
MPRI Concurrency (course number 2-3) 2004-2005:
π-calculus

25 November 2004

http://pauillac.inria.fr/∼leifer/teaching/mpri-concurrency-2004/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

25 November 2004 0

Today’s plan

• exercises from last week

• data structures

• coding definitions in terms of replication

• bisimulation theorems

25 November 2004 1

Adding sum

P ::= M sum
P | P parallel (par)
νx.P restriction (new) (x binds in P)
!P replication (bang)

M ::= xy.P output
x(y).P input (y binds in P)
M + M sum
0

Changes:

• structural congruence: + is associative and commutative with identity 0.

• reduction: (xy.P + M) | (x(u).Q + N) −→ P | {u/y}Q.

• labelled transition: M + xy.P + N
xy
−→ P

M + x(y).P + N
xz
−→ {y/z}P

25 November 2004 2

Process abstractions

We don’t need CCS-style “definitions” for infinite behaviour since we have
replication, !P , as shown later. Nonetheless, they are convenient. In π-
calculus, we call them process abstractions:

F = (u1, ..., uk).P

Instantiation takes an abstraction and a vector of names and gives back a
process:

F 〈x1, ..., xk〉 = {x1/u1, ..., xk/uk}P

25 November 2004 3

Booleans

In Ocaml,

type bool = True | False;;

let cases b t f = match b with True -> t | False -> f;;

let not b = cases b False True;;

In π-calculus,

True = (l).l(t, f).t

False = (l).l(t, f).f

cases(P, Q) = (l).νt.νf.l〈t, f〉.(t.P + f.Q)

not = (l, k).cases(False〈k〉,True〈k〉)〈l〉

Example: show that

νl.(True〈l〉 | not〈l, k〉) −→∗ False〈k〉

25 November 2004 4

From linear to replicated data

Can we reuse a boolean? No...

Example: show that we don’t have

νl.(True〈l〉 | not〈l, k0〉 | not〈l, k1〉) −→
∗ False〈k0〉 | False〈k1〉

Why? After we use True〈l〉 once, we “exhaust” it. The solution is to use
replication:

True ′ = (l).!l(t, f).t

False ′ = (l).!l(t, f).f

25 November 2004 5

Lists

In Ocaml,

type ’a list = Nil | Cons of ’a * ’a list;;

let cases xs n c =

match xs with Nil -> n | Cons (y, ys) -> c y ys;;

In π-calculus,

Nil = (l).!l(n, c).n

Cons(H, T) = (l).νh, t.(!l(n, c).c〈h, t〉 | H〈h〉 | T 〈t〉)

cases(P, F) = (l).νn, c.(l〈n, c〉 | (n.P + c(h, t).F 〈h, t〉))

copy = (l, m).cases(Nil〈m〉,
(h, t).νt′.(!m(n, c).c〈h, t′〉 | copy〈t, t′〉)

)〈l〉

Example: show that for all lists L made from Nil and Cons(−,−),

νl.(L〈l〉 | copy〈l, m〉) ≈ L〈m〉

Note that it’s cheating to use copy recursively...
25 November 2004 6

Interlude: encoding recursive definitions in terms of
replication

Consider the recursive abstraction (“definition” in CCS):

F = (~x).P

where P may well contain recursive calls to F of the form F 〈~z〉.

We can replace the RHS with the following process abstraction containing
no mention of F :

(~x).νf.(f〈~x〉 | !f (~x).{f/F}P)

provided that f is fresh.

Example: compare the transitions of F 〈u, v〉, where F = (x, y).xy.F 〈y, x〉
to those of its encoding. Notice the extra τ steps.

25 November 2004 7

List append

let rec append xs zs =

cases xs zs (fun y -> fun ys -> Cons(y, append ys zs));;

append = (k, l, m).cases(copy〈l, m〉,
(h, t).νt′.(!m(n, c).c〈h, t′〉 | append〈t, l, t′〉)

)〈k〉

25 November 2004 8

Strong bisimulation

A relation R is a strong bisimulation if for all (P, Q) ∈ R and P
α

−→ P ′, where
bn(α) ∩ fn(Q) = ∅, there exists Q′ such that Q

α
−→ Q′ and (P ′, Q′) ∈ R,

and symmetrically.

P P ′

Q Q′

α

R R

α

Strong bisimilarity ∼ is the largest strong bisimulation.

25 November 2004 9

Bisimulation proofs

Theorem: P ≡ Q implies P ∼ Q.

Can you think of a counterexample to the converse?

Some easy results:

1. P | 0 ∼ P

2. xy.νz.P ∼ νz.xy.P , if z /∈ {x, y}

3. x(y).νz.P ∼ νz.x(y).P , if z /∈ {x, y}

4. !νz.P 6∼ νz.!P for some P

More difficult:

1. νx.P | Q ∼ νx.(P | Q), for x /∈ fn(Q)

2. P ∼ Q implies P | S ∼ Q | S

3. !P | !P ∼ !P

4. !!P ∼ !P
25 November 2004 10

Congruence with respect to parallel

Theorem: P ∼ Q implies P | S ∼ Q | S

Proof: Consider R = {(P | S, Q | S) / P ∼ Q}. If we can show R ⊆ ∼ then
we’re done: if P ∼ Q, then (P | S, Q | S) ∈ R, thus P | S ∼ Q | S.

