloads are kept secret), or
denial-of-service attacks.

Contributions In summary, our main contributions are:

1. A high-level language for specifying multiparty sessions, with
support for payload binding, integrity, secrecy, and dynamic
principal selection; this language enables simple, abstract rea-
soning on global control and data flows.

2. A family of custom cryptographic protocols that support our de-
sign. We rely on standard symmetric-key cryptographic primi-
tives, as well as standard primitives that provide asynchronous,
unprotected communications.

3. A prototype compiler that generates ML interfaces and imple-
mentations for our protocols, as well as proof annotations.

4. Experimental results for a series of multiparty sessions of in-
creasing complexity, showing that our approach yields efficient
distributed implementations.

5. Security theorems stating that, from the viewpoint of compliant
participants, all sessions always run according to their global
specification, both as regards integrity and confidentiality, de-
spite active adversaries in control of both the network and com-
promised participants.

6. New, mostly-automated security proof techniques: to our knowl-
edge, we obtain the first automated generate-and-verify im-
plementation for multiparty cryptographic protocols, and the
largest verified protocol-implementations to date.

Related work This work benefits from our experience with a first
prototype: Corin et al. (2007) explore the secure cryptographic im-
plementation of session abstractions for a simpler language; Corin
and Deniélou (2007) detail its first design and implementation. The
main differences are a much-improved expressiveness (with sup-
port for value binding, and dynamic selection of principals), a more
sophisticated implementation (with more efficient cryptographic
mechanisms), a simpler and more realistic model for the adversary,
and a new formalization with support for automated proofs.

Session types Honda et al. (2008); Bonelli and Compagnoni
(2007); Vasconcelos et al. (2006); Dezani-Ciancaglini et al. (2006,
2005); Gay and Hole (1999); Honda et al. (1998) consider types for
concurrent and distributed sessions; however they do not consider
implementations or security. More recently, Hu et al. (2008) inte-
grates session types in Java; McCarthy and Krishnamurthi (2008)
specifies abstract security protocol narrations in a global way, and
then shows functional (but not security) aspects of their projection
to local roles (like in Honda et al. 2008). Inference of sessions types
from existing Javascript applications is done in Guha and Krishna-
murthi (2008).

Verified cryptographic implementations Further related work
tackle the secure implementation problem for other programming
models. Malkhi et al. (2004), for instance, develop implementations
for cryptographically-secured multiparty computations, based on
replicated, blinded computation. (Zheng et al. 2003), for instance,
develop compilers that can automatically split sequential programs
between hosts running at different levels of security, while main-
taining information-flow properties.

Contents Section 2 describes and illustrates our design for multi-
party sessions. Section 3 presents our programming model for us-
ing sessions from ML. Section 4 states our main session-integrity
theorem. Section 5 describes the refinement of sessions into local
control flow states for roles. Section 6 overviews the cryptographic
protection and message formats. Section 7 describes code genera-
tion and runtime libraries. Section 8 explains our hybrid security
proof. Section 9 provides experimental results obtained with our
prototype.

Additional materials, including code for all examples and li-
braries, are available online at http://msr-inria.inria.
fr/projects/sec/sessions.

2. Multiparty sessions
We first introduce sessions informally by illustrating their graphical
representation and describing their features and design choices.
We then give their formal, algebraic presentation and define some
sanity and implementability conditions.

2.1 Session design: overview and motivation
Figure 1 represents our three running examples, loosely inspired by
Web Services; they involve a client, a web service, and a proxy.

Graphs, roles, and labels The first session, named Ws, is de-
picted as a directed graph with a distinguished (circled) initial
node. Each node is decorated by a role; here we have two roles,
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Figure 1. Sample sessions: (a) top-left: a single query (Ws); (b) top-right: an iterated query (Wsn); (c) bottom: a three-party session (Proxy).

c for “client” and w for “web service”. Each edge is identified by
a unique label, in this case, Request, Reply, or Fault. (The other
annotations on the edges may be ignored for the moment.) The
source and target roles of an edge (or label) are the roles decorat-
ing, respectively, the edge’s source and target nodes. Thus, Reply
has source role w and target role c. Each role represents a partici-
pant of the session, with its own local implementation and applica-
tion code for sending and receiving messages, subject to the rules of
session execution, which we explain next. The precise way in which
application code links to the session infrastructure is described in
Section 3.

Session execution Sessions specify patterns of allowed commu-
nication between the roles: in this case, the client starts a session
execution by sending a Request to the web service, which in turn
may send either a Reply or a Fault back to the client. Each execu-
tion of a session consists of a walk of a single token through the
session graph. At each step, the role decorating the token’s current
node chooses one of the outgoing edges, and the token advances to
the target node of the chosen edge. Execution ends when the token
reaches a node with no outgoing edges.

Loops and branches The session Wsn in Figure 1(b) extends the
graph with a cycle. On receiving a Reply, the client can choose to
either terminate the session or send a new message Extra back to
the web service; the client and service may then repeat this Reply-
Extra loop any number of times before the client terminates.

The session Proxy in Figure 1(c) allows multiple alternate mes-
sage flows between three parties. It introduces a third role, p, for
“proxy”, that intercedes between the client and the web service.
The client starts by sending a Request to the proxy, which may
choose to either transmit a Forward message or an Audit message
to the web service. In the later case, the communication may loop
between the web service and the proxy via Details and Retry un-
til the proxy is satisfied and sends Resume to web service, which,
finally, gives a Reply back to the client.

Binding and receiving values Each session has a finite set of
typed mutable variables (though all types are omitted from graphs
for brevity). The graph imposes an access control discipline on the
writing and reading of variables via the decoration of each edge
by two vectors of variables. The vector just before the label consti-
tutes the written variables; the vector just after constitutes the read
variables. At the start of session execution, all variables are unini-
tialised. At each communication, the written variables decorating
the corresponding edge are assigned values by the source role; the
values of the edge’s read variables are then passed to the target role.

In Figure 1(c), the client writes an initial value into variable q,
representing some query, as it sends the Request message since
q appears in the written variables of Request. This variable also
appears in the read variables of Request, so the proxy may in turn
read q and then take a decision whether to carry on with a Forward
or Audit. In the former case, the proxy may not modify q since the

variable does not appear in the written variables of Forward, so the
web service gets the same value of q as the proxy did.

Not all variables are read by all roles. During each iteration of
the graph’s loop, the web service may modify d as it sends Details,
and likewise the proxy may modify o. Both these variables are
hidden from the client role, which has no incoming edges where
d or o are read.

Intuitively, the graph represents a global viewpoint, so the vari-
ables locally written and read on an edge need not coincide, and all
readers are guaranteed to get the same values unless the variable is
explicitly rewritten.

Assigning principals to roles Roles themselves are treated as a
special class of variables and are assigned during session execu-
tion to principals, representing some participant equipped with a
network address and a cryptographic identity.

For example, in Figure 1(c), the client role running on behalf
of a particular principal initially assigns principals to itself, as
well as to the other roles p and w, and writes these principals
in the Request message. In general, the first message need not
write all the session’s role variables, thus allowing dynamic choice
of subsequent principals during session execution. However, role
variable must be instantiated before the role is used as a target, and
role variables may not be rewritten.

Global session graphs (Definition) We model the global, static
view of sessions as directed graphs where nodes are session states
tagged with their role, and edges are labelled with message descrip-
tors decorated with written and read variables. We write ev to denote
sequences (v0 . . . vk). Formally, a session graph G =

(R,V,X ,L,m0 ∈ V, E ⊆ V ×X ∗×L×X ∗×V, R : V → R)

consists of a finite set of roles r, r′, ri ∈ R; a finite set of nodes
m,m′,mi ∈ V; a set of variables X = Xd ]R (the disjoint union
of data variables Xd and roles R); a set of labels f, g, l ∈ L;
an initial node m0; a set of labelled edges (m, ex, f, ey,m′) ∈
E , for which each variable occurs at most once in the vector ex
and likewise for ey (though the two vectors may have variables in
common); and a function R from nodes to roles.

For an edge (m, ex, f, ey,m′), we say that write(f) = ex and
read(f) = ey, the written and read variables of f (respectively.)
Also we use src(f) = R(m) and tgt(f) = R(m′) for the source
and target roles of f .

A sequence of labels ef for which the target node of each label
equals to source node of the next one is called a path. We write eff
or efeg to denote the path ef concatenated with a final f or another
path eg, respectively. The empty path is written ε. An initial path is
a path for which the source node of the first label is m0, the initial
node of the graph. An extended path is a sequence of alternating
labels (not necessarily adjacent) and lists of variables, of the form
(ex0)f0 . . . (exk)fk. We let f̂ range over extended paths, and let ε be
the empty path.
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A role r is active on a path when r is the role of any source node
of an edge of the path.

Well-formedness properties of sessions We define well-formedness
and implementability properties for session graphs to be considered
valid. Most of these properties are implementability conditions
motivated by our compiler and verification; they ensure that we
do not need to send extra messages to protect the security of the
session.

1. Edges have distinct source and target roles: if (m, ex, f, ey,m′) ∈
E , then R(m) 6= R(m′).

2. Edges have distinct labels: if (m1,fx1, f, ey1,m′1) ∈ E and
(m2,fx2, f, ey2,m′2) ∈ E , then m1 = m2, m′1 = m′2,fx1 = fx2,
and ey1 = ey2.

3. Every node is reachable: if m ∈ V then either m = m0,
the initial node, or there exists an initial path eff such that
tgtnode(f) = m.

4. For any initial paths ef ef1 and ef ef2 ending with distinct roles r1
and r2, respectively, there exists a role r active on either ef1 oref2 such that r1 = r or r2 = r.

