Concurrency 4 = CCS (2/4)

Scoping, weak and strong bisimulation

Pierre-Louis Curien (CNRS — Université Paris 7)

MPRI concurrency course 2004 /2005 with :

Jean-Jacques Lévy (INRIA-Rocquencourt)
Eric Goubault (CEA)
James Leifer (INRIA - Rocq)
Catuscia Palamidessi (INRIA - Futurs)

(http://pauillac.inria.fr/"leifer/teaching/mpri-concurrency-2004)

Scope and recursion (1/4)

Consider (example of Frank Valencia) (we write p for p-0) :

P = (let K =a|(va)((a- test)|K) in K)

Applying the rules, we have (two unfoldings) :

(@|(va)((a - test)|a|(va)((a - test)|K)) = (a|(va)(test)0|(va)((a - test)|K))

(@|(va)((a - test)|K)) = (va)(test|0|(va)((a - test)|K))

K 5 (va)(test)0|(va)((a - test)|K))

What about P> = (let K =al|(vb)((b- test)|K) in K) : the double enfolding
yields a|(vb)((b - test)|a|(vb)((b - test)|K), which is deadlocked, while the
first definition of K allows to perform test (notice the capture of a).

Scope and recursion (2/4)

P = (let K =a|(va)((a- test)|K) in K)
Py = (let K =a|(vb)((b- test)|K) in K)

There is a tension :

- These two definitions have a different behaviour.

- The identity of bounded names should be irrelevant (a-conversion).
So let us rename a in the first definition :

Ps = (let K =a|(vb)((b- test)|K[a < b]) in K)

But what is K[a < b] 7 Well, we argue that it is not K, it is a
substitution or (explicit) relabelling which is delayed until K is replaced
by its actual definition (cf. e.g. A-calculus with term metavariables and
explicit substitutions)

So, all is well, we maintain both a-conversion (P, = P3) and the
difference of behaviour (P} # P»), and the tension is resolved ...

Scope and recursion (3/4)

In an a-conversion (vx)P = (vy)P[x < y], y should be chosen free in P.
BUT when substitution arrives on K, how do I know whether y is free in
K 7?7 For example, in

Py = (let K = b|(va)((a - test)|K) in K)

b is free in K, but I cannot know it from just looking at the subterm
(va)((a - test)|K).

Clean solution (definitions with parameters) : maintain the list of free
variables of a constant K, and hence write constants always in the form
K(Z) and make sure that in a definition let K(a = P in (Q we have
FV(P) C a. (cf. syntax adopted in Milner's w-calculus book).

And now, relabelling can be omitted from syntax, i.e. left implicit, since,
e.g. K(a,b)la «+ c] = K(c,b).

Scope and recursion (4/4)

A ‘“real’ example : Consider the following linking operation :
P~Q= i,z ,d)(Pli,zd«—1i, 2 d]|Qlinc,zero,dec «— i, 2, d'])
In particular

C(inc,zero,dec, z,d) —~ C(inc, zero, dec, z, d)
= (vi’, 2',d")(C(inc, zero,dec, 2’,d")|C(i', 2", d', z,d))

A (unbounded) counter :
C=inc-(C ~C)+dec-D D=d-C+%z-B B=inc-(C —~ B)+zero-B

An example of execution :

B8 B IS (€ ~B) T (C~0)~B) F (D~0)~B)

(€ ~D)~B) ¥ (D ~D)~B) & (D~ B) ~ B)
C~B)~B-

(B~ B)~B) "™ (

=
= (

VS i N

Exercice 1 Show that there is no derivation B =~ ¢ .~ dgc N dgc_

Bisimilarity i1s not trace equivalence

As automata P=a-(b+c¢) and Q =a-b+ a-c recognize the same
language {ab, ac} of traces.

As processes, they are not bisimilar (QQ does not even simulate P). P
keeps the choice after performing a, Q not.

Think of a as inserting 40 cents, b as getting tea and ¢ as getting
coffee. Imagine a vending machine with a slot for a and two buttons for
b and c. The machine allows you to press b (resp. ¢) only if action b
(resp. ¢) can be performed. As a customer you will prefer P.

Strucural equivalence

EXxercice 2 Show that structural equivalence = is included in (strong)
bisimulation ~.

Variations on bisimilarity (1/3)
A bisimulation up to ~ is a relation 'R such that for all P,Q
PRQ=Vu,P (PLP =3Q" Q%5 Q and P ~R ~ Q') and conversely

If R is strong bisimulation up to ~, then R C~.

Exercice 3 Prove it.

Hence, to show P ~ @, it is enough to find a bisimulation up to ~ such
that PR Q.

Variations on bisimilarity (2/3)

AS an example, take

Sem =P .- Sem Sem® = P . Sem?!

