
Global abstraction-safe marshalling
via hash types

James J. Leifer Gilles Peskine Peter Sewell Keith Wansbrough

INRIA Rocquencourt University of Cambridge



Problem
Consider inter-machine communication (or persistent storage):

(A)

...

send (marshal (v : bool))
v : t−−−−−−→

(B)

...

let y =

unmarshal (receive () : int list)

A dynamic type check of t = t′ can ensure the safety of unmarshal.

But what if t and t′ are ML-like abstract types, e.g.

t = UnbalancedBinaryTree.ty

t′ = BalancedBinaryTree.ty ?

Could just consider their concrete representation types to get type safety,
but we want abstraction safety too.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 1



Problem
Consider inter-machine communication (or persistent storage):

(A)

...

send (marshal (v : t ))
v : t−−−−−−→

(B)

...

let y =

unmarshal (receive () : t′ )

A dynamic type check of t = t′ can ensure the safety of unmarshal.

But what if t and t′ are ML-like abstract types, e.g.

t = UnbalancedBinaryTree.ty

t′ = BalancedBinaryTree.ty ?

Could just consider their concrete representation types to get type safety,
but we want abstraction safety too.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 2



Problem
Consider inter-machine communication (or persistent storage):

(A)

...

send (marshal (v : t ))
v : t−−−−−−→

(B)

...

let y =

unmarshal (receive () : t′ )

A dynamic type check of t = t′ can ensure the safety of unmarshal.

But what if t and t′ are ML-like abstract types, e.g.

t = UnbalancedBinaryTree.ty

t′ = BalancedBinaryTree.ty ?

Could just consider their concrete representation types to get type safety,
but we want abstraction safety too.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 3



Overview

• Examples: communication with abstract types

• Solution: hash types, compilation, and typing

• Theorems

• Conclusions and future work

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 4



An even counter: manifest signature

module EvenC = (

struct

type t = int (* the representation type *)

let start = 0

let up x = x + 2

let get x = x

end : EvenCSig)

EvenCSig =

sig

type t = int (* t is manifestly equal to int *)

val start : t

val up : t -> t

val get : t -> int

end

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 5



An even counter: abstract signature

module EvenC = (

struct

type t = int (* the representation type *)

let start = 0

let up x = x + 2

let get x = x

end : EvenCSig)

EvenCSig =

sig

type t (* t is abstract *)

val start : t

val up : t -> t

val get : t -> int

end

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 6



Example: identical abstract types

(A)
module EvenC = (struct

type t = int

let start = 0

let up x = x + 2

let get x = x

end : EvenCSig)

let x = EvenC.start in

send (marshal (x : EvenC.t))

(B)
module EvenC = (struct

type t = int

let start = 0

let up x = x + 2

let get x = x

end : EvenCSig)

let y =

unmarshal (receive () : EvenC.t)

√
succeed

Within a single program, two abstract types with the same definition would be
different (ML generativity). Between programs, that’s not what we want.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 7



Example: concrete to abstract

(A)

...

let x = 3 in

send (marshal (x : int))

(B)
module EvenC = (struct

type t = int

let start = 0

let up x = x + 2

let get x = x

end : EvenCSig)

let y =

unmarshal (receive () : EvenC.t)

× fail

Allowing unmarshal to succeed would break (B)’s invariants.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 8



Example: same external behaviour
Example: but different internal invariants

(A)
module EvenC = (struct

type t = int

let start = 0

let up x = x + 1

let get x = 2 * x

end : EvenCSig)

let x = EvenC.start in

send (marshal (x : EvenC.t))

(B)
module EvenC = (struct

type t = int

let start = 0

let up x = x + 2

let get x = x

end : EvenCSig)

let y =

unmarshal (receive () : EvenC.t)

× fail

Again, success would not respect (B)’s invariants.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 9



Example: same internal invariants

(A)
module EvenC = (struct

type t = int

let start = 0

let up x = 2 + x

let get x = x

end : EvenCSig)

let x = EvenC.start in

send (marshal (x : EvenC.t))

(B)
module EvenC = (struct

type t = int

let start = 0

let up x = x + 2

let get x = x

end : EvenCSig)

let y =

unmarshal (receive () : EvenC.t)

? maybe

Success would require a theorem prover to perform the verification
(unrealistic) or a user-supplied coercion.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 10



Summary of the main cases

Interface Implementation Desired behavior

same same code
√

succeed

same same internal invariants ? maybe

same
same external behaviour
but different internal invariants

× fail

same different external behaviour × fail

different ... × fail

... different representation types × fail

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 11



How do we get the desired behaviour?

• For communication between programs with identical sources, it’s easy to
compare abstract types by their source-code names, e.g. EvenC.t would
mean the same thing in all copies.

• However, for programs that share only some modules, that would be
unsound.

How do we obtain globally meaningful type names?

Solution: we construct them from module hashes.

(A)
...

v : hash(struct ... end : sig ... end).t−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(B)
...

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 12



Solution: hash types

• We can implement them with a cryptographic hash, e.g. md5 (compact
fingerprint yet injective in practice).

• We freely look inside their structure in our typing rules, but never need to
do this in the implementation.

• What exactly do we hash? A good candidate: abstract syntax trees of
module definitions. But module dependencies require care.

(A)
...

v : hash(struct ... end : sig ... end).t−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(B)
...

