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Abstract. The dynamics of reactive systems, e.g. CCS, has often been
defined using a labelled transition system (LTS). More recently it has be-
come natural in defining dynamics to use reaction rules — i.e. unlabelled
transition rules — together with a structural congruence. But LTSs lead
more naturally to behavioural equivalences. So one would like to derive
from reaction rules a suitable LTS.

This paper shows how to derive an LTS for a wide range of reactive
systems. A label for an agent a is defined to be any context F' which in-
tuitively is just large enough so that the agent Fa (“a in context F) is
able to perform a reaction. The key contribution of this paper is a precise
definition of “just large enough”, in terms of the categorical notion of
relative pushout (RPQO), which ensures that bisimilarity is a congruence
when sufficient RPOs exist. Two examples — a simplified form of action
calculi and term-rewriting — are given, for which it is shown that suffi-
cient RPOs indeed exist. The thrust of this paper is, therefore, towards
a general method for achieving useful behavioural congruence relations.

1 Purpose

The semantics of interactive systems is in a state of flux, inevitably so because
new models for such systems are constantly appearing. Frequently, a calculus is
developed to model certain features (e.g. communication, mobility and security)
and the behaviour of agents is described in terms of state transition rules, also
called reduction rules, rewriting rules, firing rules, etc.; we shall call them reaction
rules. The question of behavioural equivalence between two agents immediately
arises.

A sledgehammer approach to behavioural equivalence is in terms of contezts.
It is often easy to determine, for a calculus, the class of all possible contexts C'
in which agents may appear; then we can declare that two agents a and b are
contextually equivalent — here written a ~ b — iff for all contexts C' the agents
Ca and Cb have the same reaction pattern (which may be defined differently
for different kinds of equivalence). This definition has the advantage of making
~ a congruence (a ~ b implies Ca ~ Cb), and the disadvantage that to check
equivalence one has to consider all contexts.

A common and more practical approach has been to define (by rules) not
only the reactions a —i> a' of each agent, but also a system of labelled transitions
a 2 a', where the label ) is drawn from some tractable set representing all



the “ways” in which an agent may interact with its environment. We may then
define a ~ b to mean that a and b have the same pattern (traces, bisimilarity,
. ) of labelled transitions, not merely the same pattern of reactions. But we
are still faced with proving a congruence property with respect to some class of
contexts; this proof may be hard, and is often ad hoc for each calculus.

This paper offers a general method for deriving a labelled transition system
(LTS) whose labels are a restricted class of contexts. The crux of the paper is
that these labels are defined in terms of the categorical notion of relative pushout
(RPO), and that the induced bisimulation equivalence (either strong or weak)
is guaranteed to be a congruence when sufficient RPOs exist.

2 Background and outline

Since the early days of process calculi, the question of behavioural equivalence
has been central. It has usually been operationally defined, and often centred
upon an LTS; this was the case with CCS [15]. There have indeed been notable
exceptions to the use of LTSs as the defining method: Hoare’s CSP [12] was given
an elegant denotational semantics, the failures model; in the Process Algebra [3]
which originated with Bergstra and Klop the emphasis was upon an algebraic
theory rather than upon transitions. But LTSs have been prominent, and they
led to an intense study of the different equivalences they induce [9], and of their
congruential properties [10,24].

With the 7-calculus [18] the LTS methodology became strained because the
passage of names as messages required a somewhat ad hoc structure in the la-
bels. For this reason Milner [16], inspired by the Chemical Abstract Machine of
Berry and Boudol [4], devised an alternate semantics based upon structural con-
gruence and reaction rules, with specific definitions of behavioural equivalence
and specific congruence proofs, often based upon barbed bisimulation [19].

Simultaneously, action calculi [17] were proposed as a framework embracing
a wide variety of process calculi. Many calculi, including the A-calculus, the 7-
calculus, Petri nets and the Ambient calculus can be presented as action calculi,
which employ a uniform notion of structural congruence. Thus arose the chal-
lenge to find a general way of deriving LTSs, and thence behavioural congruences,
from reaction rules all expressed within action calculi.

