
.

Concurrency 4 = CCS (2/4)

Scoping, weak and strong bisimulation

Pierre-Louis Curien (CNRS – Université Paris 7)

MPRI concurrency course 2004/2005 with :

Jean-Jacques Lévy (INRIA-Rocquencourt)
Eric Goubault (CEA)

James Leifer (INRIA - Rocq)
Catuscia Palamidessi (INRIA - Futurs)

—————
(http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004)

1

.

Scope and recursion (1/4)

Consider (example of Frank Valencia) (we write µ for µ · 0) :

P1 = (let K = a|(νa)((a · test)|K) in K)

Applying the rules, we have (two unfoldings) :

(a|(νa)((a · test)|a|(νa)((a · test)|K))
τ→ (a|(νa)(test)0|(νa)((a · test)|K))

(a|(νa)((a · test)|K))
τ→ (νa)(test |0|(νa)((a · test)|K))

K
τ→ (νa)(test)0|(νa)((a · test)|K))

What about P2 = (let K = a|(νb)((b · test)|K) in K) : the double enfolding
yields a|(νb)((b · test)|a|(νb)((b · test)|K), which is deadlocked, while the
first definition of K allows to perform test (notice the capture of a).

2

.

Scope and recursion (2/4)

P1 = (let K = a|(νa)((a · test)|K) in K)

P2 = (let K = a|(νb)((b · test)|K) in K)

There is a tension :

- These two definitions have a different behaviour.

- The identity of bounded names should be irrelevant (α-conversion).
So let us rename a in the first definition :

P3 = (let K = a|(νb)((b · test)|K[a ← b]) in K)

But what is K[a ← b] ? Well, we argue that it is not K, it is a
substitution or (explicit) relabelling which is delayed until K is replaced
by its actual definition (cf. e.g. λ-calculus with term metavariables and
explicit substitutions)

So, all is well, we maintain both α-conversion (P1 = P3) and the
difference of behaviour (P1 #= P2), and the tension is resolved . . .

3

.

Scope and recursion (3/4)

In an α-conversion (νx)P = (νy)P [x ← y], y should be chosen free in P .
BUT when substitution arrives on K, how do I know whether y is free in
K ? For example, in

P4 = (let K = b|(νa)((a · test)|K) in K)

b is free in K, but I cannot know it from just looking at the subterm
(νa)((a · test)|K).

Clean solution (definitions with parameters) : maintain the list of free
variables of a constant K, and hence write constants always in the form
K($x) and make sure that in a definition let K($a = P in Q we have
FV (P) ⊆ $a. (cf. syntax adopted in Milner’s π-calculus book).

And now, relabelling can be omitted from syntax, i.e. left implicit, since,
e.g. K(a, b)[a ← c] = K(c, b).

4

.

Scope and recursion (4/4)
A “real” example : Consider the following linking operation :

P & Q = (νi′, z′, d′)(P [i, z, d ← i′, z′, d′]|Q[inc, zero,dec ← i′, z′, d′])

In particular

C(inc, zero,dec, z, d) & C(inc, zero,dec, z, d)

= (νi′, z′, d′)(C(inc, zero,dec, z′, d′)|C(i′, z′, d′, z, d))

A (unbounded) counter :

C = inc · (C & C) + dec · D D = d · C + z · B B = inc · (C & B) + zero · B
An example of execution :

B
zero→ B

inc→ (C & B)
inc→ ((C & C) & B)

dec→ ((D & C) & B)
τ→ ((C & D) & B)

dec→ ((D & D) & B)
τ→ ((D & B) & B)

τ→ ((B & B) & B)
inc→ ((C & B) & B · · ·

Exercice 1 Show that there is no derivation B
τ→" inc→ τ→" dec→ τ→" dec→ .

5

.

Bisimilarity is not trace equivalence

As automata P = a · (b + c) and Q = a · b + a · c recognize the same
language {ab, ac} of traces.

As processes, they are not bisimilar (Q does not even simulate P). P

keeps the choice after performing a, Q not.

Think of a as inserting 40 cents, b as getting tea and c as getting
coffee. Imagine a vending machine with a slot for a and two buttons for
b and c. The machine allows you to press b (resp. c) only if action b

(resp. c) can be performed. As a customer you will prefer P .

6

.

Strucural equivalence

Exercice 2 Show that structural equivalence ≡ is included in (strong)
bisimulation ∼.

7

.

Variations on bisimilarity (1/3)

A bisimulation up to ∼ is a relation R such that for all P, Q :

PR Q ⇒ ∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ Q

µ→ Q′ and P ′ ∼ R ∼ Q′) and conversely

If R is strong bisimulation up to ∼, then R ⊆∼.

Exercice 3 Prove it.

Hence, to show P ∼ Q, it is enough to find a bisimulation up to ∼ such
that P R Q.

8

.

Variations on bisimilarity (2/3)

As an example, take

Sem = P · Sem′

Sem′ = V · Sem

Sem0 = P · Sem1

Sem1 = P · Sem2 + V · Sem0

Sem2 = P · Sem3 + V · Sem1

Sem3 = V · Sem2

Then a (strong) bisimulation up-to witnessing that
(Sem|Sem|Sem) ∼ Sem0 is, say :

{ ((Sem|Sem|Sem) , Sem0)

((Sem′|Sem|Sem) , Sem1)

((Sem′|Sem|Sem′) , Sem2)

((Sem′|Sem′|Sem′) , Sem3) }

9

.

