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Introduction Syntax and Operational Semantics of CCS

Motivations

Why a Calculus for Concurrency?

The Calculus for Communicating Systems (CCS) was
developed by R. Milner around the 80’s.
Other Process Calculi were proposed at about the same
time: the Theory of Communicating Sequential Processes
by T. Hoare and the Algebra of Communicating Processes
by J. Bergstra and J.W. Klop.
Researchers were looking for a calculus with few,
orthogonal mechanisms, able to represent all the relevant
concepts of concurrent computations. More complex
mechanisms should be built by using the basic ones.

To help understanding / reasoning about / developing
formal tools for concurrency.
To play a role, for concurrency, like that of the λ-calculus for
sequential computation.
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Motivations

Inadequacy of standard models of computations

The λ calculus, the Turing machines, etc. are computationally
complete, yet do not capture the features of concurrent
computations like

Interaction and communication
Inadequacy of functional denotation
Nondeterminism

Note: nondeterminism in concurrency is different from the
nondeterminism used in Formal Languages, like for instance
the Nondeterministic Turing Machines.
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Motivations

A few words about nondeterminism

In standard computation
theory, if we want to compute
the partial function f s.t.
f (0) = 1, a Turing Machine
like this one is considered ok

However, we would not be
happy with a coffee machine
that behaves in the same
way

1

0

success

fail
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Motivations

Nondeterminism in sequential models

Convenient tool for solving certain problems in an easy
way or for characterizing complexity classes (examples:
search for a path in a graph, search for a proof etc.)

Examples of nondeterministic formalisms:
The nondeterminismistic Turing machines
Logic languages like Prolog and λ Prolog

The characteristics of nondeterminism in this setting:
It can be eliminated without loss of computational power by
using backtracking.
Failures don’t matter: all what we are interested on is the
existence of succesful computations. A failure is reported
only if all possible alternatives fail.
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Motivations

Nondeterminism in concurrent models

Nondeterminism may arise because of interaction between
processes.

The characteristics of nondeterminism in this setting:

It cannot be avoided. At least, not without loosing essential
parts of expressive power. All interesting models of
concurrency cope with nondeterminism.
Failures do matter. Chosing the wrong branch might bring
to an "undesirable situation". Backtracking is usually not
applicable (or very costly), because the control is
distributed: we should restart not one but several
processes.

Hence controlling nondeterminism is very important. In
sequential programming is just a matter of efficiency, here is a
matter of avoiding getting stuck in a wrong situation.
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Principles in CCS design

The basic kind of interaction (1/2)

A calculus should contain only the primary constructs. For
instance, the primary form of interaction. But what is the primary
form of interaction?

In general, concurrent languages can offer various kinds of
communication. For instance:

Communications via shared memory.
Communication via channels.
Communication via broadcasting.

and we could make even more distinctions
one-to-one / one-to-many
Ordered / unordered (i.e. queues / bags)
Bounded / unbounded.

So what is the basic kind of communication?

For CCS the answer was: none of the above!
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Principles in CCS design

The basic kind of interaction (2/2)

In CCS, the fundamental model of interaction is synchronous and
symmetric, i.e. the partners act at the same time performing
complementary actions.

This kind of interaction is called handshaking: the partners agree
simoultaneously on performing the two (complementary) actions.

In Java there is a separation between active objects (threads) and
passive objects (resources). CCS avoids this separation: Every
(non-elementary) entity is a process.

For instance, consider two proceesses P and Q communicating via a
buffer B. in CCS also B is a process and the communication is between
P and B, and between Q and B.
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Principles in CCS design

Example: P and Q communicating via a buffer B

P QB
a b

ports (or channels)

let    B = a(x).b(x).B  ,  P = a(d).P'  ,  Q = b(y).Q'[y]

in     P | B | Q 

sequential operatorparallel operator co-actions
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Syntax

Syntax of CCS

(channel, port) names: a, b, c, . . .

co-names: ā, b̄, c̄, . . . Note: ¯̄a = a

silent action: τ

actions, prefixes: µ ::= a | ā | τ

processes: P, Q ::= 0 inaction
| µ.P prefix
| P | Q parallel
| P + Q (external) choice
| (νa)P restriction
| recK P process P with definition K = P
| K (defined) process name
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processes: P, Q ::= 0 inaction
| µ.P prefix
| P | Q parallel
| P + Q (external) choice
| (νa)P restriction
| recK P process P with definition K = P
| K (defined) process name



Introduction Syntax and Operational Semantics of CCS

Syntax

Syntax of CCS

(channel, port) names: a, b, c, . . .
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Labeled transition System

Labeled transition system

The semantics of CCS is defined by in terms of a labeled
transition system, which is a set of triples of the form

P
µ→ Q

Meaning: P evolves into Q by making the action µ.

The presence of the label µ allows us to keep track of the
interaction capabilities with the environment.
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Labeled transition System

Structural operational semantics

The transitions of CCS are defined by a set of inductive rules.
The system is also called structural semantics because the
evolution of a process is defined in terms of the evolution of its
components.

[Act]
µ.P

µ→ P
[Res] P

µ→ P′ µ 6=a,a
(νa)P

µ→ (νa)P′

[Sum1] P
µ→ P′

P+Q
µ→ P′

[Sum2] Q
µ→ Q′

P+Q
µ→ Q′

[Par1] P
µ→ P′

P|Q µ→ P′|Q
[Par2] Q

µ→ Q′

P|Q µ→ P|Q′

[Com] P a→ P′ Q a→ Q′

P|Q τ→ P′|Q′ [Rec] P[recK P/K ]
µ→ P′

recK P
µ→ P′
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Labeled transition System

Some examples

(v a) (a.0  |  a.0)

(va) (0  |  0)

ta.0  |  0

a

a.0  |  a.0

a

a

0  |  a.0

a

0  |  0

t

rec  a.kk

a

rec  a.k + b.0k

a

b

rec  a.k | a.k

a
k

a

a

aa

The restriction can be

used to enforce

synchronization

The parallel operator

may cause infinitely

many different states

The fragment of the

calculus without parallel

operator generates only

finite automata / regular

trees
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What equivalence for CCS?

Motivation

It is important to define formally when two system can be
considered equivalent

There may be various "interesting" notion of equivalence, it
depends on what we want (which observables we want to
preserve)

A good notion of equivalence should be a congruence, so
to allow modular verification
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Examples: possible definitions of a coffee machine

recK coin.(coffee.ccup.K + tea.tcup.K )

coin.recK (coffee.ccup.coin.K + tea.tcup.coin.K )

recK (coin.coffee.ccup.K + coin.tea.tcup.K )

Question: which of these machines can we safely consider
equivalent?

Note that these machines have all the same traces.
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Exercises

Define in CCS a semaphore with initial value n
Show that maximal trace equivalence is not a congruence
in CCS. By maximal traces here we mean the traces of all
possible (finite or infinite) maximal runs.
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