
A roundtrip from π-calculus to synchronous programming

Roberto Amadio

Université de Paris 7

Laboratoire Preuves, Programmes et Systèmes

Groupe de travail Concurrence: Chevaleret, Thursday 2 pm.

http://www.pps.jussieu.fr/∼amadio/cc/

1

Introduction

2

In truth, there is nothing canonical about our choice of
basic combinators, even though they were chosen with
great attention to economy. What characterises our
calculus is not the exact choice of combinators, but rather
the choice of interpretation and of mathematical framework.

R. Milner, Communication and Concurrency, Prentice-Hall, 1989,
page 195.

3

We now wish to discuss a calculus [. . .] It arose from the
author’s attempt to relate asynchrony to synchrony. The
contrast between these terms may be understood in more
than one way. Here, we mean the contrast between the
assumption which we have hitherto made that concurrent
agents proceed at indeterminate relative speeds
(asynchrony), and the alternative assumption that they
proceed in lockstep - i.e. that at every instant each agent
performs a single action (synchrony).

Op. cit.

4

Some references

• R. Milner, Calculi for synchrony and asynchrony, TCS, 25,
1983.

• D. Austry and G. Boudol, Algèbre de processus et
synchronisation, TCS, 30, 1984.

• G. Berry and G. Gonthier, The Esterel synchronous
programming language. Science of computer programming, 19,
1992.

• F. Boussinot and R. De Simone, The SL Synchronous
Language. IEEE Trans. on Software Engineering, 22, 1996.

• R. Amadio, The SL synchronous language, revisited. Technical
Report, Université Paris 7, Laboratoire PPS, November 2005.

5

NB There is a parallel thread of synchronous programming
languages that is based on data flow ideas (Lustre, Signal,
synchronous Kahn networks,. . .) that we will not be discussed here.
Refer to the course on Synchronous Programming.

6

Goal of this course

• Introduce and revisit the SL synchronous programming model
(a relaxation of the Esterel model).

• Apply the mathematical framework that has been developed for
CCS/π-calculus to the SL model.

• Highlight a research problem arising when extending the model
with data values and name mobility.

7

Some general ideas

Synchrony:

• Computation is regulated by a notion of instant.

• Threads can proceed at different speeds but periodically
they go through a global synchronisation.

NB An instant can turn out to be considerably more complex
than in Milner’s description where “at every instant each agent
performs a single action”.

8

Reactivity:

• Each instant should terminate in reasonable time/space.

• If a thread loops the whole system loops!

9

Parallelism

• Parallelism might be useful to exploit a parallel machine.

• Parallelism is also useful to have a modular programming style
(e.g. think of a graphical user interface).

10

Determinism

• Debugging/testing/verifying non-deterministic programs is
difficult.

• Whenever possible try to work with deterministic programs.
E.g. Kahn networks are an early example of deterministic and
parallel model.

11

Cooperative concurrency

• In preemptive concurrency a thread can be interrupted at any
point.

• In cooperative concurrency a thread must explicitly return the
control to the scheduler.

• In a synchronous framework, it makes sense to adopt
cooperative concurrency. This may help in making the program
look more deterministic.

12

The SL model

• A program is a multi-set of threads interacting via shared
signals.

• A signal is emitted or not, and once it is emitted it persists
within the current instant.

13

Basic principle of the SL model

Reaction to the absence of a signal within an instant can only
happen at the next instant.

• This is a relaxation of the Esterel model (Berry-Gonthier
1992) where the reaction to the absence can be instantaneous
(SL designed to avoid Esterel’s ‘causality problem’).

14

• For instance,

νs present s then 0 else (emit s)

• How does one ‘run’ this statement?

• If terms of boolean equations, this is like

s = ¬s

which has no solution. . .

• SL avoids the paradox by assuming that the branch else is only
computed at the end of the instant, once the presence or
absence of the signal s is settled.

15

Evolution

The SL model has evolved towards a programming language for
concurrent applications:

• More control operators, thread spawning,. . .

• Data types.

• Programming environments: C, Java, Scheme, ML,. . .
(Boussinot et al. 95-05).

• Multi-processing (Boussinot 04).

• Migration (Boudol 04).

16

Philosophy

• Synchronous models like Esterel or Lustre are designed to
allow a static scheduling and a compilation to finite state
machines.

• The SL model:

– more relaxed view on efficiency,

– more flexibility in programming and compiling,

– preserve determinism and reactivity.

17

Typical applications (for the basic model)

• Graphical user interfaces.

• Simulations.

• Web services.

• Network games.

