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Today’s plan

• exercises from last week

• data structures

• coding definitions in terms of replication

• bisimulation theorems
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Adding sum

P ::= M sum
P | P parallel (par)
νx.P restriction (new) (x binds in P )
!P replication (bang)

M ::= xy.P output
x(y).P input (y binds in P )
M + M sum
0

Changes:

• structural congruence: + is associative and commutative with identity 0.

• reduction: (xy.P + M) | (x(u).Q + N) −→ P | {u/y}Q.

• labelled transition: M + xy.P + N
xy
−→ P

M + x(y).P + N
xz
−→ {y/z}P
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Process abstractions

We don’t need CCS-style “definitions” for infinite behaviour since we have
replication, !P , as shown later. Nonetheless, they are convenient. In π-
calculus, we call them process abstractions:

F = (u1, ..., uk).P

Instantiation takes an abstraction and a vector of names and gives back a
process:

F 〈x1, ..., xk〉 = {x1/u1, ..., xk/uk}P
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Booleans

In Ocaml,

type bool = True | False;;

let cases b t f = match b with True -> t | False -> f;;

let not b = cases b False True;;

In π-calculus,

True = (l).l(t, f).t

False = (l).l(t, f).f

cases(P, Q) = (l).νt.νf.l〈t, f〉.(t.P + f.Q)

not = (l, k).cases(False〈k〉,True〈k〉)〈l〉

Example: show that

νl.(True〈l〉 | not〈l, k〉) −→∗ False〈k〉
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From linear to replicated data

Can we reuse a boolean? No...

Example: show that we don’t have

νl.(True〈l〉 | not〈l, k0〉 | not〈l, k1〉) −→
∗ False〈k0〉 | False〈k1〉

Why? After we use True〈l〉 once, we “exhaust” it. The solution is to use
replication:

True ′ = (l).!l(t, f).t

False ′ = (l).!l(t, f).f
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Lists

In Ocaml,

type ’a list = Nil | Cons of ’a * ’a list;;

let cases xs n c =

match xs with Nil -> n | Cons (y, ys) -> c y ys;;

In π-calculus,

Nil = (l).!l(n, c).n

Cons(H, T ) = (l).νh, t.(!l(n, c).c〈h, t〉 | H〈h〉 | T 〈t〉)

cases(P, F ) = (l).νn, c.(l〈n, c〉 | (n.P + c(h, t).F 〈h, t〉))

copy = (l, m).cases(Nil〈m〉,
(h, t).νt′.(!m(n, c).c〈h, t′〉 | copy〈t, t′〉)

)〈l〉

Example: show that for all lists L made from Nil and Cons(−,−),

νl.(L〈l〉 | copy〈l, m〉) ≈ L〈m〉

Note that it’s cheating to use copy recursively...
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Interlude: encoding recursive definitions in terms of
replication

Consider the recursive abstraction (“definition” in CCS):

F = (~x).P

where P may well contain recursive calls to F of the form F 〈~z〉.

We can replace the RHS with the following process abstraction containing
no mention of F :

(~x).νf.(f〈~x〉 | !f (~x).{f/F}P )

provided that f is fresh.

Example: compare the transitions of F 〈u, v〉, where F = (x, y).xy.F 〈y, x〉
to those of its encoding. Notice the extra τ steps.
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List append

let rec append xs zs =

cases xs zs (fun y -> fun ys -> Cons(y, append ys zs));;

append = (k, l, m).cases(copy〈l, m〉,
(h, t).νt′.(!m(n, c).c〈h, t′〉 | append〈t, l, t′〉)

)〈k〉
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Strong bisimulation

A relation R is a strong bisimulation if for all (P, Q) ∈ R and P
α

−→ P ′, where
bn(α) ∩ fn(Q) = ∅, there exists Q′ such that Q

α
−→ Q′ and (P ′, Q′) ∈ R,

and symmetrically.

P P ′

Q Q′

α

R R

α

Strong bisimilarity ∼ is the largest strong bisimulation.
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Bisimulation proofs

Theorem: P ≡ Q implies P ∼ Q.

Can you think of a counterexample to the converse?

Some easy results:

1. P | 0 ∼ P

2. xy.νz.P ∼ νz.xy.P , if z /∈ {x, y}

3. x(y).νz.P ∼ νz.x(y).P , if z /∈ {x, y}

4. !νz.P 6∼ νz.!P for some P

More difficult:

1. νx.P | Q ∼ νx.(P | Q), for x /∈ fn(Q)

2. P ∼ Q implies P | S ∼ Q | S

3. !P | !P ∼ !P

4. !!P ∼ !P
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Congruence with respect to parallel

Theorem: P ∼ Q implies P | S ∼ Q | S

Proof: Consider R = {(P | S, Q | S) / P ∼ Q}. If we can show R ⊆ ∼ then
we’re done: if P ∼ Q, then (P | S, Q | S) ∈ R, thus P | S ∼ Q | S.