5. On any initial path, every role variable is written at most once.

6. For any initial path eff ending in role r, we have r ∈ knows(r, eff).

7. For any initial path ef ending in role r, and any role r′ active onef , we have r′ ∈ knows(r, ef).

8. For any initial path ef ending in role r for the first time (i.e.
r not active on ef ), every role r′ active on ef is such that r ∈
knows(r′, ef).

9. For any initial path eff , if x is read on f and f has source role
r then x ∈ knows(r, eff).

10. For any initial path eff ending in role r, if x is read on f and
x ∈ knows(r, ef) then x is written on f .

We motivate each of these properties in the following informal
discussion.

1, 2, 3: These are “sanity” properties. The first ensures that there
are no communications internal to a role in the session graph,
thus enforcing the intuition that any edge in the graph repre-
sents a potentially attackable communication (which the cryp-
tographic implementation needs to defend against). The second
property allows us to unambiguously index edges by their la-
bels, which is notationally convenient. The third states that there
are no junk nodes unreachable from initial paths.

4: This property ensures that no compromised principal at a fork-
ing point in the graph can cause several branches to all execute
in order to break the discipline that a single session run consists
of a unique execution path through the graph.

5: Throughout the presentation of these properties we use roles as
placeholders of fixed but unknown principals to be instantiated
during session execution. Without this property, we would be
forced to distinguish between the different occurrences of a
role depending on the possible rebinding of the role in between,
which is unnecessarily complicated.

6: This property says that every role knows the value of its corre-
sponding role variable, which prevents an adversary from di-
verting a message intended for one principal to another in order
to trick the latter to join the session.

7: This ensures that every principal knows all the previous prin-
cipals who have joined the session so far, thus preventing an
adversary from tricking a recipient into believing that some dif-
ferent set of principals has joined.

Ws.ml

Web Service 

Ws_protocol.mlWs_protocol.ml

Ws.ml

Client

Ws_protocol.mlWs_protocol.ml

Network

Ws.sessionWs.session

CompilerCompiler High-level
Session Interface

Wire-level  Crypto
Messaging Functions

Application Code
for each Role

Session Specification

.NET Runtime .NET Runtime
Trusted Libraries for
Networking and Crypto

TypecheckerTypechecker

Figure 2. Compiling Session Programs

8: This property prevents an adversary from forking a session
execution by concurrently assigning two different principals to
the same role.

9: This property prevents graphs in which an adversary that cannot
read a particular variable colludes with one who can in order to
gain premature access to the variable’s value.

10: This property says that a role never reads a variable that it
already knows, thus rendering the graphs “more canonical”.

3. Programming with sessions
Figure 2 illustrates our programming framework for the exam-
ple Ws of Figure 1(a).

All our programs are in ML, and may be compiled either by the
F# compiler using .NET libraries for networking and cryptography,
or by the Ocaml compiler using OpenSSL cryptography libraries.
Appendix A defines a formal subset of ML used in this paper.

Each compliant principal runs application code that may enact
roles in several sessions. In our example, there are two applica-
tions, a client and a web service, participating in the c and w roles,
respectively, of the Ws session. The application code for compli-
ant principals may contain arbitrary computations and non-session
communications, but for all session communications, it relies on a
high-level interface provided by a session module (Ws.ml). (The
figure depicts the case where both principals are compliant and use
our implementation, but our security theorems do not make this
assumption; see Section 4.) The session module ensures that both
local and remote principals comply with the session. For the lo-
cal application, the interface guarantees that messages may only
be sent and received in the correct order. To check compliance of
remote principals, the session module relies on a protocol module
(Ws protocol.ml) that inserts cryptographic materials on all sent
messages and checks them on all received messages.

Our compiler takes a syntactic session description (Ws.session)
and generates both the session and protocol modules; it then feeds
these modules into the extended typechecker for security verifica-
tion. To write code that complies with a session, a programmer only
needs to read the interface of the session module. In this section,
we describe a syntax of sessions and the structure of the gener-
ated session module and interface. In later sections, we describe the
generated protocol module, and prove that it enforces our session
security goals.

Session syntax We declare sessions using a process-like syntax
for each role. This is a local representation, unlike the global ses-
sion graphs in Section 2, but we can convert between the two rep-
resentations. Other works (Honda et al. 2008) explore conditions
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under which such interconversions are possible. Since this is not
the main focus of our work, we do not detail them, except to note
that all the global session graphs in this paper were automatically
generated from local syntactic descriptions.

τ ::= int | string Payload types
p ::= Role processes

send ({+fi( exi); pi}i<k) send
recv [{|fi( exi)→ pi}i<k] receive
χ : p named subprocess
χ continue with χ
0 end

Σ ::= Sessions
(var xj : τj)j<m (role ri:τi = pi)i<n initial role processes

We illustrate our syntax through an example. The following
session specifies the graph for Ws given in Figure 1:

session Ws =
var q : string
var x : int
role c : unit =

send (Request (c,w,q); recv [ Reply (x) | Fault ])
role w : string =

recv [Request (c,w,q)→ send ( Reply (x) + Fault )]

The session Ws declares two variables and two roles. Each
variable (q, x) represents a value communicated in the session and
is given a type. Each role (c, w) is defined in terms of a return type
and a role process that performs a sequence of send and receive
actions. At every send, the role process may chooses between
several messages, and at every recv, it expects to receive one of
several messages. Here, c sends Request and binds variables c, w,
and q, before receiving either a Reply (and reading x) or a Fault.

For a session to be well-formed, it must additionally satisfy the
conditions described in Section 2; for example, sends and receives
within a role process must alternate, only one role must send a mes-
sage with a particular label, and so on. These checks are encoded
as part of the early stages of our compiler.

Given a syntactic session, our compiler generates a session
module that defines the functions made available to the application.
Figure 3 shows an excerpt of the files generated from our Ws
example. The file Ws.mli declares the session module interface,
WebServer.ml is an example application using this interface, and
Ws.ml implements the interface. The figure illustrates the types and
functions corresponding to the w role. We describe these three files
in order.

Generated session interface For each variable (e.g. c, x) the com-
piler generates a type constructor (e.g. C, X) that is used by the
application to label values assigned to the variable. For each role
process (w), it generates a function (w) that executes message send
and receive functions in the prescribed order. To use this function,
the application must provide a record containing messages for ev-
ery send and message handlers for every receive, in a continuation-
passing style.

In our example, the w function takes two arguments: the
name (host) of the principal who wishes to run w, and a record
(user input) of type msg4. The record contains a single message
handler, hRequest, that is called whenever a new Request message
containing the variables c, w, and q is received. The message han-
dler returns a value of type msg5 that contains the next message to
be sent; here it returns either a Reply containing the variable x, or
it returns a Fault. Once this message has been sent, no further mes-
sages are expected and so the function w terminates its session and
returns. In more lengthy sessions, the value returned by the handler
would also contain new message handlers for the next messages
that may be received. The types msg4 and msg5 are defined here as
a set of nested algebraic types that could have been inlined, but, in

general, when role processes have loops, these type definitions are
mutually recursive.

Application code Any code that only uses the session interface
to send session messages is a valid application for a compliant
principal. In our framework, application code may be written in
OCaml or any .NET language, including F# and C#, but our formal
results hold for code written in our subset of ML.

The example shows a usage of the w function; the application
invokes the function w on behalf of a principal named "Bob", and
provides a message handler for the Request message; if the variable
q has been assigned the string "I want an answer.", then it
responds with a Reply message with variable x assigned the integer
42; otherwise, it returns a Fault.

Ordinary ML typechecking of application code against a session
interface provides a form of local integrity: it ensures that the
application must comply with the role process. For instance, our
example code would not typecheck if we forgot to provide a Fault
handler, or if we tried to receive a Request instead of a Reply. By
adding cryptography, we aim to provide global session integrity,
as formalized in the next session, that will hold even if some
applications do not use our generated session module.

Generated session module The code implementing role func-
tions performs three tasks: it ensures that sends and receives are
performed in the prescribed order by keeping track of the session
state, it interfaces with the wire-level cryptographic protocol mod-
ule to send and receive messages, and it logs security events indi-
cating session progress. The translation of role processes into role
functions is straightforward; for brevity, we elide the full transla-
tion and instead illustrate the generated code by example.

The session state consists of an internal control flow state ρ
(formally defined in Section 5) and a data store st. The internal
control flow state ρ represents a path in the session graph that
the current session instance has followed so far. Since the number
and lengths of paths in sessions with loops is unbounded, ρ is
an abstraction of the full path. Control states can be statically
precomputed from a session graph (see Section 5).

The store st records the parameters specific to the current ses-
sion instance, such as the session identifier (st.header.sid), the cur-
rent timestamp (st.header.ts) and the current values assigned to
each session variable (st.vars.c, st.vars.x). It is maintained by the
protocol module Ws protocol.

The code for our example session consists of a function wρ for
each ρ that ends in a message sent or received by the role w. After
sending or receiving one message, each wρi either terminates its
participation in the session or calls another function wρj , where
ρj represents the next message that may be received or sent at w.
The function w initializes the store and then calls the function wρ0
representing the first message that w receives in the session; wρ0
calls wρ1 to send the next message and return.

Each message send and receive is a function call to the protocol
module. (Section 7 describes the generation of this module.) For
each internal control flow state ρ and message f(x), the protocol
module defines a function sendWired f ρ that takes the current
store and a value x and constructs and sends a cryptographically
protected message, returning an updated store. For each internal
control flow state ρ, it also defines a function receiveWired ρ that
takes the current store and returns a cryptographically verified
received message and an updated store. Our example uses two send
functions sendWired Fault ρ1 and sendWired Reply ρ1, and one
receive function receiveWired ρ0.