18

A programming example (informal)

• Suppose you want to program a generic cellular automaton.

• Assign a thread to each cell.

• The parameters of each thread/cell are: its current state, its
signal, the signals of its neighbours.

19

• Each thread performs the following actions periodically:

1. It emits its current state in the signals of its neighbours.

2. It waits the end of the instant.

3. At the end of the instant it collects the states of its neighbours
on its signal and it computes its new state.

20

Remarks

• Similar examples exist for the simulation of mechanical
phenomena such as the n-body problem. See
http://www-sop.inria.fr/mimosa/rp for demos.

• In these examples, signals carry values (e.g. the state of the
cell).

• In the following, we will focus on a calculus where signals are
pure (cf. CCS).

• In the end, we will consider the problems that arise when this
hypothesis is dropped and we move to a kind of synchronous
π-calculus.

21

The SL model (revisited)

22

Signals and Environments

Signal names S = {s, s′, . . .}

Interface signals

Int = Input ∪Output ⊂ S

assume Int finite.

Environment

E : S ⇀ {f, t}

assume dom(E) finite and containing Int .

23

Threads and Programs

T ::= 0 ||
T ;T ||
A(s)

(νs T) ||
(thread T) ||
(emit s) ||
(await s) ||
(watch s T)

A program P is a multi-set of threads.

24

Evaluation (informal)

To execute a program during an instant, proceed as follows:

1. Schedule the execution of the threads non-deterministically.

2. When no thread can progress then all threads are either
terminated or waiting on an await.

3. If this happens, evaluate the watching conditions in the order
of their insertion.

25

Redexes

• Assume that sequential composition ‘;’ associates to the right.

• A redex ∆ is defined by the grammar:

∆ ::= 0; T || (emit s) || (νs T) || (thread T) || (await s) || (watch s 0) || A(s) .

26

Evaluation context

An evaluation context C is defined by the grammar:

C ::= [] || [];T || (watch s C) || (watch s C);T .

27

Unique decomposition

A thread T 6= 0 admits a unique decomposition T = C[∆] into an
evaluation context C and a redex ∆. Moreover, if T = 0 then no
decomposition exists.

28

Reduction rules

(0;T,E) ∅→ (T,E)

(emit s,E) ∅→ (0, E[t/s])

(watch s 0, E) ∅→ (0, E)

(νs T, E) ∅→ (T,E[f/s]) if s /∈ dom(E)

29

(A(s), E) ∅→ ([s/x]T,E) if A(x) = T

(await s,E) ∅→ (0, E) if E(s) = t

(thread T,E)
{|T |}→ (0, E)

(C[∆], E) P→ (C[T ′], E′) if (∆, E) P→ (T ′, E′)

30

Program evaluation

(P ∪ {|T |}, E) → (P ∪ {|T ′|} ∪ P ′′, E′) if (T,E) P ′′

→ (T ′, E′) .

31

Suspension = End of instant

• (T,E) ↓ if T cannot be reduced in the environment E

according to the rules above.

• (T,E) ↓ if and only if T = 0 or T = C[(await s)] with E(s) = f.

• A program is suspended if all its thread are suspended.

32

Computation at the end of the instant

We transform all (watch s T) instructions where the signal s is
present into the terminated thread 0. Formally,

bP cE = {|bT cE | T ∈ P |}
b0cE = 0

bT ;T ′cE = bT cE ;T ′

bawait scE = (await s)

bwatch s T cE =

 0 if E(s) = t

(watch s bT cE) otherwise

33

Some definable instructions

(loop T) = A where: A = T ;A

(now T) = νs (emit s); (watch s T) s /∈ sig(T)

pause = νs (now (await s)) s /∈ sig(T)

34

(present s T1 T2) = νs′ (thread

(now (await s); (thread T1; (emit s′))),

(watch s pause; (thread T2; (emit s′))));

(await s′)

35

(T1 || T2) = νs1, s2, s
′
1, s

′
2 (thread

(watch s′1 T1; (loop (emit s1); pause)),

(watch s′2 T2; (loop (emit s2); pause)));

(await s1); (emit s′1); (await s2); (emit s′2)

36

Remark

• The original SL model has loop, present, and || rather than
recursion and thread spawning.

• This has the consequence that the number of threads and the
size of the evaluation contexts is bound by a constant.

• Also the present and || constructs in SL have a different
behaviour with respect to the evaluation context.

37

Monotonicity and determinacy

• During an instant the collection of signals emitted can only
grow and all that can be tested is the presence (not the
absence) of a signal.

• Technically, the reduction relation is strongly confluent up to
some renaming.