Sem’ =V - Sem Sem! =P .-Sem? +V - Sem®
Sem? =P - Sem? + V- Sem!
Sem3 =V - Sem?

Then a (strong) bisimulation up-to witnessing that
(Sem|Sem|Sem) ~ Sem" is, say :

{ ((Sem|Sem|Sem) , Sem")
((Sem’|Sem|Sem) , Sem?')
((Sem’|Sem|Sem’) , Sem?)
((Sem'|Sem’|Sem’) , Sem?) }

Variations on bisimilarity (3/3)

For any LTS, one can change Act to Act* (words of actions), setting

S= 1 ...M4n and

P5Qif pa 7
(3P,....,P, (Ph=Qand P2 P;... 3 P,))

This yields a new LTS, call it LTS* (the path LTS) . Then the notions
of LTS and of LTS* bisimulation coincide.

10

From strong to weak bisimulation (1/2)

Take the LTS of CCS, with Act = LU LU {tau}, call it Strong. The
bisimulation for this system is called strong bisimulation.

Take Strong”* (its path LTS).

Consider the following LTS, call it Weak', with the same set of actions
as Strong™* :

P=Qifandonly if (3t P -5 Q and §=1)
where the function s — s is defined as follows :
E=€ T=€¢ a=a su=35}

The idea is that weak bisimulation is bisimulation with possibly =
actions intersperced.

Let Weak be the LTS on Act whose transitions are P £ @, that is :

*

PZ Qifandonlyif P~ Q P=2Qifandonlyif P 5 557 Q
Then one has Weak! = Weak*.

11

From strong to weak bisimulation (2/2)

None of the three equivalent definition of weak bisimulation (Weak,
Weak!, Weak*) is practical. The following is a fourth, equivalent, and

more tractable version :

A weak bisimulation is a relation R such that

PRQ=Vu,P (PL P =3Q Q2L Q' and P’ RQ’) and conversely

Two processes are weakly bisimilar if (notation P ~ Q) if there exists a
weak bisimulation R such that PR Q.

12

Bisimulation is a congruence (1/6)

We define ~* inductively by the following rules :

P~ Q P ~*Q P~*Q Q~"R
P ~*Q Q ~* P P~*R
\V/iEIPiN*QZ' Pr ~* Q1 Py ~* Q2 P ~*Q
2ierti - Py ~" Yierpi - Qi Py | Py~ Q1] Q2 (va)P ~* (va)Q

Clearly ~C~* and ~™ is a congruence, by construction. It is enough to
show that ~* is a bisimulation (since then ~ =~* is a congruence).

13

Bisimulation is a congruence (2/6)

Proof by rule induction. We look at case P | P> ~* Q1 | Q2 :

1. (backward) decomposition phase : if Pi|P> X P! then P! = P{|P} and
three cases may occur, corresponding to the three rules for parallel
composition in the labelled operational semantics. We only consider the

synchronisation case. If P; = P{ and P» a, P}, then

2. by induction there exists @/ such that Q1 = @/ and P} ~* @/, and
there exists Q) such that Q2 = Q) and Pj ~* Qb.

3. Hence (forward phase) we have Q1 | Q2 = Q) | Q5 and
Pl | Py ~* Q7 | Q.

14

Bisimulation is a congruence (3/6)

~ is also a congruence (for our choice of language with guarded sums).

Same proof technique : define =~*™. For the forward phase, we use the
following properties, which are true :

(PEP) = (wa)P2Z va)Q)

) = EQHQQ—%QUQz)
and Q2 = Q) = (Q1]1Q2= Q) 1Q%)

15

Bisimulation is a congruence (4/6)

Consider CCS with prefix and sums instead of guarded sums, i.e.,
replace X;crp; - P; by two constructs ;-7 FP; and a - P, with rules

p, 5 p

7

Yier P 5 P! p-PLP

Then strong bisimulation is a congruence, and weak bisimulation is not
a congruence.

The problem does not arise because more processes (like P + (Q|R)) are
allowed.

16

Bisimulation is a congruence (5/6)

What goes wrong is the sum rule? For the forward phase, we would
need the property :

@ 5Q) = (Qi+Q25Q)

which does not hold (take yu =7 and Q) = Q1).

Counter-example : 7-a-04+b-0%a-0+0b-0

17

Bisimulation is a congruence (6/6)

We have left out recursion, but even so we have :

Proposition : For any process S (possibly with recursive definitions) with
free variables in K :

- — —

V3Q,Q (Q~Q' = SIK «— Q] ~ S[K — Q")

The proof is by induction on the size of §. The non-recursion cases
follow by congruence. For the recursive definition case
S =let L = P in L;, the trick is to unfold :

SIK — Q] =qef letL=

~ Pj|[K «— Q|[L « (let L = P in L)]
~ing PilK «— Q'|[L « (let L = P in L)]
S[[? — _)/]

18