Before sending and after receiving a message, the function w
logs security events asserting that one step in the session has been
completed. For example, before sending the reply message, it calls
the function assume to log an event, Send Reply, stating that it
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Ws.mli

type var c = C of principal
type var w = W of principal
type var q = Q of string
type var x = X of int
type result w = string
type msg4 = {

hRequest : (var c ∗ var w ∗ var q→msg5)}
and msg5 =

Reply of (var x ∗ result w) | Fault of (result w)
val w : principal→msg4→ result w

WebService.ml

Ws.w "Bob"
{ hRequest = function ( , , Q q)→

if q = "I want an answer."
then Reply (X 42, "Reply sent\n")
else Fault ("Request failed\n") }

Ws.ml

let rec w (host : principal) (user input : msg4) =
let empty store = empty store w host false in

w ρ0 empty store user input in
and rec w ρ0 : Ws protocol.store→msg4→ result w = fun st handlers→

match Ws protocol.receiveWired ρ0 st with
|Wired Request ρ0 ((c, w, q), newSt)→

assume (Recv Request (w, newSt.header.sid, newSt.header.ts, c, w, q));
let next = handlers.hRequest (C c, W w, Q q) in
wρ1 newSt next

and wρ1 : Ws protocol.store→msg5→ result w = fun st→ function
| Fault(result)→

let ts1 = st.header.ts+1 in
assume (Send Fault (st.vars.w, st.header.sid, ts1)) in
Ws protocol.sendWired Fault ρ1 st ; result

| Reply(X x, result)→
let ts1 = st.header.ts+1 in
assume (Send Reply (st.vars.w, st.header.sid, ts1, x));
Ws protocol.sendWired Reply ρ1 x st ; result

Figure 3. Generated session interface (Ws.mli) and (partial) session implementation (Ws.ml); Handwritten application (WebService.ml)

intends to send a Reply message with the given parameters. These
events are used in stating our security goals.

4. Session integrity
We now formalize session integrity. We say that a system supports
sessions S1, . . . , Sk if it consists of the ML modules:

Data Net Crypto Prins S1 protocol S1 . . . Sk protocol Sk U

where:

• Data , Net , Crypto, and Prins are symbolic implementations
of trusted platform libraries; Data is for bytearrays and strings,
Net for networking, Crypto for cryptography, and Prins maps
principals to cryptographic keys (see Section 7.1 and Section 8);
• for each session specification Si, the modules Si protocol and
Si are compiled then typechecked against the refined type in-
terfaces of Si protocol , Si, and the libraries;
• U represents the application code, as well as the adversary,

with access to all functions in Data , Net , Crypto, and Si, and
access to some keys in Prins (as detailed below.)

As depicted in the session module of Figure 3, a system may log
events by calling the assume function. A run of a system consists
of the events logged during execution. For each session, we define
three kinds of events that are observable:

Send f(a, ev) Recv f(a, ev) Leak(a)

where f ranges over labels in the session. Send f asserts that in
some run of the session the principal a instantiating role src(f)
commits to sending a message labelled f , with values ev for its
written variables. Recv f asserts that principal a instantiating role
tgt(f), after examining the over-the-wire cryptographic evidence,
accepts a message labelled f with values ev for its read variables.

The event Leak(a) states that the principal a is compromised; a
Leak event is generated whenever the adversary U accesses a key
from the Prins module; in a run where a principal’s keys are never
accessed byU , this event does not occur, and the principal is treated
as compliant. For a given run of a system supporting sessions, we
say that a compliant event of the run is a Send or a Recv event
present in the run whose first argument is a principal a for which
there is no Leak(a) event anywhere in the run.

An instance of a session is a sequence of Send and Recv events
obtained by (globally) instantiating all the bound variables of an
initial path of the session.

DEFINITION 1. The concrete instances of S are as follows:

1. let f1 . . . fk be an initial path of S;
2. let exi = write(fi) and eyi = read(fi) be the written and read

variables of fi for i = 1..k;
3. let (αi)i=1..k be a sequence of maps from variablesX to values

for which
• each map can only differ from the previous for the variables

that have just been written: ∆exi+1(αi, αi+1) for i = 1..k,
where ∆ is formally defined in Figure 5.

4. replace each fi from the path with two events

Send fi(αi(src(fi)), αiexi),Recv fi(αi(tgt(fi)), αieyi)
5. optionally discard the final Recv fk event.

Concrete instances capture all sequences of events for a par-
tial run of a system supporting S. In the definition, step (5) ac-
commodates instances that end with a message sent but not yet re-
ceived. Moreover, the values of the variables recorded in the events
are related to each other exactly in accordance with the variable
(re)writes allowed by the graph (possibly shadowing each other).

We can now state our session integrity theorem

THEOREM 1. For any run of a system that supports sessions eS,
there is a partition of the compliant events of the run into disjoint
sequences such that each sequence coincides with the compliant
events of a concrete instance of a session in eS.

The theorem states that the compliant events of any run are in-
terleavings of the compliant events that may be seen along exe-
cution of initial paths of the sessions. It means that the views of
the session state at all compliant principals must be consistent. For
example, in a run of the Proxy session, suppose that the client prin-
cipal playing the role c and the proxy playing p are compliant, but
the web service playing w may be compromised. Then, the theo-
rem guarantees that whenever the client receives a Reply message
from the web service, it must be that the proxy previously sent the
web service a Forward or Resume message; the web service cannot
reply to the client before or during its negotiation with the proxy
and convince him to accept the message. Moreover, the values of
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...

w: (c,p,w,q)Request()Audit

()Audit(c,p,w)

w: (c,p,w,q)Request()Forward

()Forward(c,p,w,q)

...

(d)Details(d)

...

(x)Reply(x)

w: (c,p,w,q)Request(d)Details()Resume

()Resume(q)

w: (c,p,w,q)Request(d)Details(o)Retry

(o)Retry(o)

...

(x)Reply(x)

...

(d)Details(d)(o)Retry(o)

w: (c,p,w,q)Request(o,d)Details()Resume

()Resume(q)

...

(x)Reply(x)

Figure 4. Internal control flow states for role w in Example 1(c).

session variables, such as q, d, o, and x, must be consistent at all
compliant principals.

In Section 8, we prove a more precise version of this theorem.

5. Internal control flow states
In Section 2, session graph nodes only contain the role name.
At execution time, however, such node actually represents several
different session-flow states of a local role. For example, in the
Proxy session, the middle node for role w denotes two different
session-flow states for w: one when an Audit message is received
for the first time, and another for subsequent Retry messages.

In this section we present a refinement that generates richer
session graphs in which nodes can be mapped to unique session-
flow role implementation states; nodes are tagged with role names
and internal control flow states. Intuitively, internal control flow
states, indexed by ρ, finitely enumerate the possible states a role
execution can be; they consist of the last label sent by each of
the roles participating in the path and the last occurrence of each
variable. The internal control flow states ρ serve as indices for the
various receiving and sending code in the generated protocol (see
e.g. Section 3), as there are only a finite number of them even if
there are an infinite number of cyclic paths. This holds since the
number of labels in an internal control flow state is bounded by the
size of the session’s (finite) role setR and the number of variables
(each of which is used at most once) is bounded by the size of the
session’s (finite) variables set X .

We say that the extended path is an internal control flow state,
ranged over by ρ, if it is in the image of the following state function
st applied to some initial path. We let st( ef) = ef \ (ε, ε) where the
filter function \ is defined as follows:

ε \ (ez, er) = ε

( eff) \ (ez, er) =

(
( ef \ (ex′ez, rer)) (ex′)f if r /∈ er
( ef \ (ex′ez, er)) (ex′) elsif r ∈ er

where r = src(f), ex′ = write(f) \ ez, and we quotient all ex-
tended paths by the coalescing of adjacent variable vectors, i.e.
(ex1)(ex2)f = (ex1ex2)f . Intuitively ef \ (ez, er) sweeps through ef ,
right to left, filtering out any labels sent by roles already encoun-
tered (as recorded by er) and any written variables already encoun-
tered (as recorded by ez).

From internal control flow states to graphs Given a session
graph, we explore its paths (possibly unfolding through loops) to
discover all internal control flow states; we then build a refined
graph with nodes as internal control flow states and, using path
information, tie them together via appropriate edges.

For example, the refined graph of the Proxy session, projected
for role w, is shown in Figure 4. There, states labelled with dots
“. . . ” represent unknown states for w, and may comprise in turn
of several states between the remaining roles (there is no space to
show the full graph here). Each incoming edge to a node of role w
represents a message that is received by w, while every outgoing
edge represents an message sent by w to another role.

Role w has two initial internal control flow states, depending
on whether it receives an Audit or a Forward message. Both states
have the common prefix (c,p,w,q)Request, meaning that the initial
role c must have sent a Request message writing variables c,p,w,q.
In the case w sends a Details message writing variable d, it next
jumps to two different states, depending on whether a Resume
message arrives or a Retry message arrives. In the latter case, w
needs to send another Details message rewriting d, which may
result in either another Retry as response or a final Resume message
to which w answers finally with a Reply message writing variable
x.

Clearly, the internal control flow states of a role provide a finite
way to represent the (usually infinite) execution states (accordingly
to the session graph paths). From Figure 4, one may project back
to the local syntax and obtain a decorated local role process, as
follows:

role w : string =
recv [{w:(c,p,w,q)Request()Audit} Audit (c,p,w)→
send Details (d) ;
recv [w:(c,p,w,q)Request(d)Details()Resume Resume(q)→Reply(x),

X: w:(c,p,w,q)Request(d)Details(o)Retry Retry(o);
send Details(d),

w:(c,p,w,q)Request(o,d)Details()Resume→ send Reply(x)
],

{w:(c,p,w,q)Request()Forward} Forward(c,w,q)→ send Reply(x) ]

Although this operation generates graphs with potentially more
nodes and edges than in the original one, the generated graph still
remains finite. However, the refinement does introduce potentially
many new nodes. As a rough estimate, the total number of gener-
ated nodes doubles per loop in the original session graph, since we
need to unfold loops into the two cases of entering for the first time
and subsequent entries (for statistics, see Section 9).