• This implies that programs are deterministic, i.e., for a given
input they always react in the same way and recursively the
property is satisfied by the continuation in the following instant
(if any).

38

Reactivity

• It is easy to write looping programs.

• In the programming practice, reactivity is ensured by
instrumenting the code with pause statements that force the
computation to suspend for the current instant.

• For instance,

A = (watch s1 B); (emit s4);A

B = (await s2); (emit s3); pause;B

• It is feasible to design static analysis techniques that guarantee
reactivity.

39

How do we justify the choice of the synchronisation
operators?

• The present operator reflects directly the design principle of the
SL language.

• But why having watch and await?

• What about other synchronisation operators such as

(when s T)

that runs T when s is present ?

40

A tail recursive model

t ::= 0 || A(s) || emit s.t || νs t || thread t.t || present s t b

b ::= t || ite s b b

41

• The reduction semantics is even simpler than for the previous
language (no evaluation context).

• The basic reduction rule is

(present s t b, E) ∅→ (t, E) if E(s) = t

• The basic rule at the end of the instant is

〈|ite s b1 b2|〉E =

 〈|b1|〉E if E(s) = t

〈|b2|〉E if E(s) = f

42

Continuation passing style translation

• There is a semantic preserving CPS translation of the SL
language into the tail recursive SL language.

• The translation [[]] is parameterised on a pair (t, τ):

– t is the default continuation.

– τ is a list of pairs (s1, t1) · · · (sn, tn) representing the signals
that are under the control of a watch statement and the
relative continuations.

43

CPS-translation

[[0]](t, τ) = t

[[T1;T2]](t, τ) = [[T1]]([[T2]](t, τ), τ)

[[emit s]](t, τ) = emit s.t

[[νs T]](t, τ) = νs [[T]](t, τ), where: s /∈ sig(t) ∪ sig(τ)

[[thread T]](t, τ) = thread [[T]](0, ε).t

44

[[watch s T]](t, τ) = [[T]](t, τ · (s, t))

[[await s]](t, τ) = present s t b,

where: τ = (s1, t1) · · · (sm, tm), b ≡ (ite s1 t1 . . . (ite sm tm A) . . .),

A = present s t b

[[A(s)]](t, τ) = A(t,τ)(s, s′),

where: sig(t, τ) = {s′}, A(x) = T,

{x} ∩ {s′} = ∅, A(t,τ)(x, s′) = [[T]](t, τ) .

45

Example

• Consider the program A defined by:

A = (watch s1 B); (emit s4);A

B = (await s2); (emit s3); pause;B

• To keep the translation compact, assume:

[[pause]](t, (s1, t1) · · · (sn, tn)) = pause.ite s1 t1(· · · (ite sn tn t) · · ·)

46

• Then the program after CPS translation becomes:

A(0,ε) = B(t1,τ1)

t1 = emit s4.A
(0,ε)

τ1 = (s1, t1)

B(t1,τ1) = present s2 t2 (ite s1 t1 B(t1,τ1))

t2 = emit s3.pause.ite s1 t1 B(t1,τ1) .

47

Towards a process algebraic
treatment

48

Some criticism

The formalisation of the SL model we have considered so far is
close to an abstract machine.

• Ad hoc α-renaming.

• A global notion of environment.

• Threads compose but do not reduce.

• Programs reduce but do not compose.

49

A revised syntax

We introduce a notion of program that subsumes, threads,
programs, and environments.

P ::= 0 || emit s || present s P B || P | P || νs P || A(s)

B ::= P || ite s B B

NB We omit ‘emit s.P and ‘thread P ′.P . They are syntactic sugar
for (emit s) | P and P ′ | P , respectively.

50

A labelled transition system

Actions

α ::= τ || s || s

51

Transitions

emit s
s→ emit s

present s P B s→ P | (emit s)

P1
s→ P ′

1 P2
s→ P ′

2

P1 | P2
τ→ P ′

1 | P ′
2

52

P1
α→ P ′

1

P1 | P2
α→ P ′

1 | P2

P
α→ P ′ s /∈ α

νs P
α→ νs P ′

A(x) = P

A(s) τ→ [s/x]P

53

Remarks

• Emission of a signal is persistent.

• When a signal is present, the continuation is guaranteed to see
the signal as present.

• This has the effect that:

(emit s) | (present s 0 0) τ→ (emit s) | 0 | (emit s)

• However this is not a problem, because emitting a signal once
is the same as emitting it twice.

54

End of the instant

The idea is always the same:

• Collect all emitted signals (restricted or not).

