

Plan

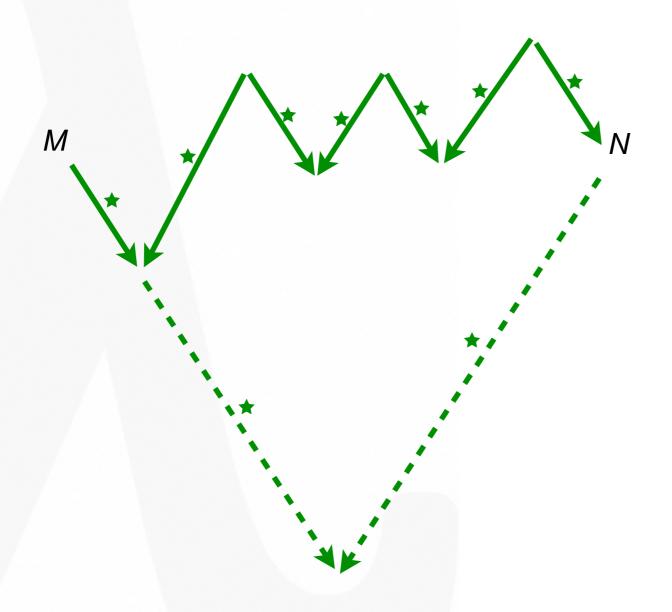
- local confluency
- Church Rosser theorem
- Redexes and residuals
- Finite developments theorem
- Standardization theorem

Consistency

Question: Can we get $M \stackrel{*}{\longrightarrow} 2$ and $M \stackrel{*}{\longrightarrow} 3$??

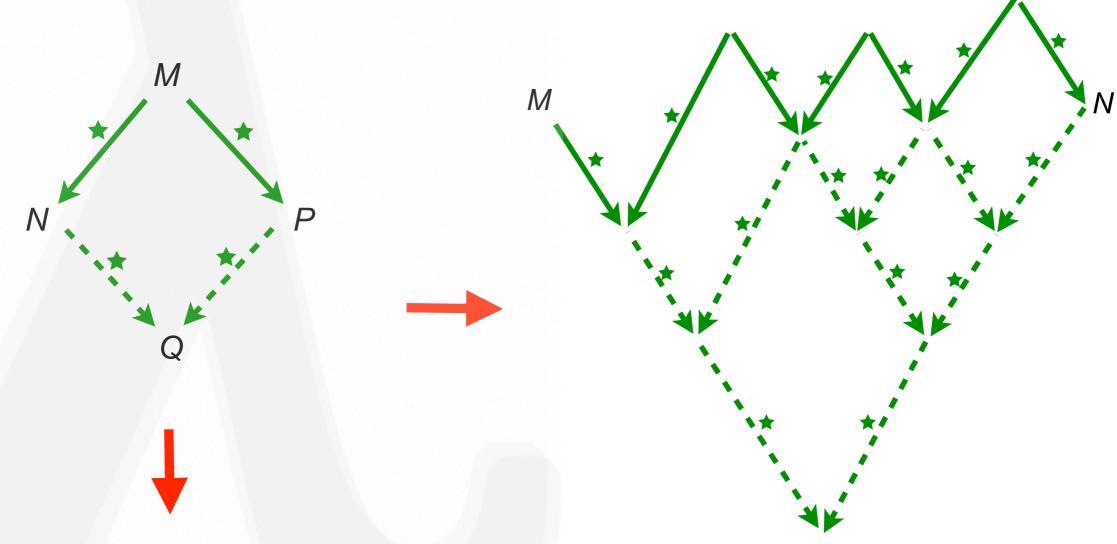
Consequence: $2 =_{\beta} 3$!!

Question: If $M =_{\beta} N$, then $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ for some P??



Then impossible to get $2 =_{\beta} 3$

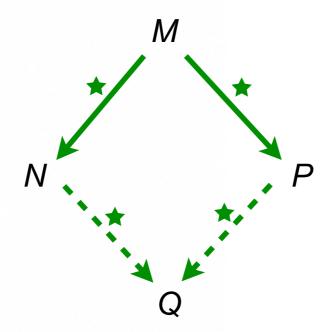
Question: If $M \xrightarrow{*} N$ and $M \xrightarrow{*} P$, then $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$ for some Q?