6. Cryptographic protection
We now turn our attention to the cryptographic wire format for
the messages exchanged between roles. For an edge of the form
(ex)f(ey), we protect the confidentiality of the written variables ex,
provide access to the read variables ey to w, and provide message
integrity for w, giving evidence that the message comes from in-
tended the source role. However, the situation is more complex than
that, as roles may need to forward and check evidence from other
involved roles. For example, in the Proxy example of Figure 1(c),
when w receives an Audit message in the Proxy example of Fig-
ure 4, it requires not only evidence about ()Audit(c, p, w) from p,
but also evidence that c sent (c, p, w, q)Request(c, p, w, q). This
is why we decorate internal control flow states as described above:
at the state of receiving the Audit, role w has an internal control
flow state that expects evidence from both c and p.

By computing internal control flow states, we know exactly
what evidence needs to be forwarded at runtime. Cryptographically,
we provide integrity by applying a message authentication code
(MAC) to each sent label together with the store variables and their
values, which are hashed together with a confounder, to avoid dic-
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tionary attacks. For confidentiality, variable values are encrypted.
In general, each message consists of (1) a series of MACs from the
sender and earlier participants, intended to provide integrity of the
session path; (2) a series of (cryptographically hashed) variables
needed by the receivers to recompute and verify the MACs; (3) a
series of (possibly encrypted) variables with their current values,
for the readable variables of the receiver; and (4) a set of encrypted
session keys, for the initial contact between the sender and receiver.

Initial Proxy Request message Consider the first receipt of an
Request message by p from c at the beginning of the Proxy exam-
ple. The internal control flow state for p is (c,p,w,q)Request, denot-
ing that variables c, p, w, q are written by c in the initial Request.
Target role p has access to all the written variables, i.e. c, p, w, q.
The actual format of the message sent by p for c is as follows:

sid | 0 | `0 | macc,p(sid | 0 | `0 | h[c] | h[p] | h[w] | h[q]) (1)

| c | cx | p | px | w | wx | encc,p(q | qx) (2)

| asignc(aencp(‘c’ | ka(c, p) | ke(c, p))) (3)

| macc,w(sid | 0 | `0 | h[c] | h[p] | h[w] | h[q]) (4)

| asignc(aencw(‘c’ | ka(c, w) | ke(c, w))) (5)

Here, | denotes concatenation, macx,y(m) denotes the message
authentication code of m under the shared key between x and y;
h(m) denotes the hash of message m; to ease notation, we write
h[v] = h(sid | sr | ‘v’ | v | vx) to denote the hash of the
(fresh) session id sid, concatenated with the source role principal
sr, concatenated with the variable tag ‘v’, its current value v and
finally a fresh confounder vx; 0 is the initial timestamp; `0 is the
tag ‘(c,p,w,q) Request’; encx,y(m) denotes the symmetric encryp-
tion of m under shared key between x and y; aencx(m) denotes
the asymmetric encryption of m under public key x; asignx(m)
denotes the digital signature of m under private key x.

This message has two parts. Components (1)-(3) constitute in-
formation computed by c intended for p, while components (4)-(5)
are for w, and will be forwarded by p to w in subsequent mes-
sages. In (3), component asignc(aencp(‘c’, ka(c, p) | ke(c, p)))
is added for key establishment, included since it’s the first time
c communicates with p (this step is done only once). It contains
two fresh session keys ka(c, p) and ke(c, p) asymmetrically en-
crypted for the recipient w and digitally signed by the source role
p; ka(c, p) is intended for MACing between c and p, and ke(c, p)
is intended for (symmetric) encryption (so above when we write
macc,p(. . . ) we mean macka(c,p)(. . . ), and similarly for encryp-
tion). (As explained in the next section, we assume a public key
infrastructure in place). Once session keys are exchanged, (2) in-
cludes variables and their values being readable by p. Variables c,
p, and w are principal variables and hence are unprotected and sent
in the clear (see Section 2.1). On the other hand, variable q is a data
variable and so we must protect it so that it remains confidential;
it’s encrypted using the shared symmetric key ke(cp).

Integrity is achieved by the MAC in (1), where all the vari-
able hashes are concatenated, preppended with a session identifier
sid = h(Σ, r) where r is a fresh nonce chosen by the session ini-
tiator and Σ is the session definition. The message contains also the
label `0 in the clear and the current timestamp (0 in this case).

Finally, (4) contains a similar MAC for c but intended for w,
and session keys between c and w are included in (5).

Upon receiving this message, the principal running as p pro-
cesses (3) to obtain the session keys. These keys are used to process
the variables in (2); once all variables are processed, p recomputes
the hashes and checks the MAC of (1). The principal variables are
checked to see if the principal is indeed assigned to its, and that the
sid is not a replay. If the checks succeed, role p updates the session
store and invokes the user code handler.

Second Proxy message: Audit Now p wants to continue the ses-
sion and send an Audit message to w; the message includes

sid | 1 | `1 | macp,w(sid | 1 | `1 | h[c] | h[p] | h[w])) (6)

| c | cv | cx | p | pv | px | w | wv | wx (7)

| asignp(aencw(‘p’ | ka(p, w) | ke(p, w))) (8)

Besides the above, p forwards the previous (4)–(5) from c. Here,
`1 is ‘(c, p, w, q)Request()Audit’; (6)–(8) are analogous to (1)–(3),
but variable q is not included, and the timestamp is incremented.

7. Cryptographic compilation
We briefly describe our libraries, then explain the compilation pro-
cess and discuss the implementation—additional code and details
are available online.

7.1 Libraries
Our generated protocol implementation use libraries for data, net-
working, cryptography, and principals. These libraries (and their
refined types) are essential parts of our security model.

Data manipulation A first module, Data , provides data types
bytes (for raw bytes arrays) and str (for strings) used for networking
and cryptography; its interface provides e.g. base64: bytes→ str
for encoding string payloads, and concat: bytes→ bytes→ bytes
for assembling messages.

type str
type bytes
val cS : string→ str
val iS : str→ string
val base64 : bytes→ str
val ibase64 : str→ bytes
val utf8 : str→ bytes
val iutf8 : bytes→ str
val concat : bytes→ bytes→ bytes
val iconcat : bytes→ (bytes ∗ bytes)

Cryptographic library Crypto provides the functions rsa encrypt,
rsa decrypt, sym encrypt, sym decrypt for encryption (RSA and
AES). For automated verification by typing (Section 8), keys are
given types α hkey when they are MACing keys and α symkey
when they are symmetric keys. MACing (HMACSHA1) is han-
dled by functions mac and mac verify while hashing (SHA1) uses
sha1 and sha1 verify. A fresh nonce is created by a call to function
mkNonce. Marshalling to and from bytearrays is realized through
pickle and unpickle.

The interface crypto.mli is as follows:

(∗ Marshalling ∗)
type α pickled
val pickle: α→α pickled
val unpickle: α pickled→α
(∗ Cryptography ∗)
type α hkey
type α symkey
val mkNonce : unit→ bytes
val sha1 : bytes→ bytes
val sha1 verify : bytes→ bytes→ unit
val rsa encrypt : bytes→ bytes→ bytes
val rsa decrypt : bytes→ bytes→ bytes
val mac : α hkey→α pickled→ bytes
val mac verify : α hkey→ bytes→ bytes→α pickled
val sym encrypt : α symkey→α pickled→ bytes
val sym decrypt : α symkey→ bytes→α pickled
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Principal and networking Library The Prins library manages
principals and their associated data, along with principal-related
networking function. The interface is as follows:

type pr = { id:string; cert:string; ip:string; port:int;}
val register : pr→ unit
val psend : str→ str→ unit
val precv : str→ str
val bind : str→ unit
val close : unit→ unit
val check cache : string→ string→ bytes→ unit
val gen keys : str→ str→ bytes
val reg keys : str→ str→ bytes→ unit
val get privkey : str→ bytes
val get pubkey : str→ bytes
val get symkey : str→ str→α symkey
val get mackey : str→ str→α hkey

The Prins library maintains a database of principals. recording the
principal name, its public-key certificate, and its network address.
We assume an existing public key infrastructure (PKI) in which
each principal has a public/private keypair and knows the other
principals’ public keys. Prins also maintains an anti-replay cache
for each principal, containing session identifiers and roles for all
sessions it has joined, to ensure that it never joins the same ses-
sion twice in the same role. During a session, whenever a principal
contacts another principal for the first time, function gen keys gen-
erates fresh session keys and protect them using asymmetric cryp-
tography. Function reg keys is used to process incoming keys and
registering them (in the next section we explain this in more detail).
In each session instance, our implementation can then use the sym-
metric and MAC keys via functions get symkey and get mackey.

The Prins library also provides functions psend and precv for
sending and receiving messages between principals, relying on
the Net library. Net provides networking functions, but is never
accessed directly by our code; it may be accessed by application
code for non-session communications.

7.2 Code generation
Generating the cryptographic protocol implementation requires
preparatory computations on the refined graph presented in Sec-
tion 5. First, internal control flow states along with the refined
graph are used to compute a visibility relation, which details for
every receiving state a list of MACs to be checked in incoming
messages, along with the expected contents; (potentially MACs are
expected in a state, from each of the roles involved since its own
last involvement). Each MAC is expected to contain a hash of the
variables that have been bound or rebound so far in the path.

From the visibility relation, a future relation is derived to asso-
ciate each message sent in the refined graph with a list of the roles
that may expect a MAC of that message, and which variables that
role is expecting. Relation future yields the fwd macs relation asso-
ciating messages with MACs to be transmitted along the way.