• Reset all emissions.

• Compute the continuations B of the suspended present

statements.

55

Towards equivalence

• Can we define a manageable compositional equivalence based on
a labelled bisimulation?

• Can we justify its definition via a notion of contextual
bisimulation?

56

Worm up: mini-‘asynchronous’ CCS (aCCS)

P ::= a || a.P || (P | P) || νa P

• No output prefix.

• Communication is asynchronous, i.e. based on unordered and
unbounded buffers rather than on rendez vous (Internet vs.
telephone).

• If an observer sends a message it has no way to see if it has
been received. In other terms, we can observe the outputs but
not the inputs.

57

Barbed bisimulation for aCCS

A relation R is a barbed bisimulation if it symmetric and whenever
P R Q then

1. P
τ→ P ′ then Q

τ⇒ Q′ and P ′ R Q′.

2. P
a→ · then Q

τ⇒ Q′, Q′ a→ ·, and P R Q′.

Denote with ≈B the largest relation that satisfies this property.

58

Contextual bisimulation for aCCS

A static context C is defined by

C ::= [] || C | P || νa C

A relation R is a contextual bisimulation if

1. It is a barbed bisimulation.

2. If P R Q then C[P] R C[Q].

Denote with ≈C the largest contextual bisimulation.

59

Problem

• One can prove that:
a.a ≈C 0

• How can we account for such equivalence in a labelled
bisimulation?

60

Idea

If P R Q and P
a→ P ′ then

• Either Q
a⇒ Q′ and P ′ R Q′ (as usual!)

• or Q
τ⇒ Q′ and P ′ R (Q′ | a) (what’s that?).

Ref. A., Castellani, Sangiorgi. On bisimulations for the
asynchronous π-calculus. Theor. Comp. Sci. 1998.

61

Example

a.a ≈L 0

• If a.a
a→ a,

• then 0 τ⇒ 0,

• and a ≈L (0 | a).

62

Labelled bisimulation

So the full definition becomes. A relation R is a labelled
bisimulation if it symmetric and whenever P R Q then if

1. P
τ→ P ′ then Q

τ⇒ Q′ and P ′ R Q′.

2. P
a→ P ′ then Q

a⇒ Q′, and P ′ R Q′.

3. P
a→ P ′ then either Q

a⇒ Q′ and P ′ R Q′ or Q
τ⇒ Q′ and

P ′ R (Q′ | a).

63

Congruence properties of labelled bisimulation

Proposition If P1 ≈L P2 then P1 | Q ≈L P2 | Q
(and νa P1 ≈L νa P2).

64

Proof outline

The proof structure is not quite the usual one.

1. We introduce a structural equivalence ≡ including equations
such as P | 0 ≡ P .

2. We check that the proof technique up to structural equivalence
is sound.

3. We show that P1 ≈L P2 implies (P1 | a) ≈L (P2 | a).

65

Exercise Analyse the case where (P1 | a) does a τ or an
input move.

66

4. We show that ≈L is transitive.

67

Exercise Analyse the case where P1 ≈L P2 ≈L P3 and P1

does an input move.

68

5. Only then can we show that

{(P1 | Q, P2 | Q) | P1 ≈L P2}

is a labelled bisimulation up to ≡.

69

Exercise Analyse the case where P1 | Q does a τ move or an
input move.

70

6. It follows that

P1 ≈L P2 implies P1 ≈C P2

71

Exercise Why?

72

Building contexts

Proposition If P1 ≈C P2 then P1 ≈L P2.

• We show that
{(P1, P2) | P1 ≈C P2}

is a labelled bisimulation. This amounts to build suitable
contexts.

73

Exercise What happens if P1 does an input move?

74

Back to SL

75

So why are we looking at aCCS?

• It is an interesting variation of the model to the point that
programming languages based on the π-calculus have adopted
it.

• The reception of a signal in SL is not directly observable just as
the reception of a message in aCCS.

• However there are two additional complications to consider in
SL:

1. The end of the instant should be observable.

2. Once a program is closed and running, an emission is only
observable at the end of the instant.

76

End of the instant

• Consider the following two suspended programs:

P = present s1 0 (ite s2 (emit s3) 0) and Q = present s2 0 0 .

• If we plug them in the context [] | (emit s2) they exhibit a
different behaviour.

• However a definition such as:

P R Q P ↓

Q
τ⇒ Q′, Q′ ↓, P R Q′, bP c R bQ′c

is not enough to distinguish them.