Sewell [22] has derived an LTS for several classes of reactive system, and in
each case proved the induced bisimilarity to be a congruence. He also proposed
a notion of colouring to keep track of component occurrences, and thereby to
yield satisfactory congruences. This work has given guidance on what a uniform
approach might be, and on which congruences it should yield. We here offer
a uniform approach applying to any reactive system which forms a category
possessing relative pushouts; in our ongoing work we aim to demonstrate that
action calculi enjoy this property.

Outline In the next section we discuss the derivation of LTSs and motivate the
use of contexts as labels. In Section 4 we define the notion of relative pushout
(RPO) and the sister notion of an idem pushout (IPO) — a self-relative RPO. In



Section 5, we define the labelled transitions of an LTS in terms of IPOs. We then
prove that the associated strong bisimilarity is a congruence; we also show that
a weak bisimilarity is a congruence. In Sections 6 and 7 we study two examples:
a simple class of graphs related to action calculi [17], and term-rewriting with
“multi-hole” contexts, in comparison with Sewell’s study [22]. Current and future
work is discussed in Section 8.

3 Motivation

We wish to answer two questions about arbitrary reactive systems consisting
of agents (whose syntax may be quotiented by a structural congruence) and a
reaction relation —> (generated by reaction rules):

1. Can we derive a labelled transition relation —2+ where A comes from a

small set of labels that intuitively reflect how an agent interacts with its
environment?
2. Under what general conditions is bisimulation over —24> a congruence?

We can begin to address question 1 by considering CCS [15]. Let a, b range over
agents (processes), C, D, F range over agent contexts (processes with a hole),
and 2 range over names. The usual labelled transitions —2-> for A ::= & | x | T
reflect an agent’s capability to engage in some behaviour, e.g. Z.a|b has the
labelled transition —Z+> because Z.a|b can perform an output on z. However,
if we shift our emphasis from characterising the capabilities of an agent to the
contexts that cause the agent to react, then we gain an approximate answer to
question 1, namely we define

afsd ff Fa—ad (1)
for all contexts F. (We denote context composition and application by juxta-
position throughout.) Instead of observing that Z.a|b “can do an Z” we might
instead see that it “interacts with an environment that offers to input on z, i.e.
reacts when placed in the context —|z”. Thus, Z.alb — 2 a|b.

The definition of labelled transition in (1) is attractive when applied to an
arbitrary process calculus because it in no way depends upon the presence or
absence of structural congruence. Furthermore, it is generated entirely from the
reaction relation —> (question 1); and, bisimulation over —£+> is a congruence,
(question 2). The proof of the latter is straightforward: let C' be an arbitrary
context and suppose a ~ b; we show that Ca ~ Cb. Suppose Ca -+ a'; by
definition, FCa —> a', hence a £ a’. Since a ~ b, there exists b’ such that
b-EC b and a' ~ b'. Hence Cb - b/, as desired.

Nonetheless, the definition in (1) is unsatisfactory: the label F' comes from
the set of all agent contexts — not the “small set” asked for in question 1 —
thus making bisimulation proofs intolerably heavy. Also, the definition fails to
capture its intended meaning that a -+ a’ holds when a requires the context F
to enable a reaction: there is nothing about the reaction Fla —> a' that forces
all of ' — or indeed any of F' — to be used. In particular, if a —> a’ then for
all contexts F' that preserve reaction, Fa —> Fa', hence a —£4> Fa’; thus a has
many labelled transitions that reflect nothing about the behaviour of a itself.



Let us unpack (1) to understand in detail where it goes wrong. Consider
an arbitrary reactive system equipped with a set Reacts of reaction rules; the
reaction relation —> contains Reacts and is preserved by all contexts:

a—=>a

Ca—>Cd
Expanding (1) according to this definition of —> we have:

l—>7r if (I,r) € Reacts

a—t>ad if ~Fa——d
iff  3(l,r) € Reacts,D. Fa=Dl&a =Dr . (2)

The requirement Fa = Dl in (2) is rendered by a commuting
square (as shown) in some category whose arrows are the agents a
and contexts of the reactive system. This requirement reveals
the flaw described earlier: nothing in (2) forces F' and D to be lk k F
a “small upper bound” on a and I.

For the past few years we have been searching for a result for D
action calculi which we call a “dissection lemma”, having roughly
the form: given Fa = DI, there exists a “maximum” C, such that
for some F' and D' we have F'a = D'l, F = CF' and D = CD'. Sewell’s already
cited congruence proofs [22] indeed used dissection lemmas, even though they
did not assert maximality. To capture our intuition of maximality, we construct
below a category-theoretic framework, in which we then obtain an elegant and
general proof of congruence for the induced bisimulation equivalence.