We also compute a learnt relation which hashes (coming from
commitments or supporting hashes) does this role learn in a given
message. From this relation, commitment checks are inferred. It is
also used (with future) to derive the fwd hashes relation associating
messages with hashes to forward. Finally, future is used to derive
a fwd keys relation which associates messages with (encrypted,
session-establishment) keys that need to be forwarded.

These relations are helpful to statically know which MACs are
generated before sending a message, what the content of each
message is and which verifications are done upon reception.

Store Updated throughout the execution, the store contains the
values of the variable received, some hashes of variables, some

MACs, a logical clock, and the session id. We use the notation←
to designate a store with an updated field.

type store = {
vars : { for each (x : t) ∈ X ,

ˆ
x: t

˜
} ;

hashes : { for each x ∈ X ,
ˆ

hx : hashstore
˜
} ;

(∗ hashstore is a container for hash values and confounders ∗)
macs : { for all label l with variables ex in a visible sequence

received by r,
ˆ
rlex : bytes

˜
} ;

keys : { for each pair r,r’ of roles,
ˆ

key r r′: bytes
˜
} ;

header = { ts : int ; sid : bytes }}

Auxiliary functions The following content functions build the
MACs used in the protocol (as described in Section 6).

For all state ρ mentioned in a visible sequence with variables ezˆ
let content ρ ez = fun ts store→
fold over z ∈ ez ˆlet hashes = concat store.hashes.hz.hash hashes in

˜
let state = utf8 (cS "ρ") in
let payload = concat state hashes in
let header = concat store.header.sid (utf8 (cS (string of int ts))) in
concat header payload

˜
The mac verify functions each check the correctness of a partic-

ular MAC, given the store, time-stamp, key and the received MAC.
Their definition as individual functions is required by our proof
technique.

For all state ρ mentioned in a visible sequence received by role r
with variables ezˆ

let mac verify r ρ ez = fun ts store key mac→
let content = content ρ ez ts store in
mac verify k m content

˜
Sending functions For each message (i.e. edge) in the refined
graph, the compiler generates a sendWired function that builds and
sends a message (as detailed in Section 5).

For all edge ρ
(ex) f (ey)−−−−−−→ ρ′ of the refined graph, the sending role is r

r′ is the receiving role.ˆ
let sendWired f ρ store = fun ex store→
fold over x ∈ ex ˆ store.vars.x←x ; store.hashes.hx← sha1 x ;

˜
store.header.ts← store.header.ts + 1;
fold over r, r′ ∈ fwd key(ρ)ˆ

let keyrr′ = gen keys store.vars.r store.vars.r′ in
let keys = concat keyrr′ keys in

˜
for all (r′′, ρ′′, ez) ∈ future(ρ, l) (header is built as in content)ˆ

let content = content ρ′′ ez store.header.ts store in
let mackeyrr′′ = get mackey store.vars.r store.vars.r′′ in
let macmsg = mac mackeyrr′′ (pickle content) in
let r′fex = concat header macmsg in

˜
. . . Marshalling sent MACs (fwd macs) . . .
. . . Marshalling hashes (fwd hashes) . . .
fold over y ∈ ey ˆlet keyrr′ = get symkey store.vars.r store.vars.r′ in

let encr y = sym encrypt keyrr′ (pickle mar y) in
let variables = concat encr y variables in

˜
. . . marshalling of confounders for variables ey . . .
. . . Building header and message . . .
let () = psend store.vars.r′ msg in
store

˜
Receiving functions For each receiving state sequence, the com-
piler generates a sum type with a constructor for each possible re-
turn values of the receiveWired functions.

For all receiving state ρ,ˆ
type wired ρ = for each f that can be received in state ρˆ

|Wired f ρ of
ˆ
types of Read(f)

˜
∗ store

˜ ˜
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The receiveWired function checks whether the received mes-
sage is initial or not: in the former case, the cache needs to be
checked for guarding against replay attacks; in the latter, only ses-
sion id verification and time-stamp progress are necessary.

Once the header of an incoming message is checked, the re-
ceiving code verifies the included visible sequence is acceptable.
Then, the protocol unmarshalls and decrypts variables and keys
(read and fwd keys), checks commitments (that is, adequacy be-
tween an already known hash (i.e. not learnt) of a value that has
now become readable), unmarshalls hashes (fwd hashes), unmar-
shalls MACs (fwd macs), checks MACs (visib), and finally returns
the corresponding Wired data type.

For all receiving state ρ of role rˆ
let receiveWired ρ : store→wired ρ = fun store→
let msg = precv store.vars.r in
. . . Header/Cache checks ex . . .
let tag,payload = iconcat content in
match iS (iutf8 tag) with

for each v visible sequence accepted at state ρˆ
| "v"→
. . . Unmarshalling read variables ey and confounders . . .
. . . Unmarshalling and registering of new keys (fwd keys) . . .
. . . Decrypting variables . . .
. . . Verifying variables against known hashes (learnt) . . .
. . . Unmarshalling hashes (fwd hashes) . . .
. . . Unmarshalling MACs (fwd macs) . . .
for all (r′′, ρ′, ez) ∈ v (header is built as in content)ˆ
. . . checking time-stamp order . . .
let mackeyrr′′ = get mackey store.vars.r store.vars.r′′ in
let content = content ρ′ ez ts store in
mac verify mackeyrr′′ store.macs.r′′f ′ez content;

˜
Wired f ρ((ex),store)

˜
Proxy code The types corresponding to user code are generated
based on the local roles.

type msg0 =
Query of (var q ∗ var c ∗ var s ∗ msg1)

and msg1 = {
hReply : (var x→ result c)}

The proxy functions are indexed by state views.

let rec c Query (st:store) : msg1→ result c = function handlers→
let r = receiveWired c Query st in
match r with
|Wired Reply Query ((x), newSt)→

let next = handlers.hReply (X x) in
next

and c start (st:store) : msg0→ result c = function
| Query(Q q, C c, S s,next)→

let newSt = sendWired Query start (q,c,s) st in
c Query newSt next

8. Sessions as path predicates
We prove our main theoretical result, Theorem 1, which states the
integrity of session executions as observed by compliant principals
despite the presence of arbitrary coalitions of compromised ones.

Our proof proceeds as follows: we first enrich send and receive
events with additional parameters and lift the definition of concrete
instances accordingly (Definition 2); for each session, we define
families of predicates that capture invariants that must be main-
tained by a session implementation (Figure 5); we define typed in-
terfaces for our generated code, and show that if the code meets
these types, then it maintains these invariants (Lemma 1); we prove,
by hand, that the implementation of each role is locally sequential

(Lemma 2); using the invariants and local sequentiality, we estab-
lish the integrity theorem for all code that is generated by our com-
piler and typechecked (Theorems 1 and 2).

8.1 Stores, timestamps, and enriched events
We introduce a series of definitions and helper functions, then
enrich the contents of events.

The function write collects the variables written on an extended
path (Section 2):

write((ex0)f0 . . . (exk)fk) = {ex0, . . . , exk}
Given a role r and an initial path ef , the function knows(r, ef)

collects the variables in scope for role r after ef :

knows(r, ε) = ∅ and knows(r, eff) = (knows(r, ef) \ ex)∪{ez}
where ex are the written variable of f ; and ez are either the written
variables of f if r = src(f), the read variables of f if r = tgt(f),
or ∅ otherwise. For instance, for Example 1(a) we have that
knows(c,Request Reply) = {c, w, q, x} and knows(c,Request Fault) =
{c, w, q}.

Stores, ranged over by σ (and decorated variants), consist of
triples σh, σv, σc, where each component maps variables X to val-
ues. The intended use of the components is as follows: σh maps
variables to hashes, σv maps variables to (their known) values, and
σc maps variables to confounders.

The store σ is consistent for variables ez with a session identi-
fier s, written Hez(σ, s), if the hash map applied to a variable in ez
yields an identical hash to the one computed from the value and
confounder components (see Figure 5).

Enriched events are obtained from those of Section 4 by adding
timestamps and stores (following the implementation in Section 7):

Send f(a, s, ts, ev, σ) Recv f(a, s, ts ′, ts, ev, σ)

Timestamps, ranged over by ts (and decorated variants), are nat-
ural numbers. The timestamp ts in Send and Recv events records
the time at which the event is issued and we refer to it as the upper
timestamp of the event; in Recv events, ts ′ also records the time at
which the role tgt(f) previously sent a message, or 0 if no previous
message was sent; σ is the local store of a when the Send and Recv
event is issued.

We lift Definition 1 accordingly:

DEFINITION 2. The concrete instances of S are as follows:

1. let f1 . . . fk be an initial path of S;
2. let exi = write(fi) and eyi = read(fi) be the written and read

variables of fi for i = 1..k;
3. let s be a value, and (σi)i=1..k, (σ

′
i)i=1..k two sequences of

stores such that
• Hknows(src(fi),f1...fi)(σi, s) for i = 1..k;
• Hknows(tgt(fi),f1...fi)(σ

′
i, s) for i = 1..k;

• each hash map may differ from the previous only on vari-
ables that have just been written: ∆exi+1(σhi, σhi+1) and
∆exi+1(σ′hi, σ

′
hi+1) for i = 1..k − 1 (see Figure 5 for the

definition of ∆);
• the send and receive hash maps are equal: σhi = σ′hi for
i = 1..k.

4. let (ts ′i)i=1..k and (tsi)i=1..k be timestamps such that ts1 ≤
· · · ≤ tsk and ts ′i ≤ tsi for i = 1..k;

5. replace each (exi)fi in the path with two events

Send fi(σvi(src(fi)), s, tsi, σviexi, σi),
Recv fi(σ′vi(tgt(fi)), s, ts

′
i, tsi, σ

′
vieyi, σ′i)

6. optionally discard the final Recv fk event.
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Meta predicates: Consistency of stored hashes Hez(σ, s) 4= ^
x∈ez σhx = h(s | ‘x’ | σvx | σcx)

Store updates ∆ez(σ, σ′) 4= ^
x∈X\ez σ(x) = σ′(x)

Up to compromise bCca
4
= C ∨ Leak(a)

Base cases for Q and Q′: ∀s. Q ε(s, 0, ∅) and ∀s. Q′ ε(s, 0, 0, ∅).