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 13



1. Compile-time reduction: hash generation

module EvenC =
(

struct type t = int let start = 0 ... end

: sig type t val start : t ... end

)

send (marshal (EvenC.start : EvenC.t))

−→c inlining EvenC

send (marshal (0 : h .t))

where h = hash

(

struct type t = int let start = 0 ... end

: sig type t val start : t ... end

)

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 14



2. Compile-time reduction: module dependency (1/3)
−→c inlining EvenC

module EvenC =








struct type t = int

let start = 0 ... end

: sig type t

val start : t ... end









module CleanC =










struct type s = EvenC.t * bool

let create = (EvenC.start, true) ... end

: sig type s

val create : s ... end











send (marshal (CleanC.create : CleanC.s))

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 15



2. Compile-time reduction: module dependency (2/3)
−→c inlining EvenC

module CleanC =










struct type s = h .t * bool

let create = (0, true) ... end

: sig type s

val create : s ... end











send (marshal (CleanC.create : CleanC.s))

where

h = hash









struct type t = int

let start = 0 ... end

: sig type t

val start : t ... end









Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 16



2. Compile-time reduction: module dependency (2/3)
−→c inlining EvenC

module CleanC =










struct type s = h .t * bool

let create = (0, true) ... end

: sig type s

val create : s ... end











send (marshal (CleanC.create : CleanC.s))

where

h = hash









struct type t = int

let start = 0 ... end

: sig type t

val start : t ... end









Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 17



2. Compile-time reduction: module dependency (3/3)
−→c inlining CleanC

send (marshal ((0, true) : h′.s))

where

h = hash









struct type t = int

let start = 0 ... end

: sig type t

val start : t ... end









h
′ = hash









struct type s = h .t * bool

let create = (0, true) ... end

: sig type s

val create : s ... end









Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 18



3. Compile-time reduction: coloured brackets

module EvenC =
(

struct type t = int let start = 0 ... end

: sig type t val start : t ... end

)

send (marshal (EvenC.start : EvenC.t))

−→c inlining EvenC

send (marshal ([0]h .t
h

: h .t))

where

h = hash

(

struct type t = int let start = 0 ... end

: sig type t val start : t ... end

)

Coloured brackets are adapted from [Zdancewic, Grossman, & Morrisett]

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 19



3. Compile-time reduction: coloured brackets

module EvenC =
(

struct type t = int let start = 0 ... end

: sig type t val start : t ... end

)

send (marshal (EvenC.start : EvenC.t))

−→c inlining EvenC

send (marshal ([0]h .t
h

: h .t))

where

h = hash

(

struct type t = int let start = 0 ... end

: sig type t val start : t ... end

)

Coloured brackets are adapted from [Zdancewic, Grossman, & Morrisett]

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 20



The calculus

• call-by-value lambda-calculus;

• second-class, first-order modules;

• communication and parallel composition;

• marshal and unmarshal;

• hashes in the type grammar:

T ::= ...

| h .t (not in user source code)

• coloured brackets in the expression grammar:

e ::= ...

| [e]T
h

(not in user source code)

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 21



Type equality (E `h T0 == T1)

• singleton kind equations for module typing [Harper & Lillibridge];

• plus hash transparency when inside coloured brackets:

E `h ok

E `h h .t == T
if h = hash

(

struct type t = T ... end

: sig type t ... end

)

Coloured brackets

• determine where hash transparency occurs:

E `h e : T

E `
h
′ [e]T

h
: T

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 22



Theorems

• Type preservation, progress: for compile-time and run-time reduction.
Thanks to brackets, this includes (informally) abstraction preservation.

• Type coincidence: ML type equivalence coincides with unmarshal-time
syntactic comparison of hash types.

• Erasure: after compilation, erasure of all coloured brackets (except in
hashes) yields identical run-time behaviour.

Subtleties: handling dependent signatures and tracking colours.
(We optimise proofs with a rigorous meta-notion of “similar case”.)

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 23



Conclusions and future work

Hashing modules provides a meaningful way of comparing abstract types
that are defined in independently compiled distinct programs: as a result,
the behaviour we sought “just works”.

What’s next?

• ML: multiple type and term fields, polymorphism, functors, nested
modules;

• Beyond: subtyping, coercions and versioning, dynamic binding for local
resources;

• Implementation: Jocaml and Ocaml, applications to safe name servers,
channels, persistent stores.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 24



Theorems in detail...

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 25



Theorem: erasure
After compilation, erasure of all coloured brackets (except in hashes) yields
identical run-time behaviour.

Let erase be the erasure function.

Let −−−→
uncol

be the corresponding run-time reduction relation.

• If nil `ho e:T and e −→ho e
′ then erase(e) −−−→

uncol

61 erase(e′).

• If nil `ho e:T and erase(e) −−−→
uncol

e0

then there exists e′ such that erase(e′) = e0 and e −→>1
ho e′.

As we said, −−−→
uncol

does not preserve typing.

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 26



Theorem: type coincidence
ML type equivalence coincides with unmarshal-time syntactic comparison of
hash types.

Consider the following sequence of module definitions:

D. = module U1 = M1:S1 in ...module Un = Mn:Sn in

Let σD be the substitution induced by compilation of the modules.

Suppose that no two modules have the same hash.

Then:

U1:S1, ..., Un:Sn `• T0 == T1 ⇐⇒ σDT0 = σDT1
static typing ⇐⇒ check performed by unmarshal

Leifer, Peskine, Sewell, Wansbrough. “Global abstraction-safe marshalling via hash types” 27


