MPRI Concurrency (course number 2-3) 2005-2006:
m-calculus
2006-02-15

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2005/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

A summary of the m-calculus

e Core syntax

e Structural congruence (=)

e Reduction (—)

e Labelled transitions (——)

e Strong bisimulation (~) and weak bisimulation (=)
e Strong barbs (P|x) and weak barbs (P} z)

e “Up to” techniques (up to strong bisimilarity, up to contexts)

Features

o Sum (Ty.P + wz.Q))
e Infinite behaviour (!P or recursive definitions)

e Polyadic channels (zy.P, ...)

Core syntax

P =wy.P output
z(y).P input (y binds in P)
ve.P restriction (new) (x binds in P)
P|P parallel (par)
0 empty

The free names of P are written fn(P).
fn(zy.P) = {z,y}Ufn(P)
{z} U (n(P)\ {y})
fn(P)\ {x}
fn(P) U fn(P")
@

We consider processes up to alpha-conversion: provided ¢’ ¢ fn(P), we
have

x(y).P =) {y [y} P
vy.P=vy' {y'/y} P

Structural congruence (=)

The smallest equivalence relation such that:

Pl(Q|S)=(P|Q)|S (str-assoc)

PlQ=Q|P (str-commut)

Plo=P (str-id)

ve.vy.P =vyve. P (str-swap)

vr.0=0 (str-zero)

ve.P|Q=vx.(P|Q) if x ¢ fn(Q) (str-ex)

And congruence rules:
P=P (st-par) P=P strnew)
————————— (str-par- ———— (str-new
PlQ=P|Q P ve.P=vz. P

Note: we don’t close up by input or output prefixing.

Reduction (—)

We say that P reduces to P/, written P — P, if this can be derived from
the following rules:

7y.P|z(u).Q) — P | {y/u}@Q (red-comm)
P— 7 .
red-par
PIQ— P'Q redan
P— P
i (red-new)
ve.P — vx. P
We close reduction by structural congruence:
P=—s=pP
——— (red-str)
P—P

Labels

The labels « are of the form:

=Ty output
Z(y) bound output
xy input
T silent

The free names fn(«) and bound names bn(«a) are defined as follows:

a‘ Ty T(y) xy T
(a; {z.y} {z} {z,y} ©

fn
bn(a) @ {y} @ o

Labelled transitions (P - P’)

Labelled transitions are of the form P - P’ and are generated by:

zy.P -4 P (lab-out) 2(y).P =5 {z/y}P (lab-in)

PP

m” bn(a) N fn(Q) =0 (|ab-par-|)

p_o,p P 7y r
- if y & fn(a) Ubn(a) (lab-new) ;70)
vy.P 25 P

- if z (lab-open
vy. P - vy P yFe (pen)

Ty / Y / 7(Y) Y /
r—r _ Q,_: @ ab-commyy L _’PT @ - 6;2 ify ¢ fn(Q) (lab-close-l)
PlQ—P'Q P|Q — vy (P'|Q)

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

Feature: sum

P:=M sum

P|P parallel (par)

vz.P restriction (new) (x binds in P)
M =7y.P output

z(y).P input (y binds in P)

M+ M sum

0

Changes:
e structural congruence: + is associative and commutative with identity 0.
e reduction: (Ty.P + M) | (x(u).Q + N) — P | {y/u}Q.

e labelled transition: M +7y.P + N 29, P
M +z(y).P+ N 5 {z/y} P

Feature: infinite behaviour via replication

Syntax: P .= ...IP
Structural congruence: !P = P | !P

Labelled transitions (easy to state):

| a ,
P"P%,Pif bn(a) N fn(P) = @ (lab-bang)

P — P

Labelled transitions (easy to use):

P P) (P = o (lab-bang-simpl
PP n(a) Nfn(P) =@ (lab-bang-simple)
pILp pp

= (lab-bang-comm)
P — (P'|P")|'P

z(Y) ry /"
P P P—=P
if y ¢ fn(P) (lab-bang-close)

P wy (P'| P")|IP

Feature: infinite behaviour via process abstraction

We can define a
F=(uy,...,u).P

Instantiation takes an abstraction and a vector of names and gives back a
process:

Flry, oo wp) = {@/uy, o o /ug } P

10

Feature: polyadic channels

In the syntax we extend our notion of monadic channels, which carry exactly
one name, to polyadic channels, which carry a vector of names, i.e.

P =Ty, ..., yn).P output
z(Y1y .oy Yn). P input (y1, ..., yn pairwise distinct and bind in P)

We then generalise the reduction rule as follows:
Ty.P | 2(i).Q — P|{y/u}Q

(The label transitions become complicated because some of the elements
of an output may be bound and some free.)

11

Strong bisimulation

A relation R is a strong bisimulation if it is symmetric and for all (P,Q) € R
and P - P’ where bn(a) Nfn(Q) = @, there exists @’ such that Q —— @’
and (P, Q') e R.

P L} P/
R R
Q-

Strong bisimilarity ~ is the largest strong bisimulation.

12

Weak bisimulation

A relation R is a weak bisimulation if it is symmetric and for all (P, Q) € R
and P - P’, where bn(a) N fn(Q) = @, one of the following cases holds:

e If & = 7 then there exists ' such that Q —* Q" and (P',Q’) € R.

o If o # 7 then there exists ()’ such that Q —* -2 —*
and (P, Q') € R.

P —T) P/ P 8])P/
R R R R
Q------ S Q -------- Sy o)

Weak bisimilarity ~ is the largest weak bisimulation.

13

Strong bisimulation up to strong bisimilarity

Suppose for all (P,Q) € R and P - P’, where bn(e) N fn(Q) = @, there
exists Q' such that Q - @’ and (P’,Q’) € ~R~, and symmetrically.

P #} P/
R R
Q2o

Then ~R~ is a strong bisimulation. Is R also a strong bisimulation?

14

Evaluation contexts

Let £ be the set of ; these are generated by the grammar:

De& . =—
D|P
P|D
ve.D

What isn’t an evaluation context?

15

Strong bisimulation up to contexts

Suppose for all (P,Q) € R and P —— P’, where bn(a) N fn(Q) = @, there
exists D € &, P", and Q" such that P/ = D[P"] and Q % D[Q"] and

(P",Q") € R, and symmetrically.

p——"55pP" = D[P o
R ‘R
Q--oooes - D[Q"] Q"

Then {(D[P],D|Q]) / (P,Q) € R,D € £} is a strong bisimulation.

Example: 1P ~ 1P.

16

Barbs

A process P has a

x, written P|x iff there exists Py, P;, and

such that P = vy.(zu.Py | P)) and = & 4.

A process P has a
P —*Pand P'|x.

x, written Pl iff there exists P’ such that

17