Inductive case for Q: For every internal control flow state ρ = f̂ (ex)f we let:

∀s, ts, σ. Q ρ(s, ts + 1, σ) ⇔ Send f(σv(src(f)), s, ts + 1, σvex, σ) ∧Hex(σ, s) ∧_
ρ′/ρ

„
∃σ′, ts ′. Q′ ρ′(s, ts ′, ts, σ′) ∧ ts ′ < ts ∧∆ex(σ′h, σh)

«
Inductive case for Q′: For every non-empty internal control flow state ρk = f̂ (ex1)f1 . . . (exk)fk for which tgt(fk) is not active on
f1 . . . fk and either f̂ is empty or the source role of the last edge in f̂ is tgt(fk), with ey = read(fk), ex′i = write(fi) for i = 1..k, andez = write(ρk) \ (ex1 . . . exk ∪ {src(f1), . . . src(fk)}), we let:

∀s, ts0, tsk, σ. Q
′ ρk(s, ts0, tsk, σ) ⇔ Recv fk(σv(tgt(fk)), s, ts0, tsk, σvey, σ) ∧Hey(σ, s) ∧

_
(ρ0,ρ1,...,ρk)/

0BB@
∃σ0, . . . , σk, ts1, . . . , tsk−1.

∧i=0..k−1

“
tsi < tsi+1 ∧∆ezex′i+1

(σhi, σhi+1)
”
∧∆ez(σhk, σh) ∧

∧i=1..k

“
bQρi(s, tsi, σi)cσv(src(fi))

”
∧Qρ0(s, ts0, σ0)

1CCA
Figure 5. Definition of the predicates Q and Q′.

Note that this definition does not specify a strict ordering on the
timestamps in order to avoid having to distinguish between com-
pliant events (where there is a strict ordering as seen in Lemma 2)
and non-compliant ones (where we cannot guarantee strictness).

8.2 Invariant path predicates
Figure 5 defines a pair of families of predicates that serves as the
invariant at each point an enriched send or receive event is emitted
by the generated implementation code for sessions. The invariant
reflects the complexity of our optimized protocol; the invariant
proof is established mechanically by typechecking.

The two predicates, Q and Q′, hold at each send and receive
event respectively. Informally, they have the following interpreta-
tion. Consider any internal control flow state ρ = f̂ (ex)f ; then:

• Qρ(s, ts, σ) asserts that the principal playing role src(f) in
a session instance with identifier s is satisfied that its global
execution has followed an initial extended path whose image
under st is ρ, with the final step of the execution being the send
of f at timestamp ts; moreover, the current values for all the
variables written along ρ (i.e. the state after the send) are in the
store σ.
• Q′ ρ(s, ts ′, ts, σ) asserts that the principal playing role tgt(f)

in a session instance with identifier s is satisfied that its global
execution has followed an initial extended path whose image
under st is ρ, with the final step of the execution being the
receive of f at timestamp ts; the last time the role sent a
message was at timestamp ts ′ (or 0 if this is the first time the
role enters the session); moreover, the current values for all the
variables written along ρ (i.e. the state after the receive) are in
the store σ.

For simplicity, we assume in this presentation that all labels, ex-
tended paths, and internal control flow states are session specific.
(Our implementation systematically qualifies them, so that two la-
bels f belonging to two different sessions definitions are consid-
ered distinct.)

The definitions rely on a formula abbreviation bCca that stands
for the disjunction C ∨ Leak(a), that is, either C holds or the

principal a is compromised. (The generated code itself does not
which principals are compromised, but this does not prevent our
invariant to mention Leak(a).)

The definition of Q also relies on the notion of an internal
control flow state ρ preceding an internal control flow state ρ′,
written ρ / ρ′, which holds if there exists an initial path eff such
that ρ = st( ef) and ρ′ = st( eff). In this way we induce an edge
relation / on internal control flow states that refines the underlying
edge relation E on nodes, since a single node may correspond
to several possible internal control flow states depending on the
history of the session execution up to that node.

We generalize this binary notion to vectors of internal control
flow states (used in Q′), writing (ρ0, ρ1, . . . , ρk)/ iff there exists
an initial path ef0

ef1f1 . . . efkfk such that the active roles of ef i
are included in the active roles of fi, . . . , fk for i = 1..k; ρi =
st( ef0

ef1f1 . . . ef ifi) for i = 1..k; ρ0 = st( ef0). In this definition,
f1, . . . , fk are the last edges from the k rightmost active roles in
ρ: this is true because each step from fi+1 to fi skips over the
edges ef i+1 all of whose active roles are already used in fi . . . fk.
Therefore, each ρi is the internal control flow state for the last
message send performed by role src(fi), for i = 1..k.

8.3 Proofs by typing
The following lemma states that the path predicates are invariants
maintained by any system generated by our compiler and verified
by our typechecker.

LEMMA 1. For any run of a system that supports sessions eS, for
any session S ∈ eS, for any session identifier s running S, for any
compliant principal a,

• the event Send f(a, s, ts, ev, σ) in the run implies that there
exists an internal control flow state ρ of S ending in the sent
label f , such that a = σv(src(f)), ev = σvex, and Qρ(s, ts, σ)
where ex are the written variables of f ;
• the event Recv f(a, s, ts ′, ts, ev, σ) in the run implies that there

exists an internal control flow state ρ of S ending in the re-
ceived label f , such that a = σv(tgt(f)), ev = σvey, and
Q′ ρ(s, ts ′, ts, σ) where ey are the read variables of f ;
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As outlined below, our compiler generates a dependently-type
interface for the protocol module that decorates the type of each
send and receive function with the preconditions and postcondi-
tions that must hold at that stage of the session. The interfaces
generated by our compiler can be seen as a proof outline that is
then filled-in and verified by our typechecker. We rely on an exist-
ing type system for an extended core of F#(Bengtson et al. 2008);
Appendix A highlights the syntax and some typing rules of this
extended language. Typechecking shows that a program meets its
declared interface; we then prove the lemma by showing that the
generated interface for our code guarantees the invariants.

Generating a typed interface For every compiled session S, the
compiler generates the protocol module S protocol.ml, as well as
an interface S protocol.ml7. The interface first defines the predi-
cates Qρ and Q′ ρ for every internal control flow state ρ derived
from the session graph. These predicates are written in the first-
order-logic syntax of our type system as predicates over the full
stores maintained by the implementation. Then, for each send func-
tion sendWired f ρ, where src(f) = a, and the variables sent on f
are ex, the interface declares the type:

private val sendWired f ρ:
(s:store){Q′ ρ0(s) ∧ Send f (s.vars.a,s.header.sid,s.header.ts+1,s.vars.ex)}
→ (s’:store){Qρ(s’) ∧∆ex(s,s’)}

Here the function must be given a store s such that the predicate
Q′ ρ0 holds for s; moreover, the event Send l with the given pa-
rameters must have been assumed before the function is called. If
these preconditions are satisfied, the function returns a store s’ that
satisfies Qρ(s’), where only the variables in ex have changed from
s. The type says nothing about the message being sent on the net-
work; it simply ensures that the relevant invariants are satisfied.
Since, in the session module, every Send f is followed by a call to
this function, the precondition to the function guarantees that the
invariant is preserved.

Similarly, for each receive function receiveWired ρ that may
receive one of the messages f1, . . . , fn at role a with valuesey1, . . . , eyn to extend ρ to ρ1, . . . , ρn, respectively, the interface
defines the type:

private val receiveWired ρ: (s:store){Qρ0(s)}→ (wired:wired ρ){
(∃ey1,s’. wired = Wired f1 ρ((ey1),s’) ∧∆ey1 (s,s’) ∧

(Recv f1(store.vars.a,store.header.sid,
store.header.ts,store,vars.ey1)⇒Q′ ρ1(s’))) ∨

· · ·
(∃eyn,s’. wired = Wired fn ρ((eyn),s’) ∧∆eyn (s,s’) ∧

(Recv fn(store.vars.astore.header.sid,
store.header.ts,store,vars.eyn)⇒Q′ ρn(s’)))}

Here, the precondition states that the store must satisfy Qρ0, and
the postcondition guarantees that, for each received message with
label fi, given the Recv fi event, the returned store satisfies Q′ ρi
and only modifies the variables in eyi. Since, in the session module,
every Recv f is preceded by a call to this function, the postcondi-
tion to the function guarantees that the invariant is preserved.

Next, we describe additional type annotations used to typecheck
our generated code. (The online paper has more details.)

Type interfaces for libraries For every library module used by
the implementation, such as Crypto, Prins, and Net, we provide
a hand-crafted refined interface encoding our assumptions. For
example, we assume that hashing using sha1 is non-invertible; this
assumption is encoded in the type declaration in crypto.ml7:

val sha1 : b:bytes→ h:bytes{h = Hash(b)}

The postcondition says that the returned hash can be thought of as a
(one-one) constructor Hash applied to the argument. The types for
mac and mac verify encode the assumption that a MAC is a faithful
and unique representation of the data being MAC-ed:

val mac : (k:α hkey)→ (v:α pickled)→ (m:Data.bytes)
val mac verify : (k:α hkey)→ (m:Data.bytes)→

(v’:Data.bytes)→ (v:α pickled){v’=v}

The type α pickled represents the marshalled representation of a
value of type α . Concretely, both the abstract types α hkey and
α pickled are implemented as bytestrings, and type α is used only
to link the types of key and the MAC-ed value. The function
mac can only be used to mac marshalled values v whose types
match the type of the key k; mac verify takes a mac m and checks
that it is a MAC of the value v’; when it succeeds it returns the
marshalled value v, which is the same as v but with the additional
type information that it matches the type of the key.

