
MPRI Concurrency (course number 2-3) 2005-2006:
π-calculus
2006-02-15

http://pauillac.inria.fr/∼leifer/teaching/mpri-concurrency-2005/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

0

A summary of the π-calculus

• Core syntax

• Structural congruence (≡)

• Reduction (−→)

• Labelled transitions (
α

−→)

• Strong bisimulation (∼) and weak bisimulation (≈)

• Strong barbs (P↓x) and weak barbs (P⇓x)

• “Up to” techniques (up to strong bisimilarity, up to contexts)

1

Features

• Sum (xy.P + wz.Q)

• Infinite behaviour (!P or recursive definitions)

• Polyadic channels (x~y.P , . . .)

2

Core syntax

P ::= xy.P output
x(y).P input (y binds in P)
νx.P restriction (new) (x binds in P)
P | P parallel (par)
0 empty

The free names of P are written fn(P).

fn(xy.P) = {x, y} ∪ fn(P)
fn(x(y).P) = {x} ∪ (fn(P) \ {y})
fn(νx.P) = fn(P) \ {x}
fn(P | P ′) = fn(P) ∪ fn(P ′)
fn(0) = ∅

We consider processes up to alpha-conversion: provided y′ /∈ fn(P), we
have

x(y).P = x(y′).{y′/y}P

νy.P = νy′.{y′/y}P

3

Structural congruence (≡)
The smallest equivalence relation such that:

P | (Q | S) ≡ (P | Q) | S (str-assoc)

P | Q ≡ Q | P (str-commut)

P | 0 ≡ P (str-id)

νx.νy.P ≡ νy.νx.P (str-swap)

νx.0 ≡ 0 (str-zero)

νx.P | Q ≡ νx.(P | Q) if x /∈ fn(Q) (str-ex)

And congruence rules:

P ≡ P ′

P | Q ≡ P ′ | Q
(str-par-l)

P ≡ P ′

νx.P ≡ νx.P ′ (str-new)

Note: we don’t close up by input or output prefixing.

4

Reduction (−→)

We say that P reduces to P ′, written P −→ P ′, if this can be derived from
the following rules:

xy.P | x(u).Q −→ P | {y/u}Q (red-comm)

P −→ P ′

P | Q −→ P ′ | Q
(red-par)

P −→ P ′

νx.P −→ νx.P ′ (red-new)

We close reduction by structural congruence:

P ≡−→≡ P ′

P −→ P ′ (red-str)

5

Labels

The labels α are of the form:

α ::= xy output
x(y) bound output
xy input
τ silent

The free names fn(α) and bound names bn(α) are defined as follows:

α xy x(y) xy τ
fn(α) {x, y} {x} {x, y} ∅

bn(α) ∅ {y} ∅ ∅

6

Labelled transitions (P
α

−→ P ′)

Labelled transitions are of the form P
α

−→ P ′ and are generated by:

xy.P
xy
−→ P (lab-out) x(y).P

xz
−→ {z/y}P (lab-in)

P
α

−→ P ′

P | Q
α

−→ P ′ | Q
if bn(α) ∩ fn(Q) = ∅ (lab-par-l)

P
α

−→ P ′

νy.P
α

−→ νy.P ′
if y /∈ fn(α) ∪ bn(α) (lab-new)

P
xy
−→ P ′

νy.P
x(y)
−→ P ′

if y 6= x (lab-open)

P
xy
−→ P ′ Q

xy
−→ Q′

P | Q
τ

−→ P ′ | Q′
(lab-comm-l)

P
x(y)
−→ P ′ Q

xy
−→ Q′

P | Q
τ

−→ νy.(P ′ | Q′)
if y /∈ fn(Q) (lab-close-l)

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

7

Feature: sum

P ::= M sum
P | P parallel (par)
νx.P restriction (new) (x binds in P)

M ::= xy.P output
x(y).P input (y binds in P)
M + M sum
0

Changes:

• structural congruence: + is associative and commutative with identity 0.

• reduction: (xy.P + M) | (x(u).Q + N) −→ P | {y/u}Q.

