
.

Concurrency 4 = CCS (2/4)

Scoping, weak and strong bisimulation

Pierre-Louis Curien (CNRS – Université Paris 7)

MPRI concurrency course 2004/2005 with :

Jean-Jacques Lévy (INRIA-Rocquencourt)

Eric Goubault (CEA)

James Leifer (INRIA - Rocq)

Catuscia Palamidessi (INRIA - Futurs)

—————

(http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004)

1

.

Scope and recursion (1/4)

Consider (example of Frank Valencia) (we write µ for µ · 0) :

P1 = (let K = a|(νa)((a · test)|K) in K)

Applying the rules, we have (two unfoldings) :

(a|(νa)((a · test)|a|(νa)((a · test)|K))
τ→ (a|(νa)(test)0|(νa)((a · test)|K))

(a|(νa)((a · test)|K))
τ→ (νa)(test |0|(νa)((a · test)|K))

K
τ→ (νa)(test)0|(νa)((a · test)|K))

What about P2 = (let K = a|(νb)((b · test)|K) in K) : the double enfolding

yields a|(νb)((b · test)|a|(νb)((b · test)|K), which is deadlocked, while the

first definition of K allows to perform test (notice the capture of a).

2

.

Scope and recursion (2/4)

P1 = (let K = a|(νa)((a · test)|K) in K)

P2 = (let K = a|(νb)((b · test)|K) in K)

There is a tension :

- These two definitions have a different behaviour.

- The identity of bounded names should be irrelevant (α-conversion).

So let us rename a in the first definition :

P3 = (let K = a|(νb)((b · test)|K[a ← b]) in K)

But what is K[a ← b] ? Well, we argue that it is not K, it is a

substitution or (explicit) relabelling which is delayed until K is replaced

by its actual definition (cf. e.g. λ-calculus with term metavariables and

explicit substitutions)

So, all is well, we maintain both α-conversion (P1 = P3) and the

difference of behaviour (P1 �= P2), and the tension is resolved . . .

3

.

Scope and recursion (3/4)

In an α-conversion (νx)P = (νy)P [x ← y], y should be chosen free in P .

BUT when substitution arrives on K, how do I know whether y is free in

K ? For example, in

P4 = (let K = b|(νa)((a · test)|K) in K)

b is free in K, but I cannot know it from just looking at the subterm

(νa)((a · test)|K).

Clean solution (definitions with parameters) : maintain the list of free

variables of a constant K, and hence write constants always in the form

K(�x) and make sure that in a definition let K(�a = P in Q we have

FV (P) ⊆ �a. (cf. syntax adopted in Milner’s π-calculus book).

And now, relabelling can be omitted from syntax, i.e. left implicit, since,

e.g. K(a, b)[a ← c] = K(c, b).

4

.

Scope and recursion (4/4)

A “real” example : Consider the following linking operation :

P � Q = (νi′, z′, d′)(P [i, z, d ← i′, z′, d′]|Q[inc, zero,dec ← i′, z′, d′])

In particular

C(inc, zero,dec, z, d) � C(inc, zero,dec, z, d)

= (νi′, z′, d′)(C(inc, zero,dec, z′, d′)|C(i′, z′, d′, z, d))

A (unbounded) counter :

C = inc · (C � C) + dec · D D = d · C + z · B B = inc · (C � B) + zero · B
An example of execution :

B
zero→ B

inc→ (C � B)
inc→ ((C � C) � B)

dec→ ((D � C) � B)

τ→ ((C � D) � B)
dec→ ((D � D) � B)

τ→ ((D � B) � B)

τ→ ((B � B) � B)
inc→ ((C � B) � B · · ·

Exercice 1 Show that there is no derivation B
τ→� inc→ τ→� dec→ τ→� dec→ .

5

.

Bisimilarity is not trace equivalence

As automata P = a · (b + c) and Q = a · b + a · c recognize the same

language {ab, ac} of traces.

As processes, they are not bisimilar (Q does not even simulate P). P

keeps the choice after performing a, Q not.

Think of a as inserting 40 cents, b as getting tea and c as getting

coffee. Imagine a vending machine with a slot for a and two buttons for

b and c. The machine allows you to press b (resp. c) only if action b

(resp. c) can be performed. As a customer you will prefer P .

6

.

Strucural equivalence

Exercice 2 Show that structural equivalence ≡ is included in (strong)

bisimulation ∼.

7

.

Variations on bisimilarity (1/3)

A bisimulation up to ∼ is a relation R such that for all P, Q :

PR Q ⇒ ∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ Q

µ→ Q′ and P ′ ∼ R ∼ Q′) and conversely

If R is strong bisimulation up to ∼, then R ⊆∼.

Exercice 3 Prove it.

Hence, to show P ∼ Q, it is enough to find a bisimulation up to ∼ such

that P R Q.

8

.

Variations on bisimilarity (2/3)

As an example, take

Sem = P · Sem′

Sem′ = V · Sem

Sem0 = P · Sem1

Sem1 = P · Sem2 + V · Sem0

Sem2 = P · Sem3 + V · Sem1

Sem3 = V · Sem2

Then a (strong) bisimulation up-to witnessing that

(Sem|Sem|Sem) ∼ Sem0 is, say :

{ ((Sem|Sem|Sem) , Sem0)

((Sem′|Sem|Sem) , Sem1)

((Sem′|Sem|Sem′) , Sem2)

((Sem′|Sem′|Sem′) , Sem3) }

9

.