4 Relative pushouts

The standard way of characterising that F' and D are a
“least upper bound” for @ and [ is to assert that the square
for (2) is a pushout, i.e. has the property: Fa = DI, and
for every F' and D’ satisfying F'a = D'l there exists a
unique G such that GF = F' and GD = D', as shown.

Unfortunately, pushouts rarely exist in the categories
that interest us. Consider, for example, a category of term
contexts over a signature X; its objects consist of 0 and
1; its arrows 0 — 1 are terms over ¥; its arrows 1 — 1
are one-hole contexts over X; there are no arrows 1 — 0 and exactly one arrow
idg : 0 = 0. Now, if ¥ contains only constant symbols, say ¥ = {«,a'}, then
there is no pushout completing Fig. 1(1) because there are no contexts other
than the identity. If we introduce a 2-place function symbol g8 into X, we can
construct an upper bound for a and o' but still no pushout (Fig. 1(2)).

We now define relative pushouts (RPQOs) which exist, unlike pushouts, in
many categories of agent contexts (illustrated in later sections). Let C be an
arbitrary category whose arrows and objects we denote by f, g, h, k and m,n; in
pictures we omit labels on the objects when possible.

Definition 1 (RPO). Given a commuting square (Fig. 2(1)) consisting of go fo =
g1f1, an RPO is a triple ho, h1, h satisfying two properties:

commutation: hofo = h1fi1 and hh; = g; for i = 0,1 (Fig. 2(2));



Figure 1. Non-existence of pushouts
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Figure 2. Construction of an RPO

universality: for any hy, by, h' satisfying hifo = hifi1 and W'h} = g; fori=0,1,
there ezists a unique k such that h'k = h and kh; = b} (Fig. 2(3)).

(An RPO for Fig. 2(1) is just a pushout in the slice category of C over m.)
A square is called an idem pushout (IPO) if it has an RPO of a special kind:

Definition 2 (IPO). The commuting square in Fig. 2(1) is an IPO if the triple
90, 91,1d,, s an RPO.

The difference between a pushout and an IPO is clearest in a partial order
category: a pushout is a least upper bound (i.e. less than any other upper bound)
and an IPO is a minimal upper bound (i.e. not greater than any other upper
bound). IPOs form the basis of our abstract definition of labelled transition and,
by the following proposition, their existence follows from that of RPOs:

Proposition 1 (IPOs from RPOs). If Fig. 2(2) is an RPO diagram then the
square in Fig. 3(1) is an IPQO.

IPOs can be pasted together as shown by the following proposition, analogous
to the standard pasting result for pushouts:



fo fo fo 90
— —

T o
— —m h o
L &
3(1) ! 33)
3(2)

Figure 3. IPO lemmas

Proposition 2 (IPO pasting). Suppose that both squares in Fig. 3(3) com-
mute and that Fig. 3(2) has an RPO.

(i) If the two squares of Fig. 3(3) are IPOs then so is the big rectangle.
(ii) If the big rectangle and the left square of Fig. 3(3) are IPOs then so is the
right square.

5 Labelled transitions and bisimulation congruence

We have set up in the previous section the categorical technology we need. We
now give a formal definition of a “reactive system” and proceed to derive there-
from a labelled transition system. We then prove that, subject to the existence of
sufficiently many RPOs, the associated bisimulation equivalence is a congruence.

Definition 3 (reactive system). A reactive system consists of a category C
with added structure. We let m,n range over objects. C has the following extra
components:

o a distinguished object 0 (not necessarily initial);

e a set Reacts C |J,, C(0,m)? of reaction rules;

e g subcategory D of C, whose arrows are the reactive contexts, with the prop-
erty that D1 Doy € D implies D1, Dy € D.

We think of the arrows of C as agents and contexts; the reactive contexts D
are those in which reaction will be permitted. We write e.g. D € D to mean that
D is an arrow of D. We let C, D, F' range over arrows; we use a, b, [, r for arrows
(the “agents”) with domain 0. Note that if (I,7) € Reacts then I,7 : 0 = m for
some m. The objects m of C represent interfaces between contexts. At this level
of abstraction we specify no structure on objects, except to distinguish 0.