• labelled transition: M + xy.P + N
xy
−→ P

M + x(y).P + N
xz
−→ {z/y}P

8

Feature: infinite behaviour via replication

Syntax: P ::= ...!P

Structural congruence: !P ≡ P | !P

Labelled transitions (easy to state):

P | !P
α

−→ P ′

!P
α

−→ P ′
if bn(α) ∩ fn(P) = ∅ (lab-bang)

Labelled transitions (easy to use):

P
α

−→ P ′

!P
α

−→ P ′ | !P
if bn(α) ∩ fn(P) = ∅ (lab-bang-simple)

P
xy
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ (P ′ | P ′′) | !P
(lab-bang-comm)

P
x(y)
−→ P ′ P

xy
−→ P ′′

!P
τ

−→ νy.(P ′ | P ′′) | !P
if y /∈ fn(P) (lab-bang-close)

9

Feature: infinite behaviour via process abstraction

We can define a process abstractions:

F = (u1, ..., uk).P

Instantiation takes an abstraction and a vector of names and gives back a
process:

F 〈x1, ..., xk〉 = {x1/u1, ..., xk/uk}P

10

Feature: polyadic channels

In the syntax we extend our notion of monadic channels, which carry exactly
one name, to polyadic channels, which carry a vector of names, i.e.

P ::= x〈y1, ..., yn〉.P output
x(y1, ..., yn).P input (y1, ..., yn pairwise distinct and bind in P)

We then generalise the reduction rule as follows:

x~y.P | x(~u).Q −→ P | {~y/~u}Q

(The label transitions become complicated because some of the elements
of an output may be bound and some free.)

11

Strong bisimulation

A relation R is a strong bisimulation if it is symmetric and for all (P, Q) ∈ R

and P
α

−→ P ′, where bn(α)∩ fn(Q) = ∅, there exists Q′ such that Q
α

−→ Q′

and (P ′, Q′) ∈ R.

P P ′

Q Q′

α

R R

α

Strong bisimilarity ∼ is the largest strong bisimulation.

12

Weak bisimulation

A relation R is a weak bisimulation if it is symmetric and for all (P, Q) ∈ R

and P
α

−→ P ′, where bn(α) ∩ fn(Q) = ∅, one of the following cases holds:

• If α = τ then there exists Q′ such that Q −→∗ Q′ and (P ′, Q′) ∈ R.

• If α 6= τ then there exists Q′ such that Q −→∗ α
−→−→∗ Q′

and (P ′, Q′) ∈ R.

P P ′

Q Q′

τ

R R

∗

P P ′

Q Q′

α

R R

∗ α ∗

Weak bisimilarity ≈ is the largest weak bisimulation.

13

Strong bisimulation up to strong bisimilarity

Suppose for all (P, Q) ∈ R and P
α

−→ P ′, where bn(α) ∩ fn(Q) = ∅, there
exists Q′ such that Q

α
−→ Q′ and (P ′, Q′) ∈ ∼R∼, and symmetrically.

P P ′

·

·

Q Q′

α

R

∼

R

∼
α

Then ∼R∼ is a strong bisimulation. Is R also a strong bisimulation?

14

Evaluation contexts

Let E be the set of evaluation contexts; these are generated by the grammar:

D ∈ E ::= −
D | P
P | D
νx.D

What isn’t an evaluation context?

15

Strong bisimulation up to contexts

Suppose for all (P, Q) ∈ R and P
α

−→ P ′, where bn(α) ∩ fn(Q) = ∅, there
exists D ∈ E , P ′′, and Q′′ such that P ′ = D[P ′′] and Q

α
−→ D[Q′′] and

(P ′′, Q′′) ∈ R, and symmetrically.

P P ′ = D[P ′′] P ′′

Q D[Q′′] Q′′

α

R R

α

Then {(D[P], D[Q]) / (P, Q) ∈ R, D ∈ E} is a strong bisimulation.

Example: !!P ∼ !P .

16

Barbs

A process P has a strong barb x, written P↓x iff there exists P0, P1, and ~y
such that P ≡ ν~y.(xu.P0 | P1) and x 6∈ ~y.

A process P has a weak barb x, written P⇓x iff there exists P ′ such that
P −→∗ P ′ and P ′↓x.

17