Corollary: [unicity of normal forms]

If $M \xrightarrow{*} N$ in normal form and $M \xrightarrow{*} N'$ in normal form, then N = N'.

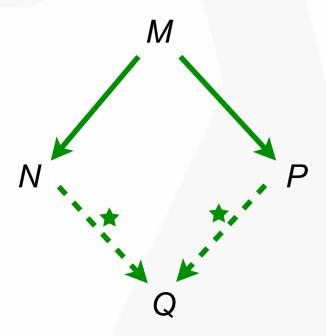
Goal: If $M \xrightarrow{*} N$ and $M \xrightarrow{*} P$, there is Q such that $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$



How to prove confluency?

Local confluency

• Theorem 1: If $M \longrightarrow N$ and $M \longrightarrow P$ there is Q such that $N \stackrel{*}{\longrightarrow} Q$ and $P \stackrel{*}{\longrightarrow} Q$

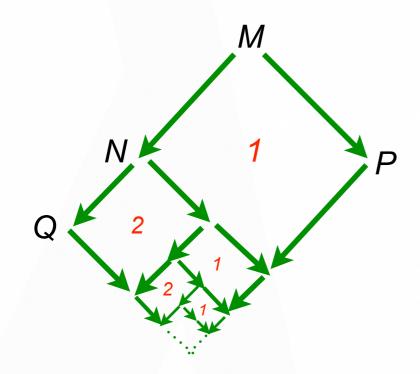


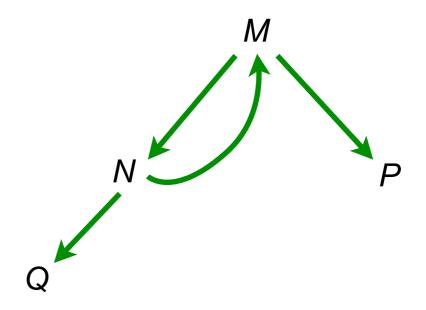
• Example: $(\lambda x.xx)(Iz)$ \rightarrow $(\lambda x.xx)z$ \downarrow Iz(Iz) \rightarrow zz where $I = \lambda x.x$

- Lemma 1: $M \rightarrow N$ implies $P\{x := M\} \stackrel{*}{\longrightarrow} P\{x := N\}$
- Lemma 2: $M \longrightarrow N$ implies $M\{x := P\} \longrightarrow N\{x := P\}$

• Substitution lemma: $M\{x := N\}\{y := P\} = M\{y := P\}\{x := N\{y := P\}\}$ when x not free in P

• Fact: local confluency does not imply confluency





10 km/hr

1 km/hr

We define # such that $\longrightarrow \subset \# \subset \xrightarrow{*}$

Definition [parallel reduction]:

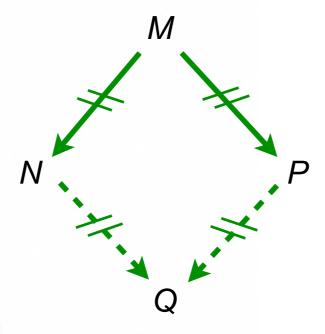
[App Rule]
$$\frac{M \# M' N \# N'}{MN \# M'N'}$$
 [Abs Rule] $\frac{M \# M'}{\lambda x.M \# \lambda x.M'}$

[Abs Rule]
$$\frac{M \not \longrightarrow M'}{\lambda x.M \not \longrightarrow \lambda x.M'}$$

[//Beta Rule]
$$\frac{M \not \longrightarrow M'}{(\lambda x.M)N \not \longrightarrow M'\{x := N'\}}$$