The reaction relation —> is generated from Reacts by closing up under all
reactive contexts:

Definition 4 (reaction). a —> a' iff there exists (I,r) € Reacts and D € D
such that a = DI and o' = Dr.

We now give our main definition. We replace the commuting square of (2)
(Section 3) with an TPQ, defining labelled transitions as follows:
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Figure4. IPO squares for labelled transitions

Definition 5 (labelled transition). a —£-> a' iff there exists (I,r) € Reacts
and D € D such that Fig. 4(1) is an IPO and a' = Dr.

This definition assures that F, D provides a minimal upper bound on a and [,
as required in Section 3. For suppose there is another upper bound F', D', i.e.
F'a = D'l, and also F = RF' and D = RD' for some R. Then the IPO property
for Fig. 4(1) ensures that for some R' (with RR' = id) we have F' = R'F and
D' = R'D — so F, D provides a “lesser” upper bound than F’, D' after all.

Proposition 3. For all contests F' we have that a - a' implies Fa —> a'.

The converse fails in general (which is good, given the remarks made in Sec-

tion 3 about the tentative definition (1) of labelled transitions). We return to

the converse property later in the special case that F' is an isomorphism.
Bisimulation over £ follows its usual scheme [21]:

Definition 6 (bisimulation over —£+). Let S C |J,, C(0,m)?. S is a sim-
ulation owver —f{> iff for (a,b) € S, if a —1{_‘{> a' then there exists b’ such that
b—L5 b and (a/,b') € S. S is a bisimulation iff S and S™! are simulations. Let
~1 be the largest bisimulation over —fb

We now state and prove the central result of this paper: if C has a sufficiently
rich collection of RPOs then ~; is a congruence.

Definition 7 (redex-RPOs). We say that C has all redex-RPOs if for all
(I,r) € Reacts and arrows a, F,D such that D € D and Fa = DI, the square
in Fig. 4(1) has an RPO.

Theorem 1 (strong congruence). If C has all redez-RPQOs then ~1 is a con-
gruence, i.e. a ~1 b implies Ca ~1 Cb for all C.

Proof. Tt is sufficient to show that the following relation is a bisimulation:

S £ {(Ca,Cb) | a ~1 b}
The proof falls into three parts, each of which is an implication as illustrated
in Fig. 5(1). Dashed lines connect pairs of points contained within the relation

annotating the line. Each arrow “|” is tagged by the part of the proof below
that justifies the implication.
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Figure 5. Congruence proof

(i) If Ca £ o' then, by definition, there exists (I,7) € Reacts and D € D
such that the big rectangle in Fig. 5(2) is an IPO and a' = Dr. Because C
has all redex-RPOs, there exists F', D', C' forming an RPO as in Fig. 5(2);
moreover, D', C' € D since C'D’' = D € D. By Prop. 1, Fig. 5(3) is an IPO.
Because C has all redex-RPOs, Prop. 2 implies that Fig. 5(4) is an TPO too.
By definition, a Ll’l> D'r and o' = C'D'r.

(ii) Since a ~1 b, there exists b" such that b Llll> b" and D'r ~1 b". By definition
there exists (I’,r') € Reacts and E' € D such that Fig. 5(5) is an IPO and
b’ = E'r'.

(iii) Because C has all redex-RPOs, Prop. 2 implies that we can paste Fig. 5(5)
with Fig. 5(4) (both IPOs) along F' and conclude that Fig. 5(6) is an IPO.
Hence Cb £ C'E'r' and (C'D'r,C'E'r") € S because D'r ~1 E'r', as
desired.

The crux of the above proof is that Fig. 5(4), which mediates between an
F'-labelled transition of a and an F-labelled transition of Ca, can be pasted
onto a new diagram, serving the same function for b and Cb. This essential idea
appears to be robust under variation both of the definition of labelled transition
and of the congruence being established.



We now define two variants of —1171> for which transitions labelled by an
isomorphism F' recover the reaction relation, i.e. a —fb a' iff Fa — d' for
i = 2,3 (cf. Prop. 3): here the isomorphisms play the role of the 7-label in
m-calculus. The first is defined by brute-force case analysis:

.. .| Fa—a' if F' is an isomorphism
Definition 8. a £+ a' iff o, / , P
a—>a , otherwise.
The second involves the existence of a retraction, a pair R, R’ with RR' = id,
that adds just enough flexibility to the IPO condition:

Definition 9. a —§I> a' iff there exists (I,r) € Reacts, D € D, R, and R' such
that Fig. 4(2) is an IPO, o' = RDr, and RR' =id.