Variations on bisimilarity (3/3)

For any LTS, one can change Act to Act" (words of actions), setting

P
s→ Q if

8<: s = µ1 . . . µn and

(∃P1, . . . , Pn (Pn = Q and P
µ1→ P1 . . .

µn→ Pn))

This yields a new LTS, call it LTS" (the path LTS) . Then the notions
of LTS and of LTS" bisimulation coincide.

10

.

From strong to weak bisimulation (1/2)
Take the LTS of CCS, with Act = L ∪ L ∪ {tau}, call it Strong. The
bisimulation for this system is called strong bisimulation.

Take Strong" (its path LTS).

Consider the following LTS, call it Weak†, with the same set of actions
as Strong" :

P
s⇒ Q if and only if (∃ t P

t→ Q and ŝ = t̂)

where the function s ,→ ŝ is defined as follows :

ε̂ = ε τ̂ = ε α̂ = α ŝµ = ŝµ̂

The idea is that weak bisimulation is bisimulation with possibly τ

actions intersperced.

Let Weak be the LTS on Act whose transitions are P
µ⇒ Q, that is :

P
τ⇒ Q if and only if P

τ→"
Q P

α⇒ Q if and only if P
τ→" α→ τ→"

Q

Then one has Weak† = Weak".

11

.

From strong to weak bisimulation (2/2)

None of the three equivalent definition of weak bisimulation (Weak,
Weak†, Weak") is practical. The following is a fourth, equivalent, and
more tractable version :

A weak bisimulation is a relation R such that

P R Q ⇒ ∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ Q

µ⇒ Q′ and P ′ R Q′) and conversely

Two processes are weakly bisimilar if (notation P ≈ Q) if there exists a
weak bisimulation R such that P R Q.

12

.

Bisimulation is a congruence (1/6)

We define ∼∗ inductively by the following rules :

P ∼ Q

P ∼∗ Q

P ∼∗ Q

Q ∼∗ P

P ∼∗ Q Q ∼∗ R

P ∼∗ R

∀ i ∈ I Pi ∼∗ Qi

Σi∈Iµi · Pi ∼∗ Σi∈Iµi · Qi

P1 ∼∗ Q1 P2 ∼∗ Q2

P1 | P2 ∼∗ Q1 | Q2

P ∼∗ Q

(νa)P ∼∗ (νa)Q

Clearly ∼⊆∼∗ and ∼∗ is a congruence, by construction. It is enough to
show that ∼∗ is a bisimulation (since then ∼ =∼∗ is a congruence).

13

.

Bisimulation is a congruence (2/6)

Proof by rule induction. We look at case P1 | P2 ∼∗ Q1 | Q2 :

1. (backward) decomposition phase : if P1|P2
µ→ P ′, then P ′ = P ′

1|P ′
2 and

three cases may occur, corresponding to the three rules for parallel
composition in the labelled operational semantics. We only consider the

synchronisation case. If P1
a→ P ′

1 and P2
a→ P ′

2, then

2. by induction there exists Q′
1 such that Q1

a→ Q′
1 and P ′

1 ∼∗ Q′
1, and

there exists Q′
2 such that Q2

a→ Q′
2 and P ′

2 ∼∗ Q′
2.

3. Hence (forward phase) we have Q1 | Q2
τ→ Q′

1 | Q′
2 and

P ′
1 | P ′

2 ∼∗ Q′
1 | Q′

2.

14

.

Bisimulation is a congruence (3/6)

≈ is also a congruence (for our choice of language with guarded sums).

Same proof technique : define ≈∗. For the forward phase, we use the
following properties, which are true :

(P
µ⇒ P ′) ⇒ ((νa)P

µ⇒ (νa)Q′)
(Q1

µ⇒ Q′
1) ⇒ (Q1 | Q2

µ⇒ Q′
1 | Q2)

(Q1
a⇒ Q′

1 and Q2
a⇒ Q′

2) ⇒ (Q1 | Q2
τ⇒ Q′

1 | Q′
2)

15

.

Bisimulation is a congruence (4/6)

Consider CCS with prefix and sums instead of guarded sums, i.e.,
replace Σi∈Iµi · Pi by two constructs Σi∈IPi and a · P , with rules

Pi
µ→ P ′

i

Σi∈IPi
µ→ P ′

i µ · P µ→ P

Then strong bisimulation is a congruence, and weak bisimulation is not
a congruence.

The problem does not arise because more processes (like P + (Q|R)) are
allowed.

16

.

Bisimulation is a congruence (5/6)

What goes wrong is the sum rule ? For the forward phase, we would
need the property :

(Q1
µ⇒ Q′

1) ⇒ (Q1 + Q2
µ⇒ Q′

1)

which does not hold (take µ = τ and Q′
1 = Q1).

Counter-example : τ · a · 0 + b · 0 #≈ a · 0 + b · 0

17

.

Bisimulation is a congruence (6/6)

We have left out recursion, but even so we have :

Proposition : For any process S (possibly with recursive definitions) with
free variables in $K :

∀ $Q, $Q′ ($Q ≈ $Q′ ⇒ S[$K ← $Q] ≈ S[$K ← $Q′])

The proof is by induction on the size of S. The non-recursion cases
follow by congruence. For the recursive definition case
S = let $L = $P in Lj , the trick is to unfold :

S[$K ← $Q] =def let $L = $P [$K ← $Q] in Lj

≈ Pj [$K ← $Q][$L ← (let $L = $P in $L)]

≈ind Pj [$K ← $Q′][$L ← (let $L = $P in $L)]

≈ S[$K ← $Q′]

18