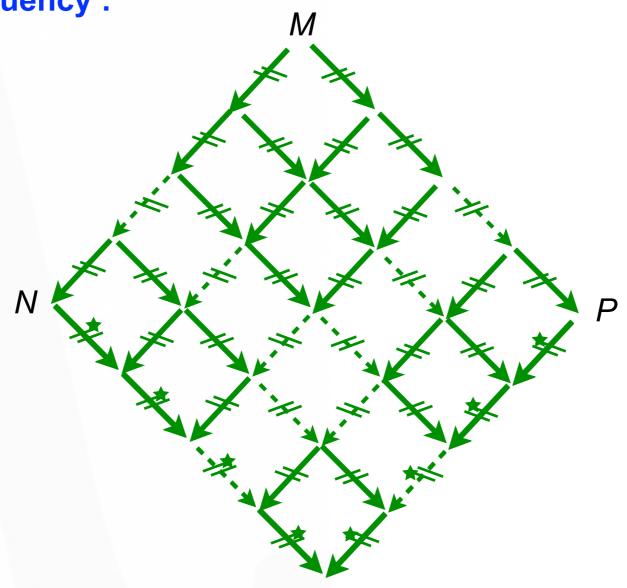
• Example:

Goal is to prove strongly local confluency:



• Example:
$$(\lambda x.xx)(Iz)$$
 $(\lambda x.xx)z$ $(\lambda x.xx)z$ $(\lambda z.xx)z$ $(\lambda z.xx)z$

• Proof of confluency:



• Lemma 4: $M \not\longrightarrow N$ and $P \not\longrightarrow Q$ implies $M\{x := P\} \not\longrightarrow N\{x := Q\}$

Proof: by structural induction on *M*.

Case 1: M = x # x = N. Then $M\{x := P\} = P \# Q = N\{x := Q\}$

Case 2: M = y # y = N. Then $M\{x := P\} = y \# y = N\{x := Q\}$

Case 4: $M = M_1 M_2 \not \longrightarrow N_1 N_2 = N$ with $M_1 \not \longrightarrow N_1$ and $M_2 \not \longrightarrow N_2$. By induction $M_1\{x := P\} \not \longrightarrow N_1\{x := Q\}$ and $M_2\{x := P\} \not \longrightarrow N_2\{x := Q\}$. So $M\{x := P\} = M_1\{x := P\}M_2\{x := P\} \not \longrightarrow N_1\{x := Q\}N_2\{x := Q\} = N\{x := Q\}$.

Case 5: $M = (\lambda y. M_1) M_2 \# N_1 \{y := N_2\} = N \text{ with } M_1 \# N_1 \text{ and } M_2 \# N_2.$ By induction $M_1 \{x := P\} \# N_1 \{x := Q\} \text{ and } M_2 \{x := P\} \# N_2 \{x := Q\}.$ So $M \{x := P\} = (\lambda y. M_1 \{x := P\}) (M_2 \{x := P\}) \# N_1 \{x := Q\} \{y := N_2 \{x := Q\}\} = N_1 \{y := N_2\} \{x := Q\} = N \text{ by substitution lemma, since } y \notin \text{var}(Q) \subset \text{var}(P).$

• Lemma 5: If $M \not\longrightarrow N$ and $M \not\longrightarrow P$, then $N \not\longrightarrow Q$ and $N \not\longrightarrow Q$ for some Q.

Proof: by structural induction on *M*.

Case 1: M = x. Then $M = x \not\!\!\!/ x = N$ and $M = x \not\!\!\!/ x = P$. We have too $N \not\!\!\!/ x = Q$ and $P \not\!\!\!/ x = Q$.

Case 2: $M = \lambda y. M_1 \not \# \lambda y. N_1 = N$ with $M_1 \not \# N_1$. Same for $M = \lambda y. M_1 \not \# \lambda y. P_1 = P$ with $M_1 \not \# P_1$. By induction $N_1 \not \# Q_1$ and $P_1 \not \# Q_1$ for some Q_1 . So $N = \lambda y. N_1 \not \# \lambda y. Q_1 = Q$ and $P = \lambda y. P_1 \not \# \lambda y. Q_1 = Q$.