Finally, let ~4 be the bisimulation induced by the definition of labelled transi-
tion given in (1) (Section 3). The induced bisimulations of the different labelled
transition relations are congruences and related as follows:

Theorem 2. If C has all redex-RPQOs then ~; is a congruence for i = 2,3,4
and ~1 C ~y C ~3 C ~y.

We expect that some of these congruences coincide in specific applications. We
shall also seek category theoretic conditions under which they provably coincide.

This theory generalises smoothly both to weak bisimulation [15] and to trace
equivalences. For weak bisimulation, we think of the isomorphism labels as “silent
moves”:

Definition 10 (weak labelled transition).

. Fa—"d if F' is an isomorphism
a F al ’Lﬁ { ) f

a —fb—b* a' , otherwise
Let ~ be the largest bisimulation over =£=>.

Theorem 3 (weak congruence). If C has all redex-RPOs then = is a con-
gruence.

The original weak bisimilarity of CCS employed a looser definition of ==, in
which (using current notation) the compound transition —fb—«; was replaced
by —D*—fb—b* It was not a congruence for CCS, though it was preserved by
the CCS equivalent of reactive contexts. Interestingly, if the above replacement
is made in Def. 10, then ~ is preserved by reactive contexts.

6 Example 1: Wiring and bunches

In this section and the next we present two examples of reactive systems in which
RPOs exist. They are not chosen to represent practical systems, but to illustrate
clearly the three main features of action calculi [17]: parallel composition, wiring,
and nesting of agents.

Our first example is motivated by parallel composition and wiring. We study
a simple class of agents which we call bunches, that exhibit some of the variety
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Figure 6. Composition of bunch contexts and bunches

of copied wiring (naming) inherent in, for example, the 7-calculus and clearly
apparent in a graphical presentation. A bunch is a finite ordered set of unordered
trees of depth one, each leaf vertex possessing a character from a fixed character
set K = {K,L,M,...}. Three bunches b,bg,b; are shown in Fig. 6 (ignore the
dotted lines for now). Two bunch contexts Coy,C; are also shown, each with a
single hole; putting by into Cy and by into C; yields b = Cyby = C1b;. We define
Bun formally as follows:

Definition 11 (interfaces and bunch contexts). The bunch category Bun
has interfaces (U, m) as objects, where U is a finite set of vertices and the ordinal
m = {0,...,m—1} represents an ordered set of roots. An arrow of Bun is a
bunch context C = (¢, root, char) : (Up,mo) — (Ui, m1) whose components,
where V. = Uy — t(Uy) is the vertex set, are:
t:Up— Uy the trail (injective)
root : V & mg - my the parent map (surjective)

char : V - K the character map.
If (Uog,mo) = (0,0) we call C' a bunch; we typically use b for a bunch. In Bun,
every context is reactive.

(In this example we use “@” to combine disjoint sets and functions with disjoint
domains.) Composition of contexts is easy to understand graphically. Formally:

Definition 12 (identities and composition). The identity context id(y,m) =
(idy, idm,0). For two contexts C; = (&;, root;, char;) : (Ui,m;) = (Uir1, Mit1)
(i = 0,1), their composition C1Cy 2 (t,root, char) : (U, mo) = (Uz,my) is
determined as follows, where V; are the vertex sets of C; and V =V & t4(Vp):

t £ tiot
root : V ®mg — my = rooty o (idy, ® (rootg o (t; " @ idp,)))
char : V = K £ chary @ (chargo t; ).

This definition yields a category. To see how interfaces and trails work, consider
Cp in Fig. 6. When a graph with 3 vertices and 2 roots is placed in the hole, the
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Figure 7. A reaction rule | —>r and a labelled transition b —¢> b’

result is a graph with 6 vertices and 2 roots. Naming the vertices suitably we have
Co : ({1)0,1)1,'1)2},2) — ({’Uo,. .. ,’1}5},2). Then the trail of C() is tg : v; — Vit2
(i = 0,1,2); this is indicated in Fig. 6 by the dotted lines from the vertices of
bo to those of b. Trails are a version of Sewell’s notion of colouring. They assure
the following:

Theorem 4. Bun has all RPOs, hence all redex-RPOs.

