On asynchrony

(...and on mobility)

Francesco Zappa Nardellit

francesco.zappa_nardelli@inria.fr

1. INRIA Rocquencourt, MOSCOVA research team.

MPRI - Concurrency January 11, 2006

Plan

Objective:

understand the peculiarities of asynchronous interaction
and discover advanced applications of LTSs.

Plan:

1. Asynchronous pi-calculus:

motivations, definition, encoding of synchronous communication, equivalences;

2. examples of process calculi with explicit distribution:
DPI, Mobile Ambients.

Premise

All the equivalences mentioned in this lecture are weak equivalences.

We can start now...

Asynchronous communication

CCS and pi-calculus (and many others) are based on synchronized interaction,
that is, the acts of sending a datum and receiving it coincide:

a.P|la.Q — Pl||Q.

In real-world distributed systems, sending a datum and receiving it are distinct
acts:
aP||aQ ...~ . a||P||aq ... ~... P'||Q.

In an asynchronous world, the prefix . does not express temporal precedence.

Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is O.

Intuition: an unguarded occurence of Ty can be thought of as a datum y in an
implicit communication medium tagged with .

Formally:
zy||2x(2).P — P{¥.} .

We suppose that the communication medium has unbounded capacity and
preserves no ordering among output particles.

Asynchronous pi-calculus

Syntax:

P =0 | z@.P | zy | P||P | (wa)P | P

The definitions of free and bound names, of structural congruence =, and of the
reduction relation — are inherited from pi-calculus.

Examples

Sequentialization of output actions is still possible:

(Vy,z)(fyngHEaHR) .

Synchronous communication can be implemented by waiting for an
acknoledgement:

[7y.P] = (vu)(E(y,u)||u().P)

[2().Q] = xz(v,w).(w||Q) for w & Q

Exercise: implement synchronous communication without relying on polyadic primitives.

Background: a recipe for a “natural” contextual equivalence

Say that P and @ are equivalent (in symbols: P ~ Q) if:

Preservation under contexts For all contexts C|—|, we have C[P] ~ C[Q)];

Preservation of observations If P | z then () || x, where P | x is defined as

P = (Vﬁ,)(fy.P’”P”) or P = (Vﬁ)(a:(u).P’HP”) forox &n ;

Preservation of reductions If P ~ () and P — P’ then there is a Q' such that

Q —*Q and P ~ ()’

Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

e compare terms using only asynchronous contexts;

e restrict the observables to be co-names. To observe a process is to interact with
it by performing a complementtary action and reporting it: in asynchronous
pi-calculus input actions cannot be observed.

A peculiarity of synchronous equivalences

The terms

P = lx(z)Tz
Q =0

are not reduction barbed congruent, but they are asynchronous reduction barbed
congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do
not influence the computation.

A proof method

Consider now the weak bisimilarity ~ built on top of the standard (early) LTS
for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, ~; is
an equivalence for asynchronous pi-calculus terms.

It holds ~;, C ~, that is the standard pi-calculus bisimilarity is a sound proof
technique for ~.

But
lx(2).Tz %50 .

Question: can a labelled bisimilarity recover the natural contextual equivalence?

10

A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage
with a context:

o if P "% P’ then P can interact with the context — || z(u).beep, where beep
is activated if and only if the output action has been observed;

o if P Y, pr then in no way beep can be activated if and only if the input

action has been observed!

Solutions:

1. relax the matching condition for input actions in the bisimulation game;

2. modify the LTS so that it precisely identifies the interactions that a term can
have with its environment.

11

Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.

Let asynchronous bisimulation ~, be the largest symmetric relation such that
whenever P ~, () it holds:

1. if P - P and ¢ # x(y) then there exists)’ such that @ SN Q)" and
P’ ~a Q,;

2. it p W, pr then there exists ()’ such that Q||7y = Q' and P’ ~, Q)'.