These library interfaces encode a symbolic model of cryptogra-
phy, in the tradition of Dolev and Yao. Their concrete implementa-
tions are not verified, and hence are trusted. Following Bhargavan
et al.; Bengtson et al. (2008), we also define symbolic implemen-
tations of these modules that use channels for communication, al-
gebraic datatypes for cryptography, and a private channel for the
principals database. These symbolic implementations are part of
our model and are the ones that appear in our theorems. The in-
terfaces for all the library modules are public, in the sense that the
adversary may use these functions to decrypt and encrypt messages
with his own keys, send, receive, and intercept messages on the net-
work. However, he does not get to read the keys of honest principals
(he does not have access to the get key function).

Dual implementations We follow the approach of Bhargavan
et al. and provide a symbolic implementation in addition to the
standard concrete implementation of these libraries.

For example, the concrete implementation of the cryptographic
library uses standard cryptographic algorithms. There, the datatype
for bitstrings is implemented as a byte array, and encryption is
implemented as a symmetric encryption function (AES).

The symbolic implementation for the cryptographic library, on
the other hand, uses algebraic datatypes and datatype constructors
to model cryptographic operations. For example, the type for bit-
string is defined as an algebraic datatype, and encryption is im-
plemented as the application of a binary constructor SymEnc that
represents encrypted bytes.

More importantly, the symbolic implementation encodes our
formal model of cryptography that is used to establish our secu-
rity results in the subsequent sections. Specifically, we consider a
variant of the standard Dolev-Yao threat model: the adversary can
control compromised principals (that may instantiate any of the
roles in a session), intercept, modify, and send messages on pub-
lic channels, and perform cryptographic computations. However,
the adversary cannot break cryptography, guess secrets belonging
to compliant principals, or tamper with communications on private
channels.

Annotations for keys and auxiliary functions To prove local prop-
erties about the store, the typechecker uses function preconditions,
code structure, and library interfaces, and annotations on auxiliary
functions in the protocol module, such as content ρ ez, to collect
logical constraints. For example, it tracks the relationship between
the old and new local stores to prove the ∆ex predicate and that the
hashes and known variables are consistent.

To prove properties linking stores at different locations, the
typechecker relies on the types of the keys used for generating
and checking MACs. The interface declares a type (;sp,rp) mackey
that defines all the possible usages of a MAC key in the session,
between the principals sp and rp. It defines the precise structure of
the value being MAC-ed and the invariants that must hold at the
sender for the MAC to be generated. For example, the key type for
the simple Ws session is as follows:

type (;sp:principal,rp:principal) mackey = (c:bytes){
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Session Roles S.session Application code S.mli Graph Refined Graph S protocol.ml+ S protocol.ml7 Typechecking
S (lines) (lines) (lines) (.dot lines) (.dot lines) S.ml (lines) + S.ml7 (lines) Time
Ws 2 8 33 29 14 24 499 + 93 371 + 43 8.8s
Rpc 2 15 24 27 11 18 390 + 82 274 + 41 6.1s
Commit 2 16 29 30 14 24 505 + 98 351 + 48 10.3s
Wsn 2 10 44 33 17 48 998 + 145 754 + 59 23.6s
Fwd 3 15 38 34 11 19 485 + 96 309 + 48 8.6s
Proxy 3 28 65 53 26 80 1954 + 227 1848 + 91 2m34.1s
Login 4 28 54 63 29 74 1816 + 237 1441 + 101 1m43.4s

Figure 6. Generated file sizes and typechecking times for example sessions

(∃s. (s.vars.c=sp) ∧ (s.vars.w=rp) ∧
(Q c cwqRequest(s) ∨Leak(sp)) ∧
(c = Concat(Concat(s.header.sid,

Utf8(Literal(SofI(s.header.ts)))),
Concat(Utf8(Literal ("c_cwqRequest")),

Concat(s.hashes.hc,
Concat(s.hashes.hw,

Concat(s.hashes.hq,
Utf8(Literal ("")

))))))))
∨ (∃s. (s.vars.w=sp) ∧ (s.vars.c=rp) ∧

(Q w Fault cwqRequest(s) ∨Leak(sp)) ∧ (c = . . .)) ∨
∨ (∃s. (s.vars.w=sp) ∧ (s.vars.c=rp) ∧

(Q w xReply cwqRequest(s) ∨Leak(sp)) ∧ (c = . . .))
} Crypto.hkey

This type allows three usages of the key, one for each state se-
quence ρ where a send is possible. To understand the intuition be-
hind the first disjunct, recall that the mac function only allows a
key to be used with a value that matches its type. Hence, this key
type ensures that when a MAC is being generated, either the send-
ing principal is compromised (Leak(sp)), or it satisfies the predi-
cate Q cwqRequest. Moreover, the value being MAC-ed must have
the detailed concatenated structure shown in the predicate (this is
the structure generated by the content cwqRequest cwq function).
Conversely, the mac verify function returns a value matching the
key type; hence, by checking a MAC on a received Request mes-
sage, the receiver knows that the predicate Q cwqRequest holds at
the remote store. Moreover, by comparing the structure of the lo-
cally constructed MAC-ed value with the one provided within the
predicate, it can verify that the local and remote store are consistent
over the MAC-ed hashes. These two properties are enough for it to
establish the Q’ w cwqRequest predicate.

Discussion During the design of our compiler, we found several
bugs by typechecking. More often, we found that our type anno-
tations were not strong enough to establish our results, or that our
typechecker required predicates to be structured in a specific way.
Discovering sufficiently strong annotations for keys, libraries, and
auxiliary functions, and designing a compiler that automatically
generates them requires some effort, but is rewarded with an au-
tomated verification method. We have used this method to type-
check several examples; their verification time and other statistics
are listed in Section 9.

Secrecy By typechecking, we also obtain secrecy for values as-
signed to session variables, under the assumption that the applica-
tion code run by compliant principals is trusted to provide secret
values for these variables and not leak them to the adversary. In-
formally, the value assigned to a variable in a session run may be
obtained by the adversary only if a compromised principal plays
a role in the session that can read the variable. To verify this prop-
erty we annotate the encryption and decryption keys in the protocol
module with refined types, and check that these types are met by all
encryption and decryption operations.

8.4 Local sequentiality
We now complete the proof by hand (as our typechecker does not
keep track of linearity). We establish that the implementation of
each role in a session must be locally sequential:

LEMMA 2. In any run of a system that supports session S, if the
principal a is compliant, then for any role r and session identifier s
for S, the series of events emitted by a with s in role r forms a
alternation of sends and receive events such that for any adjacent
pair of such events

Send f(a, s, ts0, ev, σ0),Recv g(a, s, ts1, ts2, ew, σ2) or
Recv g(a, s, ts1, ts2, ew, σ2), Send f(a, s, ts3, ev′, σ3)

we have ts0 = ts1, ts1 < ts2, and ts2 + 1 = ts3.

The proof is by inspection of the code structure in the gener-
ated session module. For example, in the generated session module
Ws.ml of Figure 3, we observe that the sequence of events emit-
ted by the role function w must be strict alternation, and by the
path invariants of Lemma 1, the timestamps must be in the order
prescribed.

PROOF: There are two possible ways for a principal a to enter a
session: either it has the initial role and it initiates the session with
a fresh session identifier s. Or, it joins an existing session in a non-
initiator role, in which case the anti-replay cache prevents a from
joining two sessions with the same identifier s and role r.

In both cases, the events emitted by principal a with s in role
r are entirely determined by a single sequential execution of the
code that implements r. For all the events, the session identifier is
statically bound to s.

After emitting a Send event, the code that follows is an affine
context that guards a single emission of a Recv event, and vice
versa. This is a structural property of the code and is not dependent
on state or cryptography.

We now consider the proof obligations concerning timestamps.
For each message received from the network with timestamp
ts2, the code performs a check before emitting the correspond-
ing Recv g(a, s, ts1, ts2, ew, σ2) event to verify that ts2 is strictly
greater than the last timestamp ts0 the same code sent (or 0 if this
is the first receive) and then chooses ts1 = ts0 when emitting the
event. For each event Send f(a, s, ts3, ev′, σ3) recording a message
send, the code chooses ts3 = ts2 + 1. �

8.5 Proof of integrity
We can now prove a more precise version of Theorem 1, whose
statement we recall here: “For any run of a system that supports
sessions eS, there is a partition of the compliant events of the run
into disjoint sequences such that each sequence coincides with the
compliant events of a concrete instance of a session in eS.” When
proving this theorem, a certain subtlety arises in characterising of
the “partitions”. Whereas events with different session identities
are in separate partitions, we need a finer grained partitioning that
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distinguishes some events with the same session identity. This is
because an adversary may start two sessions for S giving both in-
stances the same session identity s. The implementation of compli-
ant principals renders such attempts to subvert integrity harmless:
the anti-replay cache of each principal ensures that a principal never
joins s twice in the same role. Thus a principal may participate in
two instances of a session with the same session identity, but the
roles it plays in each instance are disjoint.

We say that one event is independent of another either if they
have distinct session identities, or if they have the same session
identities but their stores do not contain information about the
other’s role. For example, the events

Send f(a, s, ts, ev, σ) Recv f ′(a′, s′, ts ′′, ts ′, ev′, σ′)
are independent if s 6= s′ or if s = s′ and σ(tgt(f ′)) 6= a′ and
σ′(src(f)) 6= a.

We now formally define the complementary notion of depen-
dence, which we use in stating our results.