77

• What will do is the following stronger definition:

P R Q S = (emit s1) | · · · | (emit sn) (P | S) ↓

(Q | S) τ⇒ (Q′ | S), (Q′ | S) ↓,
(P | S) R (Q′ | S), bP | Sc R bQ′ | Sc

78

Emission and end of the instant

• Suppose Ω is a looping program.

• Then in (emit s) | Ω, the emission on s should not be
observable because the instant never terminates (no matter
who runs in parallel).

• So we look for a predicate Pred such that the clause for
emission is formulated as follows:

P R Q, Pred(P), P
s→ P ′

Q
s⇒ Q′ and P ′ R Q′

NB Incidentally, in SL if P
s→ P ′ then P = P ′.

79

Two candidates:
Weak suspension and Labelled suspension

P ⇓ if ∃P ′ P
τ⇒ P ′ and P ′ ↓ (weak suspension)

P ⇓L if P
α1→ P1 · · ·

αn→ Pn, n ≥ 0, and Pn ↓ (L-suspension)

80

Characterisation of Labelled suspension

Let P be a program and let C denote a static context made of
parallel composition and restriction. The following are equivalent:

1. P ⇓L.

2. There is a program Q such that (P | Q) ⇓.

3. There is a static context C such that C[P] ⇓L.

81

• An important property of L-suspension is that

(P | Q) ⇓L implies P ⇓L

• This may fail for weak suspension in non-deterministic
extensions of the language.

• However, in SL the property holds for weak suspension too
because thanks to confluence we can show:

P ⇓L iff P ⇓

82

Full definition of labelled bisimulation

If P R Q then

• P
τ→ P ′ implies Q

τ⇒ Q′ and P ′ R Q′.

• P ⇓L and P
s→ P ′ implies Q

s⇒ Q′ and P ′ R Q′.

• P
s→ P ′ implies either Q

s⇒ Q′ and P ′ R Q′ or Q
τ⇒ Q′ and

P ′ R (Q′ | (emit s)).

• S = (emit s1) | · · · (emit sn), (P | S) ↓ implies
(Q | S) τ⇒ (Q′ | S), (Q′ | S) ↓, (P | S) R (Q′ | S), and
bP | Sc R bQ′ | Sc.

Denote with ≈L the largest one.

83

Proof of congruence

The proof outline is similar to the one for asynchronous
bisimulation (but of course the details are different. . .):

1. We introduce a structural equivalence.

2. Develop proof technique up to.

3. Show that P1 ≈L P2 implies (P1 | (emit s)) ≈L (P2 | (emit s)).

4. Show that ≈L is transitive.

5. Show that
{(P1 | Q, P2 | Q) | P1 ≈L P2}

is a labelled bisimulation up to ≡.

84

Justifying labelled bisimulation

It remains to justify labelled bisimulation via a notion of contextual
bisimulation.

85

Definition of barbed bisimulation If P R Q then

• P
τ→ P ′ implies Q

τ⇒ Q′ and P ′ R Q′.

• P ⇓L and P
s→ · implies Q

τ⇒ Q′ s→ and P ′ R Q′.

• P ↓ implies Q
τ⇒ Q′, Q′ ↓, P R Q′, and bP c R bQ′c.

86

Definition of contextual bisimulation A barbed bisimulation
such that P R Q implies C[P] R C[Q]. Denote with ≈C the largest
one.

Theorem

P ≈L Q iff P ≈C Q.

NB Again, to show the direction (⇐), we have to build suitable
contexts . . .

87

A quick look at ongoing research

88

• Practical languages that have been developed on top of the
model have data types.

• In particular, signals carry values. E.g. think of primitives:

(emit s e) present s(x).P,K

• This introduces two sources of non-determinism in the
language.

89

1. Two signals compete to be received within an instant:

(emit s 0) | (emit s 1) | present s(x).P, K

To avoid this situation one needs to make sure (static analysis)
that at most one value is emitted on a signal at each instant.

90

2. Alternatively, we could wait the end of the instant to collect
the set of values emitted within the instant (cf. Reactive ML).

In practice, the set has to be represented by some data
structure such as a list. We have to make sure that the
behaviour of the continuation does not depend on the particular
representation chosen, i.e., it has to be invariant under
permutations of the list.

91

Determinacy vs. observational equivalence

The last example shows that the notion of determinacy depends on
the notion of observational equivalence. We propose the following
challenge:

Extend the theory of observational equivalence developed
for SL to a kind of synchronous π-calculus.

• This seems interesting by itself since so far there is no
analogous of Synchronous CCS for the π-calculus.

• Moreover, it may be useful to analyse the notion of
determinacy.

92