Claim: R is a bisimulation. Suppose P ∼ Q and P | S
α

−→ P0, where
bn(α) ∩ fn(Q | S) = ∅.

What are the cases to consider?
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Congruence with respect to parallel: case analysis

P is solely responsible:

• P
α

−→ P ′ and P0 = P ′ | S and bn(α) ∩ fn(S) = ∅

S is solely responsible:

• S
α

−→ S′ and P0 = P | S′ and bn(α) ∩ fn(P ) = ∅

P and S are jointly responsible:

• P
xy
−→ P ′ and S

xy
−→ S′ and P0 = P ′ | S′ and α = τ

• P
xy
−→ P ′ and S

xy
−→ S′ and P0 = P ′ | S′ and α = τ

• P
x(y)
−→ P ′ and S

xy
−→ S′ and P0 = νy.(P ′ | S′) and α = τ and y /∈ fn(S)

• P
xy
−→ P ′ and S

x(y)
−→ S′ and P0 = νy.(P ′ | S′) and α = τ and y /∈ fn(P ):

careful!
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Congruence with respect to parallel: the tricky case

Case: P
xy
−→ P ′ and S

x(y)
−→ S′ and P0 = νy.(P ′ | S′) and α = τ and

y /∈ fn(P ). The following lemmas can help:

1. If P
xy
−→ P ′ and y /∈ fn(P ) then P

xy′
−→ {y′/y}P ′.

2. If S
x(y)
−→ S′ and y′ /∈ fn(S) then S

x(y′)
−→ {y′/y}S′.

Now, let y′ be fresh. We can apply both lemmas. By alpha-conversion,
P0 = νy′.({y′/y}P ′ | {y′/y}S′)

Since P ∼ Q, there exists Q′′ such that Q
xy′
−→ Q′′ and {y′/y}P ′ ∼ Q′′.

Since y′ is fresh,

Q | S
τ

−→ νy′.(Q′′ | {y′/y}S′)

Our bisimulation isn’t big enough! Take instead:

R = {(ν~z.(P | S), ν~z.(Q | S)) / P ∼ Q}

25 November 2004 13



Exercises for next lecture

1. I gave an imprecise argument that !νz.P ∼ νz.!P is not generally true.

(a) Make the argument precise by giving a concrete process P and a
sequence of labelled transitions showing that bisimulation doesn’t hold.

(b) Let us say that a process Q has a weak barb b, written Q ⇓ b if Q is
eventually able to output on b, i.e. there exists Q0, Q1, and ~y such that
Q −→∗

ν~y.(bu.Q0 | Q1) with b /∈ ~y.
Find a context C that can distinguish the two processes above, i.e. such
that C[νz.!P ] ⇓ b but not C[!νz.P ] ⇓ b.

(c) Give an example of a general class of processes P for which the
bisimulation would hold?
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2. Recall the encoding of recursive abstractions in terms of replication.

(a) Write the process F 〈x, y〉 in terms of replication, where the abstraction
F is defined as follows:

F = (u, v).u.F 〈u, v〉

(b) Consider the pair of mutually recursive definition

G = (u, v).(u.H〈u, v〉 | k.H〈u, v〉)

H = (u, v).v.G〈u, v〉

Write the process G〈x, y〉 in terms of replication. (Note that we didn’t
discuss the coding of mutually recursive definitions so you have to
invent the technique yourself!)
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3. Help the lecturer to get his lists right! Fix my broken result about lists
(corrected in the slides) by showing:

νl.(L〈l〉 | copy〈l, m〉) ≈ L〈m〉

4. Write a process abstraction rev such that rev〈l, m〉 takes the list located
at l and produces a new list at m with the elements reversed. It may help
to consider the definition of rev (and that of the auxiliary function rev’) in
Ocaml:

let rec rev’ xs ys =

match ys with Nil -> xs

| Cons (z,zs) -> rev’ (Cons (z,xs)) zs;;

let rev ys = rev’ Nil ys;;
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5. Prove !P | !P ∼ !P . To make the problem easier, replace the labelled
transition rule for replication by the following ones that make the analysis
much easier:

P
α

−→ P ′

!P
α

−→ P ′ | !P
if bn(α) ∩ fn(P ) = ∅ (lab-bang-simple)

P
xy
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ (P ′ | P ′′) | !P
(lab-bang-comm)

P
x(y)
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ νy.(P ′ | P ′′) | !P
if y /∈ fn(P ) (lab-bang-close)

Furthermore, feel free to use structural congruence (e.g. !P ≡ P | !P )
instead of process equality anywhere you need it in the proof.
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