DEFINITION 3. A pair (s, σ) depends on an event Send f(a, s′, . . .)
(respectively Recv g(a, s′, . . .)) if s = s′ and σ maps src(f) (re-
spectively tgt(g)) to a. An event with session id s and store σ
depends on another event if (s, σ) depends on the latter event.

We then show that the predicatesQ andQ′ imply that the events
constitute concrete instances, from which Theorem 2, and hence
Theorem 1 follow.

LEMMA 3. For every run, if Qρ(s, ts, σ) or Q′ ρ(s, ts ′, ts, σ)
holds, then there is an instance of an initial extended path ending
in state ρ that matches the subsequence of all compliant events
depended upon by (s, σ) with upper timestamps at most ts .

Moreover any event with timestamp at most ts that depends on
an event in this subsequence is itself in the subsequence.

PROOF: (Sketch.) By mutual induction on ts with lexical ordering
so that we may use the property for Q at ts to prove it for Q′ at
ts (but not vice versa). By expanding the Q and Q′ predicates with
upper timestamp ts , we show that Q′ and Q holds (respectively)
for an upper timestamp ts ′ < ts . By induction, we get a concrete
instance matching compliant events whose upper timestamps are at
most ts ′. We then extend these concrete instances to include the
ts event. By the “no fork” condition on graphs (Property 4), we
show that there is no “junk” event with upper timestamp between
ts ′ and ts which the original ts event depends on. By the “no fork”
condition, we also have that any event with timestamp at most ts
that depends on an event in the concrete instance is itself in the
concrete instance. �

THEOREM 2. For any run of a system that supports sessions eS,
for any session identifier s, there is a partition of the compliant
events of the run into subsequences such that (1) two events are
in the same subsequence iff one depends on the other; and (2)
each subsequence coincides with the compliant events of a concrete
instance of a session in eS.

PROOF: Let et be the compliant events of the run and induct on the
the number of events in et. In the base case, et is empty and there is
nothing to do.

For the inductive case, consider an event Send f(a, s, ts, ev, σ)
or Recv f(a, s, ts ′, ts, ev, σ) in et with a maximal timestamp ts . By
construction, a is a compliant principal. By typing (Lemma 1):

• if the event is Send f(a, s, ts, ev, σ) then there exists a an inter-
nal control flow state ρ of S ending in the sent label f , such that
a = σv(src(f)), ev = σvex, and Qρ(s, ts, σ), where ex are the
written variables of f ;

• if the event is Recv f(a, s, ts ′, ts, ev, σ) there exists a an inter-
nal control flow state ρ of S ending in the received label f , such
that a = σv(tgt(f)), ev = σvey, and Q′ ρ(s, ts ′, ts, σ), where ey
are the read variables of f ;

Thus by Lemma 3, there is an instance of an initial extended
path ending in state ρ that that matches the subsequence of all
compliant events whose upper timestamps are at most ts and which
are depended upon by (s, σ).

Consider any other “competitor” event not in this subsequence.
Its timestamp is at most ts , since ts was chosen to be maximal. By
Lemma 3, all the events depended upon by the competitor event are
not in the subsequence, so we can remove the subsequence from et
to get a strictly smaller trace and, by induction, obtain the rest of
the disjoint subsequences. �

9. Evaluation
We present compilation and verification results for a series of ex-
amples. (Some of these additional examples are described in the on-
line paper.) Figure 6 shows, for each example session S, the lines of
code for the input files (S.session, Application Code), the generated
session interface S.mli, the internal graph representations, and the
generated session implementation modules and their refined type
interfaces; the last row shows typechecking times. Our compiler is
written in around 6000 lines of F#; the trusted platform libraries
are 780 lines of code (plus the .NET framework); their alternate
symbolic implementation is written in 520 lines of F#.

We find that even when programming with large multi-party
sessions, the user only writes a few hundred lines of code and needs
to read the session interface which is less than a hundred lines
of code. The generated modules are several thousand lines long,
but the user can rely on the typechecker to verify them in a few
minutes. However, to have additional confidence in the results of
typechecking, the user may want to read the predicates generated
in S protocol.ml7 and check that they correspond to his intuitive
understanding of the session, but for large examples, even the size
of these annotations can be prohibitively large.

We also measure the cryptographic overhead when running
concrete implementations. The table below gives the total runtimes
(in seconds) for completing 5000 instances for each of the sessions
Wsn, Ws, and Proxy of Example 1. For this experiment, we use
a Pentium 3GHz with 1G RAM, running Windows XP with .NET
cryptography, and only local communications.

Cryptography Wsn Ws Proxy
no crypto 1.812 2.367 9.428
SSL 2.582 (+29%) 3.008 (+21%) n/a
our protocol 3.477 (+47%) 3.942 (+39%) 15.476 (+39%)

The cryptographic overhead of our protocol is around 40%
(third row), in comparison with a protocol with no protection (first
row). The benchmarks are done in a single machine; for real dis-
tributed settings, we expect this overhead to be often negligible in
the face of networking overheads. We also run sessions over .NET’s
SSL layer (second row). For the binary sessions (Wsn and Ws),
our protocol is about 18% slower, even though it is doing many
more cryptographic operations. (We did not measure SSL for multi-
party sessions since SSL only provides protection for two-party
communications). Finally, we also implemented libraries that use
OpenSSL and UDP; we find that its performance is worse, mainly
due to networking (e.g., the Wsn example takes 14.994s to com-
plete, as opposed to 3.477s in .NET/Tcp).

Cryptographic overhead We measure the cryptographic over-
head. The table below shows executions for the sessions Wsn, Ws,
and Proxy from Example 1.
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Crypto Wsn Ws Proxy
no crypto 1.812 2.367 9.428
SSL 2.582 (+29%) 3.008 (+21%) n/a
our protocol 3.477 (+47%) 3.942 (+39%) 15.476 (+39%)

We run 5000 iterations on a Pentium 3GHz, 1G RAM, on
Windows XP with Cygwin and using .NET cryptography. As can
be seen, the cryptographic overhead is around 40% slower (third
row) than running without cryptographic protection at all (first
row). (The benchmarks were done in a single machine; for real
distributed settings, we expect the cryptographic overhead to be
less important than network communications.)

In order to compare the speed of our cryptographic protocol, we
code a variant of our networking library in which, instead of using
ordinary TCP communications, uses .NET’s SSL layer (second row
of the table). For the binary sessions (Wsn and Ws), we obtain
that our cryptographic protocol introduces only about 18% more
overhead than .NET’s SSL, even though our protocol is doing many
more cryptographic operations. (We did not measure SSL for multi-
party sessions like Proxy since SSL only provides protection for
binary, two-party communications).

We also implemented the cryptographic and networking layers
using OpenSSL and UDP; due mainly to networking, the perfor-
mance is worse (e.g., for the Wsn example it takes 14.994s to com-
plete, as opposed to 3.477s in .NET/Tcp).

10. Conclusion
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A. Refinement types for F#
We highlight some features of the refinement type system for F# used in this
paper. The reader is referred to (Bengtson et al. 2008) for the full details.

We extend a concurrent core subset of F# with the notion of an abstract
log that records logical formulas variables and names in the environment.
The expression assumeC takes a formulaC and adds it to the log, returning
unit. Conversely, the expression assert C checks whether the formula C is
derivable from the set of formulas recorded in the log. If it is derivable, we
say the assertion succeeds; otherwise, we say the assertion fails. Either way,
it always returns unit.

Formulas are written in an ordinary propositional first-order logic with
equality between terms, where terms include all F# values (including func-
tions). Any term constructed can be used as a function or predicate symbol.

We extend standard F# types with dependent functions, dependent pairs,
and refinement types. These extended types appear in the (refined) type
interfaces of modules, but never appear in code. A value of type x : T → U
is a function that given a value N of type T returns a value of type
U{N/x}. A value of type x : T ∗U is a pair (M,N) such thatM has type
T and N has type U{M/x}. A value of type {x : T | C} is a value M of
type T such that the formula C{M/x} follows from the log.

As usual, we define syntax-directed typing rules for checking that the
value of an expression is of type T , written E ` A : T , where E is a
typing environment The judgment E ` C means C is deducible from the
formulas mentioned in refinement types in E. For example, if E includes
y : {x : T | C} thenE ` C{y/x}. When typechecking, we delegate such
logical derivations to the Z3 SMT solver (de Moura and Bjørner 2008).

The introduction rule for refinement types is as follows.

• If E `M : T and E ` C{M/x} then E `M : {x : T | C}.

The type system includes a subtype relation E ` T <: T ′, and the usual
subsumption rule. Refinement relates to subtyping as follows: {x : T |
C} <: {x : T | True} <: T .

We typecheck assume and assert as follows.

• E ` assume C : { : unit | C}.
• If E ` C then E ` assert C : unit.

By typing the result of assume as { : unit | C}, we track that C can
subsequently be assumed to hold. Conversely, for a well-typed assert to be
guaranteed to succeed, we must check that C holds in E.

We model the adversary as some arbitrary (untyped) expression O
which is given access to the protocol and the library interfaces. Our formal
goal is robust safety, that no assert fails, despite the best efforts of an
arbitrary adversary. To allow type-based reasoning about the adversary, we
introduce a universal type Un of data known to the adversary. By definition,
Un is type equivalent to (both a subtype and a supertype of) all of the
following types: all base types, (x : Un→ Un), (x : Un∗Un), (Un+Un),
and (µα.Un). Hence, we obtain adversary typability, that O : Un for
all adversaries O. Secret values, such as keys, are represented by public
types that are not subtypes of Un. Verification of code versus an arbitrary
adversary is based on robust safety by typing; that the program is well-typed
and all the variables and functions in its interface have public types.

THEOREM 3. If ∅ ` A : Un then A is robustly safe.
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