MPRI Concurrency (course number 2-3) 2005-2006:
m-calculus
2005-11-02

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2005/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

About the lectures
The MPRI represents a transition from student to researcher. So...

e Interrupting me with questions is good.
e Working through a problem without already knowing the answer is good.

¢ I'll make mistakes. 8-)

About me

e 1995-2001: Ph.D. student of Robin Milner’s in Cambridge, UK
e 2001-2002: Postdoc in INRIA Rocquencourt, France

e 2002—: Research scientist in INRIA Rocquencourt, France

e November 2004: voted against W (who, despite this, was elected for the
first time)

Books

e Robin Milner. Communicating and mobile systems: the 7-calculus.
(Cambridge University Press, 1999).

e Robin Milner. Communication and concurrency. (Prentice Hall, 1989).

e Davide Sangiorgi and David Walker. The m-calculus: a theory of mobile
processes. (Cambridge University Press, 2001).

Tutorials available online

e Robin Milner. “The polyadic pi-calculus: a tutorial”. Technical Report
ECS-LFCS-91-180, University of Edinburgh.
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/ECS-LFCS-91-180.ps

e Joachim Parrow. “An introduction to the pi-calculus”.
http://user.it.uu.se/~joachim/intro.ps

e Peter Sewell. “Applied pi — a brief tutorial”. Technical Report 498,
University of Cambridge. http://www.cl.cam.ac.uk/users/pes20/apppi.ps

Today'’s plan

e syntax

e reduction semantics and structural congruence

e labelled transitions

e bisimulation

Syntax

P =7y P output
x(y). P input (y binds in P)
ve.P restriction (new) (z binds in P)
P|P parallel (par)
0 empty
| P replication (bang)

Significant difference from CCS: channels carry names.

Free names

The free names of P are written fn(P).
Example: fn(0) = &; fn(Ty.2(y).0) = {z,y, 2 }.
Exercise: Calculate fn(z(y).zy.0); fn(vz.(2(y).Ty) | 2).

Formally:
g fn(zy.P) = {x,y}Ufn(P)
fla(y)-P) = {r} U (f(P)\ {u})
fn(ve.P) = fn(P)\ {x}
fn(P| P) = fn(P)Ufn(P)
fn(0) = O
fn(1P) = fn(P)

Alpha-conversion

We consider processes up to alpha-conversion: provided 3’ ¢ fn(P), we
have

z(y).P = x(y){y /y} P
vy.P =vy {y [y} P
Exercise: Freshen all bound names: vz.(z(x).7x) | x(x)

Reduction (—)

We say that P reduces to P/, written P — P/, if this can be derived from
the following rules:

Ty.P|x(u).QQ — P|{y/u}tQ (red-comm)
pP— P redopan
red-par
P|Q— P'|Q
p— P

P P’ (red-new)

Example: vz.(zy | z(u).uz) — vx.(0 | y2)

As currently defined, reduction is too limited:

@y 10) | z(u) 7=

Structural congruence (E)

The smallest equivalence relation such that:

Pl(Q]|S)=(P|Q)|S (str-assoc)
PlQ=Q|P (str-commut)
PlO=P (str-id)
ve.vy.P =vyve. P (str-swap)
vr.0=0 (str-zero)
ve.P|Q =vz.(P|Q) if z ¢ fn(Q) (str-ex)
\P=P|P (str-repl)
And congruence rules:
p=P p=P
PlO= 2, 0 (str-par-|) I — (str-new)

Note: we don’t close up by input or output prefixing.

Fixing reduction

We close reduction by structural congruence:

p=—.,=p/
pP— P

(red-str)

Exercise: Calculate the reductions of vy.(Ty | y(u).uz) | x(w).wv and
Ty | vy.(z(u).uw | y(v))

Application of new binding: from polyadic to monadic
channels

Let us extend our notion of monadic channels, which carry exactly one
name, to polyadic channels, which carry a vector of names, I.e.

P =%y,,yn).P output
(Y1, ey Yn)-P input (y1, ..., yn, bind in P)

Is there an encoding from polyadic to monadic channels? We might try:
[Z (1, oo yn). Pl = Tyn... Ty [P]
lx(y1, -y yn)-Pl = xz(y1)....x(ypn). [P]
but this is broken! Can you see why? The right approach is use new binding:
[Z(y1,s ..., yn). Pl = vz.(Tz.2y1... Zyn. [P])
lx(y1, -y yn)- Pl = x(2).2(y1)....2(yn). [P]

where z ¢ fn(P) in both cases. (We also need some well-sorted
assumptions.)

Application of new binding: from synchronous to
asynchronous ouput

In distributed computing, sending and receiving messages may be
asymmetric: we clearly know when we have received a message but not
necessarily when a message we sent has been delivered. (Think of email.)

P =7y output
x(y). P input (y binds in P)

Nonetheless, one can always achieve synchronous sends by using an
acknowledgement protocol:

[Ty Pl =v2.(T(y,2) | 2
[z(y). Pl = 2(y, 2).(Z()

provided z ¢ fn(P) in both cases.

O-1P1)
[P])

But this is cheating since the encoding relies on being able to send tuples
(e.g. (y, z)). Can you see how to use only monadic communication?

10

Labels

The labels a are of the form:

Q= TY output
Z(y) bound output
Y Input
T silent

The free names fn(«) and bound names bn(«) are defined as follows:

a Ty T(Yy) Ty T
fn(@g {z,y} {z} {z,y} @

bn(a)] @ {y} @ O

11

Labelled transitions (P — P’)

Labelled transitions are of the form P —— P’ and are generated by:

zy.P -5 P (lab-out) 2(y).P 5 {z/y}P (lab-in)
P P
— if bn(a) Nfn(Q) = @ (lab-par-l)
PlQ— P'|Q
PP p Y, p

if y ¢ fn(a) Ubn(a) (lab-new) if y £ 2 (lab-open)

vy.P — vy.P' vy. P W, pr
p Ty P/ Ty / p z(y) P! Yy /
— Q,—j “ (lab-comm-I — — ? ify ¢ fn(Q) (lab-close-l)
PlQ— P|Q PlQ—vy(PQ)
PP P
=P b bang)
\p = P

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

12

Labelled transitions and structural congruence

Theorem:
1.P— Piffp =P
2. P=-% Plimplies P - = P/

Exercise: Why does the converse of the second not hold?

Exercise: Show that the following pair of processes are both in (—) and

(—=):

vz2xz | x(u)yu vzyz

Fun with side conditions

Exercise: Show that the side condition on (lab-par-l) IS necessary by
considering the process vy.(zy.y(u)) | Zv and an alpha variant.

13

Adding sum

P.=M sum
P|P parallel (par)
vr. P restriction (new) (z binds in P)
| P replication (bang)
M =7y.P output
x(y). P input (y binds in P)
M+ M sum
0

Changes:
e structural congruence: + is associative and commutative with identity 0.
e reduction: (zy.P+ M) | (z(u).QQ + N) — P |{y/u}Q.

e labelled transition: M +zy.P + N N P
M + z(y).P+ N == {z/y}P

14

Exercises for next lecture

1. Define an encoding | | from the monadic synchronous w-calculus to the
monadic asynchronous m-calculus.

2. Prove that if P % P’ then there exist P,, Py, and 7 such that

P=vZ(zy.Py| P)
P =vz(P)| P)
{z,ypnZ=0

NB: the notation vZ. P is merely a convenient way of expressing a series
of new bindings:

. P If 2'is empty
vz.P = L S
vw.(vw.P) if 2= ww

15