There is a natural alternative version of Bun without trails; we lack space for
it, but a counter-example indicates that the RPO property is then lost.

The labels obtained via IPOs in Bun are pleasantly simple. A reaction rule
| —>r is shown in Fig. 7, with an example of a corresponding labelled transition
b - 1'; the label context F supplies the parts of [ which are missing in b, both
leaves and wiring, required to create an instance of I. By specifying a vertex set
U in the interface (U, m), we have fixed the size of bunch which can fit in a hole.
Current work promises to relax this condition, by allowing contexts to retain
their trail components but to be polymorphic, in that they apply to holes of any
size. We do not treat this generalisation here.

7 Example 2: Term-rewriting and multi-hole contexts

Our second example is motivated by the nesting of agents, which occurs in its
most familiar form in term-rewriting. In Section 4 we argued that pushouts do
not exist for free term contexts, thus motivating the exploration of RPOs in the
abstract. We now address the specific properties of RPOs for term contexts. If
we apply our theory to the category of one-hole contexts, then RPOs exist, as a
corollary of Sewell’s dissection result for terms (Lemma 1 in [22]). Consequently,
all the definitions of labelled transition in Section 5 induce bisimulation equiva-
lences that are congruences for term rewriting systems. The resulting labels are
unnecessarily heavy, though. For consider the reaction rule (y(a),a’); we have
a 25k o which corresponds to our intuition that a needs y(—) to react. Unfor-
tunately, we also have a labelled transition where the label contains a complete

copy of the redex:
o 5(—7’Y({0‘)) ﬁ(a' Oél)

To attack this problem we consider multi-hole contexts where we shall find that
this transition is prohibited. We then modify the definition of labelled transition
and the statement of the congruence theorem to cater explicitly for multi-hole
contexts in any reactive system. We end by asserting that multi-hole term con-
texts satisfy the hypotheses of this new congruence theorem.
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Figure 8. Redex-RPOs and tensor-IPOs

Definition 13 (multi-hole term contexts). Given o signature ¥ of func-
tion symbols then the category of multi-hole term contexts T*(X) over ¥ is
constructed as follows: the objects are the natural numbers; an arrow j — k is
a k-tuple of terms over the signature ¥ U {—1,... ,—;} containing ezactly one
use of each hole —; (1 < i < j). The identities are: id; £ (—1,...,—;). For
f=Aa1,...,ax) : j = k and g : k = m, their composition is the substitution

9f £ {ar/—1,-- ,ar/—r}g

(When j =1 we write —; as —.)

We now refine the abstract definitions of reactive system and of labelled
transition to cater explicitly for multi-hole contexts in any reactive system, not
just T*(X). This refinement is part of our programme to express abstractly the
phenomena of real reactive systems.

We require the notion of a strict monoidal category (C,®,0), a category C
equipped with a functor ® : C x C — C and an object 0 such that ® is strictly
associative and has unit 0.

The role of the tensor ® in the definition of reactive system is to “tuple”
objects (e.g. 1® 1 =2 in T*(X)) and arrows.

Definition 14 (multi-hole reactive system). A reactive system consists of
a strict monoidal category (C,®,0) and the following added structure:

e a subset Z of objects (we use m,m’,... to range over Z);

e a set Reacts C |J,,c» C(0,m)? of reaction rules;

e o subcategory D of C, whose arrows are the reactive contexts, with two
properties: D1 Dg € D implies D1,Dg € D; and a®id,, € D fora:0— m'.

The agents of a reactive system are arrows 0 — m and the agent contexts are
arrows m — m’', for m,m' € Z. (Thus, for example, in T*(X), we take Z = {1}
to mark out the singleton terms.) We adapt the definition of labelled transition:

Definition 15 (labelled transition). a > a' iff a,a’ are agents, F' an agent
contezt, and there erists (I,7) € Reacts and D € D such that Fig. /(1) is an
IPO and a' = Dr.