Claim: R is a bisimulation. Suppose P ∼ Q and P | S
α

−→ P0, where
bn(α) ∩ fn(Q | S) = ∅.

What are the cases to consider?

25 November 2004 11

Congruence with respect to parallel: case analysis

P is solely responsible:

• P
α

−→ P ′ and P0 = P ′ | S and bn(α) ∩ fn(S) = ∅

S is solely responsible:

• S
α

−→ S′ and P0 = P | S′ and bn(α) ∩ fn(P) = ∅

P and S are jointly responsible:

• P
xy
−→ P ′ and S

xy
−→ S′ and P0 = P ′ | S′ and α = τ

• P
xy
−→ P ′ and S

xy
−→ S′ and P0 = P ′ | S′ and α = τ

• P
x(y)
−→ P ′ and S

xy
−→ S′ and P0 = νy.(P ′ | S′) and α = τ and y /∈ fn(S)

• P
xy
−→ P ′ and S

x(y)
−→ S′ and P0 = νy.(P ′ | S′) and α = τ and y /∈ fn(P):

careful!

25 November 2004 12

Congruence with respect to parallel: the tricky case

Case: P
xy
−→ P ′ and S

x(y)
−→ S′ and P0 = νy.(P ′ | S′) and α = τ and

y /∈ fn(P). The following lemmas can help:

1. If P
xy
−→ P ′ and y /∈ fn(P) then P

xy′
−→ {y′/y}P ′.

2. If S
x(y)
−→ S′ and y′ /∈ fn(S) then S

x(y′)
−→ {y′/y}S′.

Now, let y′ be fresh. We can apply both lemmas. By alpha-conversion,
P0 = νy′.({y′/y}P ′ | {y′/y}S′)

Since P ∼ Q, there exists Q′′ such that Q
xy′
−→ Q′′ and {y′/y}P ′ ∼ Q′′.

Since y′ is fresh,

Q | S
τ

−→ νy′.(Q′′ | {y′/y}S′)

Our bisimulation isn’t big enough! Take instead:

R = {(ν~z.(P | S), ν~z.(Q | S)) / P ∼ Q}

25 November 2004 13

Exercises for next lecture

1. I gave an imprecise argument that !νz.P ∼ νz.!P is not generally true.

(a) Make the argument precise by giving a concrete process P and a
sequence of labelled transitions showing that bisimulation doesn’t hold.

(b) Let us say that a process Q has a weak barb b, written Q ⇓ b if Q is
eventually able to output on b, i.e. there exists Q0, Q1, and ~y such that
Q −→∗

ν~y.(bu.Q0 | Q1) with b /∈ ~y.
Find a context C that can distinguish the two processes above, i.e. such
that C[νz.!P] ⇓ b but not C[!νz.P] ⇓ b.

(c) Give an example of a general class of processes P for which the
bisimulation would hold?

25 November 2004 14

2. Recall the encoding of recursive abstractions in terms of replication.

(a) Write the process F 〈x, y〉 in terms of replication, where the abstraction
F is defined as follows:

F = (u, v).u.F 〈u, v〉

(b) Consider the pair of mutually recursive definition

G = (u, v).(u.H〈u, v〉 | k.H〈u, v〉)

H = (u, v).v.G〈u, v〉

Write the process G〈x, y〉 in terms of replication. (Note that we didn’t
discuss the coding of mutually recursive definitions so you have to
invent the technique yourself!)

25 November 2004 15

3. Help the lecturer to get his lists right! Fix my broken result about lists
(corrected in the slides) by showing:

νl.(L〈l〉 | copy〈l, m〉) ≈ L〈m〉

4. Write a process abstraction rev such that rev〈l, m〉 takes the list located
at l and produces a new list at m with the elements reversed. It may help
to consider the definition of rev (and that of the auxiliary function rev’) in
Ocaml:

let rec rev’ xs ys =

match ys with Nil -> xs

| Cons (z,zs) -> rev’ (Cons (z,xs)) zs;;

let rev ys = rev’ Nil ys;;

25 November 2004 16

5. Prove !P | !P ∼ !P . To make the problem easier, replace the labelled
transition rule for replication by the following ones that make the analysis
much easier:

P
α

−→ P ′

!P
α

−→ P ′ | !P
if bn(α) ∩ fn(P) = ∅ (lab-bang-simple)

P
xy
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ (P ′ | P ′′) | !P
(lab-bang-comm)

P
x(y)
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ νy.(P ′ | P ′′) | !P
if y /∈ fn(P) (lab-bang-close)

Furthermore, feel free to use structural congruence (e.g. !P ≡ P | !P)
instead of process equality anywhere you need it in the proof.

25 November 2004 17

