MPRI Concurrency (course number 2-3) 2004-2005:
m-calculus
9 December 2004

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

9 December 2004

Today'’s plan

e exercises from last week

e review: barbed bisimilarity

e two natural congruences

e a family portrait

e weak barbed congruence and weak labelled bisimilarity correspond

9 December 2004

Weak barbed bisimulation

Recall that a process P has a x, written P | x iff there exists P,
Py, and i such that P = vy.(zu. Py | P;) and x € .

A process P has a r, written Pllz iff there exists P’ such that
P —*Pland P'|z.

A relation R is a If it iIs symmetric and for all
(P.Q)eR

o if P — P/, there exists ' such that Q —* Q" and (P, Q') € R;
o if P|xthen Q| x.

, written =, is the largest such relation.

9 December 2004 2

Two possible equivalences (non-input congruences)

We write “equivalence” for “non input-prefixing congruence”.
Clearly =~ isn't an equivalence: Ty = Tz but — | z(u).ww can distinguish
them. There are two ways of building an equivalence:

O

e Close up at the end: , =°, IS the largest
equivalence included in ~. Concretely, P =° () iff for all contexts C' € £
we have C[P] =~ C[Q]. Check!

e Close up at every step: , =, IS the
largest relation /R such that R i1s a weak barbed bisimulation and an

equivalence. Concretely, = is the largest symmetric relation R such that
forall (P, Q) € R,

—if P — P/, there exists " such that Q —* Q" and (P, Q') €¢ R;
—if P|x then Q| x;
—forall C € &, we have (C[P],C|Q]) € R.

Check!

9 December 2004 3

An extended family portrait

strong
labelled barbed
not an equivalence “bisimilarity” ~
. e “equivalence” ~°
equivalence bisimilarity” ~, |, . . i}
reduction equivalence” ~
) e “congruence” ~°
congruence full bisimilarity” ~, | , . i}
reduction congruence” ~
weak
labelled barbed
not an equivalence “bisimilarity” ~
. e “equivalence” ~°
equivalence bisimilarity” ~, |, . _ i}
reduction equivalence” ~
~ O
“~ | congruence’ =
congruence full bisimilarity” =, | . o~
reduction congruence” =

9 December 2004

A detailed family portrait

VD € £.(D|P],D|[Q]) € R

labelled barbed
~. largest R st
P— P
notan I
equivalence . !
Q-
P|x implies Qlx
~:. largest R st
~: largest R st| p s P/
87 / [s
equivalence 1]:D R ER = .
R R Q-Ey o UP,Q)/ (VD € £.DIP] = D|Q];
Q-5 Q" | Plzimplies Qlz

9 December 2004

What's the difference between =~ and =°?

o ~ C ~°: Yes, trivially.

e ~ D ~°: Not necessarily.

Two difficult results due to Cédric Fournet and Georges Gonthier.

HA

hierarchy of equivalences for asynchronous cacluli”. ICALP 1998. Journal

version:

http://research.microsoft.com/~fournet/papers/a-hierarchy-of-equivalences-for-asynchronous-calculi.pdf

O

—In general they're not the same. =" is not even guaranteed to be a
weak barbed bisimulation:

2,0

Y
Y

P

Q

— But for m-calculus, they coincide.

9 December 2004

Comparing labels and barbs

o
U

1M

~. Yes, easy.

o
U

U

~. Yes, provided we have name matching. The result is subtle.

9 December 2004

Name matching

Motivation: Which context can detect that P —% P'? It's easy to tell P can
output on z; we just check P |z. If we want to test that this transition leads
to P/, we can take the context C' = — | z(u).k | k for k fresh. Now

C[P] —— P’

where P’ Jk.
But how do we detect that the message is y? We could try

C=—|z(u).@lyk) |k
but this risks having the w and the y interact with the process in the hole.

Thus, we introduce a simple new construct called

Reductions: |z = x|.P — P

Labelled transitions: [z = z].P — P

9 December 2004 8

Barbed equivalence is a weak labelled bisimulation

Theorem: =, DO ~.

Proof: Consider P ~ Q and suppose P —— P’. (For simplicity, ignore
structural congruence.)

case o = 7: Then P — P’. By definition, there exists ()’ such that Q —*
Q' and P’ = Q. Thus Q —* Q' as desired.

case o = zy: Let C = — | Ty.k | k, where k is fresh. Then C[P] —— P’
Therefore, there exists @ such that C[Q] —* Q' and P’ ~ @Q’. Since

P’ yk, we have Q' Jik, therefore Q ——*—% "%)/ as desired.