Remark: P’ is the outcome of the interaction of P with the context —||Zy.
Clause 2. allows () to interact with the same context, but does not force this
Interaction.

12

Honda, Tokoro - 1992

Ty =2 0 z(u).P Y prya 0 W, 7y
PP xty P P yda
(vy)P 2L, p! (vy)P —— (vy)P'
PILp QL PP Q2 Q y ¢ Q)
PllQ — P'||Q PllQ — (vy)(P']|Q")
P25 P bn(a)N(Q) =10 P=P P 5 Q Q=qQ

P|lQ — P'||Q P—Q

13

Honda, Tokoro explained

Ideas:

e modify the LTS so that it precisely identifies the interactions that a term can
have with its environment:

e rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of
HT LTS, and reduction barbed congruence coincide.!

1ahem, more or less.

14

Properties of asynchronous bisimilarity in ACS style

e Bisimilarity is a congruence;

it is preserved also by input prefix, while it is not in the synchronous case;
e bisimilarity is an equivalence relation (transitivity is non-trivial);
e bisimilarity is sound with respect to reduction barbed congruence;

e bisimilarity is complete with respect to reduction barbed congruence.?

%for this the calculus must be equipped with a matching operator.

Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:
P =0 | aP | a | P||lP | (voP.

Reduction semantics:

P=P Q' =Q

a.Plla — P
P —Q

where = is defined as:

PllRQ=Q|lP (PllQ)IIR = P(QIR)
(va)P||Q = (va)(P||Q) if a & n(Q)

16

Background: LTS and weak bisimilarity for asynchronous CCS

PP Q-%Q

a.P =25 P a0
PllQ — P'||Q
P-4 p PP agf)
symmetric rules omitted.
PllQ - P'||Q (va)P — (va)P’

Definition: Asynchronous weak bisimilarity, denoted ~, is the largest symmetric
relation such that whenever P =~ () and

e P4, P’ ¢ € {r,a}, there exists ()’ such that) N Q) and P ~ Q'
o P " P’ there exists Q' such that Q||a = Q' and P’ ~ Q'.

17

Sketch of the proof of transitivity of ~

Let R = {(P,R): P ~ Q ~ R}. We show that R C .

e Suppose that P R R because P ~ Q =~ R, and that P — P’.
The definition of & ensures that there exists Q' such that Q||a = Q' and P’ =~ Q.
Since /5 is a congruence and QQ = R, it holds that Q ||a = R||a@.

A simple corollary of the defintion of the bisimilarity ensures that there exists R’ such
R|l|la — R ' and Q' = R'.

Then P’ R R’ by construction of R.

® [he other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.

that

18

Sketch of the proof of completeness

We show that ~ C =.

e Suppose that P ~ Q and that P = P’

We must conclude that there exists Q' such that Q||a = Q' and P’ ~ Q".
Since ~~ is a congruence, it holds that P||a ~ Q|| a.

Since P = P’, it holds that P||a — P’

Since P||a ~ Q|| @, the definition of ~ ensures that there exists Q such that Q||a = Q’
and P’ ~ @Q’, as desired.

e The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a
process. The case P — P’ is straightforward because “there is nothing to observe”.

19

Some references

Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous
Communication. ECOOP 1991.

Kohei Honda, Mario Tokoro, On asynchronous communication semantics. Object-
Based Concurrent Computing 1991.

Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, 1992.

Roberto Amadio, llaria Castellani, Davide Sangiorgi, On bisimulations for the
asynchronous pi-calculus. Theor. Comput. Sci. 195(2), 1998.

20

Distribution, action at distance, and mobility

The parallel composition operator of CCS and pi-calculus does not specify whether
the concurrent threads are running on the same machine, or on different machines
connected by a network.

Some phenomena typical of distributed systems require a finer model, that
explicitly keeps track of the spatial distribution of the processes.