Two conditions replace “redex-RPOs” (Def. 7):



Definition 16 (redex-RPOs). C has all redex-RPOs if for all (I,7) € Reacts
and arrows a,F,D, where a is an agent, F,D agent contexts, D € D, and
Fa = DI, then the square in Fig. 8(1) has an RPO, as shown, such that either
u € Z, or there exists an isomorphism k : u = mo ® my such that kF' = idp,, ®1
and kD' = a® idyy, .

Definition 17 (tensor-IPOs). C has all tensor-IPOs if Fig. 8(2) is an IPO
square for all a; : 0 = m; with m; € Z and i =0, 1.

Theorem 5 (congruence). If C has all redex-RPOs and all tensor-IPOs then
~ is preserved by all agent contexts.

Let us return to the category T*(X) and see how we may apply Theorem 5 to
it. We have a choice of Z; we here confine ourselves to the case Z = {1}. Also,
we may choose any subcategory of T*(X) to be the reactive contexts, subject to
the conditions in Def. 14. Then

e an agent of T*(X) is a term a : 0 — 1;
e an agent context of T*(X) is a term context C' : 1 — 1, i.e. a term containing
a single hole.

The labels of T*(X) depend, of course, on the reaction rules. Once these are
specified, we have determined the labelled transition relation — over T*(X),
and hence the induced bisimulation ~. Formally we have:

Theorem 6. If we take Z = {1} then T*(X) has all redex-RPOs and all tensor-
IPOs. Hence from Theorem 5 the induced bisimilarity ~ over T*(X) is preserved
by all term contexts.

Let us now revisit the reactive system whose only reaction rule is (y(a),a’). It
contains exactly the following labelled transitions:

D(v(a)) —> D(d') for all reactive term contexts D

a ’Y(*E Oél

These agree with the transitions found by Sewell in the case of ground-
term rewriting. We believe that the labels in our reactive system T*(X) coincide
exactly with Sewell’s. Note that the heavy transition mentioned earlier is absent.
We indicate why this is so with the help of the diagram below.

0 1
(=, 7(a))
v(a) 2/ B(—=, ()
VAN
(,=) B(—1,—2)
/
1 1




If we work in the category of one-hole contexts then the outer square is an
IPO, which gives rise the transition =79 mentioned earlier. By admitting
multi-hole contexts we have given the outer-square a simpler RPO.

Note also that, though working with multi-hole contexts, we have been free
to choose the set Z as small as we wish, and thus obtain a simpler requirement
for the existence of RPOs.

8 Current and future work

We have presented here a single key idea which allows labelled transitions, and
thence behavioural congruences, to be derived for reactive systems. This is part
of a larger programme of work, aiming at a theory of behavioural equivalence
relevant to calculi designed for a wide range of practical purposes.

We are at present identifying those action calculi, or subcategories thereof,
which possess RPOs; this will greatly clarify the status of action calculi as a
framework. In particular, sharing graphs [1,11] and Gardner’s closed action cal-
culi [8] should be addressed. We also have to develop the notion of “polymorphic”
context alluded to in Section 6.

Calculi already equipped with LTSs and congruence proofs need to be checked
to see how close our uniformly derived LTSs and equivalences come to theirs. We
would like to study in generality the situation in which redexes themselves are
contexts, as Sewell [22] has done for term rewriting with parallel composition.
Jeffrey and Rathke [13] have recently studied the relationship between contextual
equivalence and labelled transitions for the v-calculus of Pitts and Stark [20]; this
will provide a good test for our uniform derivation of LTSs. We do not expect
yet to achieve the fine-tuning present in some calculi; but we see no obvious
limit to what can be achieved using general categorical (and other) methods
as distinct from working in each individual calculus. More generally, links with
other lines of research must be explored. Our method does not appear to overlap
with the categorical approach by Joyal, Nielsen and Winskel [14] in defining
bisimulation from open maps, but one should attempt to integrate the category-
theoretic study of LTS-based equivalences. Categorical methods have also been
productive in graph-rewriting; for example, in 1991 Corradini and Montanari [6]
were already combining categorical and algebraic methods in concurrent graph-
rewriting. Such work has developed further and should be related to ours.

In the longer term, we believe that graphical models represent the best hope
for a theory of interactive systems — including the internet — which design
engineers and analysts can actually use, with the help of computerised visualisa-
tion backed by rigorous machine-assisted verification. We hope the present work
will provide part of the necessary theoretical background for this development.
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