9 December 2004 9

case a =7Ty: Let C = — | z(u).lu=yl.k | k, where k is fresh. Then
C[P] ————— P’. Therefore, there exists Q such that C[Q] —* Q'

and P’ ~ Q'. Since P’ jk, we have Q' jik, therefore) —* NI Q'
as desired.

case a = 7(y) and y ¢ fn(Q): Let

C=—| x(u).(Eu & | Tpeta(p)lu = w].E) %
where k and z are fresh. Then C[P] —— H, ,[P’] where

Hy = vy.(zy | —)
Therefore, there exists Q" such that C|Q] —* Q" and H ,[P'| =~ Q".
Since H ,[P'| }k, we have Q" }k. Thus there exists Q' such that Q" =

C'[Q"l and Q — W) T Q’'. Do we know P’ ~ Q’'?

9 December 2004 10

Exercises for next lecture

1. Since the last lecture, the proof has been fixed by using Jk everywhere.
Prove from the definition of ~ that for P ~ () if Plx then Q{«, and thus
the contrapositive: if () Jx then P }fz.

Answer: Suppose P ~ (). If P|lz then there exists P’ such that P —* P’ and P’|x.
Thus there exists ()’ such that) —* @’ and P’ =~ ()’. Since P'|x, we have ()'||x.
Hence there exists Q" such that)’ —* Q" and Q" |x. Thus Q| x, as desired.

9 December 2004 11

2. The last case of the proof relies on the following lemma: H,, P| ~
H. Q] implies P ~ (), where z ¢ fn(P) U fn(Q). In the updated version
of the proof you will find the definition H, , = vy.(Zy | —).

Hints...
In order to prove this, consider

R ={(P,Q)/ = ¢ fn(P) Ufn(Q) and H. ,[P] ~ H. ,|Q]}.

Our goal (as usual) is to prove that ‘R satisfies the same properties as ~,
and thus deduce that R C ~. Assume (P, Q) € R.

° . Show that P — P’ implies that there exists Q’
such that Q —* Q" and (P, Q') € R.
Answer: Suppose P — P'. Since H. , is an evaluation context, H. ,|P] — H. ,[FP'].
Since H. ,|P] ~ H.,|@)], there exists)" suchthat H. ,[Q)] —* Q" and H. ,[P'] =~ Q".
Since z ¢ fn(Q), these reductions could not be due to any interaction between H. ,
and (), nor can H., itself reduce, thus there exists ()’ such that) —* @’ and
Q" = H.,|Q']. Thus (ignoring structural congruence), (P’, Q') € R, as desired.

o . Show that P |w implies Q) w.
Answer: Suppose P|w. Since z ¢ fn(P), we know that w # z. We distinguish two

S AT I

9 December 2004 12

case w # y: We have P|w implies H. ,|P]lw. Since H.,P| ~ H.,|Q], we have
H. ,|QJw. Since there is no interaction between H. , and () and the former can't
be responsible for the barb because w # z, we have (){w, as desired.

case w = y: We don’'t have H. ,|P]|w since the new binder in H. , prevents the w
from being seen. However, we can let C' = z(u).u(v).k | — where u, k are fresh. By
extrusion we can see C|H. ,|P][{k. Since H. ,|P] ~ H. ,|Q|, we have C'H. ,|P|| ~
CH.,|Q]], thus C[H. ,|Q]k. The only way this can be is if Q{}w, as desired.

It is sufficient to show that (C[P],C|Q]) € R
where C' = vi.(— | S). Hint: try to find a context C’ and name 2’
such that H, [C|P]| ~ C'[H,4[P]] and the same for @ (perhaps
using a labelled bisimilarity since we know ~, C =). You may have

to distinguish between the cases y € w and y ¢ .

Answer: We first need the following lemma, which, holds for all kinds of equivalences.
Lemma (injective renaming): Let p be an injective function on the universe of names.
If P~ () then pP =~ pQ).

Note that this lemma is quite different from a typical “substitution” lemma since p is
not making two names equal that weren’t previously equal. Now returning to the main
problem...

By hypothesis, we know that there exists z, y such that z ¢ fn(P)Ufn(Q) and H. ,[P] ~
H.,|Q|. By injective renaming, we can assume without loss of generality that z is
fresh. As a consequences z ¢ fn(P) U fn(S) U y.w. Let 2’ be fresh. We distinguish

9 December 2004 13

two cases:
case y ¢ w:
H.,[CIP] = vy.(Fy | v (P 9)
=vuw.vy.(2'y| P|S) sincey,z ¢
~ v,z (vy.(zy | P) | 2(y).(2'y | S)) since z ¢ fn(P) U fn(S) U y,0
= v, z.(H. |P] | 2(y)-(z'y | 5))
Thus we let C' = vt z.(— | 2(y).(2'y | S))
case y € w: Then y, v = w for some v. Now
H.,|CP|| = vy.(zy [vd.(P | 5))
vy.(zy) |vw,z.(Zy | P|S) since z ¢ fn(P) U fn(S)
~ vy.(zy) | vi,z.(vy.(zy | P) | 2(y).(2'y | S)) since z ¢ fn(P) U fn(S) U@
= vy.(zy) | v, 2.(H.y [P] | 2(y).('y | 9))

Thus we let C' = vy.(zy) | v, 2.(— | 2(y).(2'y | 9))

9 December 2004 14