We will briefly sketch two models that have been proposed: DPI/ (Hennessy and
Riely, 1998) and Mobile Ambients (Cardelli and Gordon, 1998).

The aim of this section is to get a glimpse of more complex process languages, and to rediscover
the idea of “transitions in an LTS characterise the interactions a term can have with a context”

in this setting.

21

DPI, design choices

e add explicit locations to pi-calculus processes: /| P|;
e locations are identified by their name: /[P]||4[Q] = ¢[P||Q];

e communication is local to a location:

([zy.P]||[2(u).Q] — ([PT||[IQ{%.u}] ;

e add explicit migration: /[goto k.P| — k[P].

We also include the restriction and match operators, subject to the usual pi-calculus semantics.

22

Behavioural equivalence for DPI

Again, we apply the standard recipe:

e define the suitable contexts:

Cl-] == — | cl-||aPr] | (wn)C[-].

e define the observation:

M | 2@ iff P = (vii)(([x(u).P']|| P") for x, £ & i .

Can we characterise this equivalence with a labelled bisimulation?

23

Labelled bisimulation for DPI

P P P = wn)(l[z(u).P]IIP") = €&n
P P P 2% (wR) (e[P'{¥LY]I P”)

P = wi)(t[zy.P'IIP") wy lgi

P =2, (wi)(¢[P']|| P")

P = (wa)({[Ty.P']||P") =z t&n ycEn

p 2%, wa\ y) (e[P']| P”)

24

Labelled bisimulation for DPI, ctd.

The standard bisimulation on top of the LTS below coincides with reduction
barbed congruence.

Remark: the LTS is written in an wnconventional style, which precisely
characterises the interactions a term can have with a context.

Questions:

1- every label should correspond to a (minimal) interacting context: can you spell
out these contexts?

2- why there are no explicit labels for the "goto” action?

25

Mobile Ambients, design choices

Objective: build a process language on top of the concepts of barriers
(administrative domains, firewalls, ...) and of barrier crossing.

A graphical representation of the syntax and of the reduction semantics of Mobile Ambients can

be found here:

http://research.microsoft.com/Users/luca/Slides/
2000-11-10%20Wide%20Area’%20Computation’20(Valladolid) .pdf

26

Mobile Ambients syntax (in 1ISO 10646)

Processes: Capabilities:
PQ,R == 0 C == in.n
P1 || P2 out_n
(vn)P open_n
n|P]
C.P
|P

Mobile Ambients: interaction

e |Locations migrate under the control of the processes located at their inside:

nlin.m.Pl|Q] || m[R] — m[n[P||Q]||R]
m[nlout_m.P||Q]||R] — n[P||Q] || m[R]

e a location may be opened:

open_n.P || n[Q] — P || Q

28

Hint about an LTS for Mobile Ambients

Consider the term M = (vm)(k[inn.P||Q]|| R) where k & m. It can interact
with the context n[T]||—, where T is an arbitrary process, yielding O =
(vm)(n[T || k[P]||Q]]|| R). This interaction can be captured with a transition

M k.enter_n O

Remark that, contrarily to what happens in CCS and pi-calculus, a bit of the
interacting context is still visible in the outcome!

Along these lines (asynchrony is needed too!) it is possible to characterise
reduction barbed congruence using a labelled bisimilarity.

29

References

James Riely, Matthew Hennessy: Distributed Pprocesses and location failures.
Theoretical Computer Science, 2001. An extended abstract appeard in ICALP 97.

Luca Cardelli, Andrew Gordon: Mobile Ambients. Theoretical Computer Science,
2000. An extended abstract appeared in FOSSACS 1998.

Massimo Merro, (ahem, myself): A behavioral theory for Mobile Ambients.
Journal of ACM, 2005.

30

Conclusion: two ideas

- Labelled bisimilarities are proof-methods for “natural” contextual equivalences.

- A well-designed LTS should characterise precisely the interactions that a term
can have with an arbitrary context.

31