Variations on bisimilarity (3/3)

For any LTS, one can change Act to Act� (words of actions), setting

P
s→ Q if

8<
:

s = µ1 . . . µn and

(∃P1, . . . , Pn (Pn = Q and P
µ1→ P1 . . .

µn→ Pn))

This yields a new LTS, call it LTS� (the path LTS) . Then the notions

of LTS and of LTS� bisimulation coincide.

10

.

From strong to weak bisimulation (1/2)

Take the LTS of CCS, with Act = L ∪ L ∪ {tau}, call it Strong. The

bisimulation for this system is called strong bisimulation.

Take Strong� (its path LTS).

Consider the following LTS, call it Weak†, with the same set of actions

as Strong� :

P
s⇒ Q if and only if (∃ t P

t→ Q and ŝ = t̂)

where the function s �→ ŝ is defined as follows :

ε̂ = ε τ̂ = ε α̂ = α ŝµ = ŝµ̂

The idea is that weak bisimulation is bisimulation with possibly τ

actions intersperced.

Let Weak be the LTS on Act whose transitions are P
µ⇒ Q, that is :

P
τ⇒ Q if and only if P

τ→�
Q P

α⇒ Q if and only if P
τ→� α→ τ→�

Q

Then one has Weak† = Weak�.

11

.

From strong to weak bisimulation (2/2)

None of the three equivalent definition of weak bisimulation (Weak,

Weak†, Weak�) is practical. The following is a fourth, equivalent, and

more tractable version :

A weak bisimulation is a relation R such that

P R Q ⇒ ∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ Q

µ⇒ Q′ and P ′ R Q′) and conversely

Two processes are weakly bisimilar if (notation P ≈ Q) if there exists a

weak bisimulation R such that P R Q.

12

.

Bisimulation is a congruence (1/6)

We define ∼∗ inductively by the following rules :

P ∼ Q

P ∼∗ Q

P ∼∗ Q

Q ∼∗ P

P ∼∗ Q Q ∼∗ R

P ∼∗ R

∀ i ∈ I Pi ∼∗ Qi

Σi∈Iµi · Pi ∼∗ Σi∈Iµi · Qi

P1 ∼∗ Q1 P2 ∼∗ Q2

P1 | P2 ∼∗ Q1 | Q2

P ∼∗ Q

(νa)P ∼∗ (νa)Q

Clearly ∼⊆∼∗ and ∼∗ is a congruence, by construction. It is enough to

show that ∼∗ is a bisimulation (since then ∼ =∼∗ is a congruence).

13

.

Bisimulation is a congruence (2/6)

Proof by rule induction. We look at case P1 | P2 ∼∗ Q1 | Q2 :

1. (backward) decomposition phase : if P1|P2
µ→ P ′, then P ′ = P ′

1|P ′
2 and

three cases may occur, corresponding to the three rules for parallel

composition in the labelled operational semantics. We only consider the

synchronisation case. If P1
a→ P ′

1 and P2
a→ P ′

2, then

2. by induction there exists Q′
1 such that Q1

a→ Q′
1 and P ′

1 ∼∗ Q′
1, and

there exists Q′
2 such that Q2

a→ Q′
2 and P ′

2 ∼∗ Q′
2.

3. Hence (forward phase) we have Q1 | Q2
τ→ Q′

1 | Q′
2 and

P ′
1 | P ′

2 ∼∗ Q′
1 | Q′

2.

14

.

Bisimulation is a congruence (3/6)

≈ is also a congruence (for our choice of language with guarded sums).

Same proof technique : define ≈∗. For the forward phase, we use the

following properties, which are true :

(P
µ⇒ P ′) ⇒ ((νa)P

µ⇒ (νa)Q′)

(Q1
µ⇒ Q′

1) ⇒ (Q1 | Q2
µ⇒ Q′

1 | Q2)

(Q1
a⇒ Q′

1 and Q2
a⇒ Q′

2) ⇒ (Q1 | Q2
τ⇒ Q′

1 | Q′
2)

15

.

Bisimulation is a congruence (4/6)

Consider CCS with prefix and sums instead of guarded sums, i.e.,

replace Σi∈Iµi · Pi by two constructs Σi∈IPi and a · P , with rules

Pi
µ→ P ′

i

Σi∈IPi
µ→ P ′

i µ · P µ→ P

Then strong bisimulation is a congruence, and weak bisimulation is not

a congruence.

The problem does not arise because more processes (like P + (Q|R)) are

allowed.

16

.

Bisimulation is a congruence (5/6)

What goes wrong is the sum rule ? For the forward phase, we would

need the property :

(Q1
µ⇒ Q′

1) ⇒ (Q1 + Q2
µ⇒ Q′

1)

which does not hold (take µ = τ and Q′
1 = Q1).

Counter-example : τ · a · 0 + b · 0 �≈ a · 0 + b · 0

17

.

Bisimulation is a congruence (6/6)

We have left out recursion, but even so we have :

Proposition : For any process S (possibly with recursive definitions) with

free variables in �K :

∀ �Q, �Q′ (�Q ≈ �Q′ ⇒ S[�K ← �Q] ≈ S[�K ← �Q′])

The proof is by induction on the size of S. The non-recursion cases

follow by congruence. For the recursive definition case

S = let �L = �P in Lj , the trick is to unfold :

S[�K ← �Q] =def let �L = �P [�K ← �Q] in Lj

≈ Pj [�K ← �Q][�L ← (let �L = �P in �L)]

≈ind Pj [�K ← �Q′][�L ← (let �L = �P in �L)]

≈ S[�K ← �Q′]

18