Case 3: $M = M_1 M_2 \not\longrightarrow N_1 N_2 = N$ and $M = M_1 M_2 \not\longrightarrow P_1 P_2 = P$ with $M_i \not\longrightarrow N_i$, $M_i \not\longrightarrow P_i$ $(1 \le i \le 2)$. By induction $N_i \not\longrightarrow Q_i$ and $P_i \not\longrightarrow Q_i$ for some Q_i . So $N \not\longrightarrow Q_1 Q_2 = Q$ and $P \not\longrightarrow Q_1 Q_2 = Q$.

Case 4: $M = (\lambda x. M_1)M_2 \not \longrightarrow N_1\{x := N_2\} = N$ and $M = (\lambda x. M_1)M_2 \not \longrightarrow P'P_2 = P$ with $M_i \not \longrightarrow N_i$ $(1 \le i \le 2)$ and $\lambda x. M_1 \not \longrightarrow P'$, $M_2 \not \longrightarrow P_2$. Therefore $P' = \lambda x. P_1$ with $M_1 \not \longrightarrow P_1$. By induction $N_i \not \longrightarrow Q_i$ and $P_i \not \longrightarrow Q_i$ for some Q_i . So $N \not \longrightarrow Q_1\{x := Q_2\} = Q$ by lemma 4. And $P \not \longrightarrow Q_1\{x := Q_2\} = Q$ by definition.

Case 5: symmetric.

Proof:

Case 6: $M = (\lambda x. M_1) M_2 \not \longrightarrow N_1 \{x := N_2\} = N \text{ and } M = (\lambda x. M_1) M_2 \not \longrightarrow P_1 \{x := P_2\} = P \text{ with } M_i \not \longrightarrow N_i, M_i \not \longrightarrow P_i \ (1 \le i \le 2).$ By induction $N_i \not \longrightarrow Q_i \text{ and } P_i \not \longrightarrow Q_i \text{ for some } Q_i.$ So $N \not \longrightarrow Q_1 \{x := Q_2\} = Q \text{ and } P \not \longrightarrow Q_1 \{x := Q_2\} = Q \text{ by lemma 4.}$

- Lemma 6: If $M \longrightarrow N$, then $M \not\!\!\!/\!\!\!/ N$.
- Lemma 7: If $M \not\longrightarrow N$, then $M \xrightarrow{*} N$.

Proofs: obvious.

Theorem 2 [Church-Rosser]:

If $M \xrightarrow{*} N$ and $M \xrightarrow{*} P$, then $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$ for some Q.

- previous axiomatic method is due to Martin-Löf
- Martin-Löf's method models inside-out parallel reductions
- there are other proofs with explicit redexes

Curry's finite developments

Finite developments

- tracking redexes while contracting others
- examples:

$$\Delta(Ia) \longrightarrow Ia(Ia)$$

$$Ia(\Delta(Ib)) \longrightarrow Ia(Ib(Ib))$$

$$I(\Delta(Ia)) \longrightarrow I(Ia(Ia))$$

$$\Delta(Ia) \longrightarrow Ia(Ia))$$

$$Ia(\Delta(Ib)) \longrightarrow Ia(Ib(Ib))$$

$$\Delta\Delta \longrightarrow \Delta\Delta$$

$$(\lambda x.Ia)(Ib) \longrightarrow Ia$$

$$\Delta = \lambda x. xx$$
 $I = \lambda x. x$ $K = \lambda xy. x$

- when R is redex in M and M → N
 the set R/S of residuals of R in N is defined by inspecting relative positions of R and S in M:
- **1-** R and S disjoint, $M = \cdots R \cdots S \cdots \xrightarrow{S} \cdots R \cdots S' \cdots = N$
- **2-** S in $R = (\lambda x.A)B$ **2a-** S in A, $M = \cdots (\lambda x.\cdots S\cdots)B \cdots \xrightarrow{S} \cdots (\lambda x.\cdots S'\cdots)B \cdots = N$ **2b-** S in B, $M = \cdots (\lambda x.A)(\cdots S\cdots) \cdots \xrightarrow{S} \cdots (\lambda x.A)(\cdots S'\cdots) \cdots = N$
- **3-** R in $S = (\lambda y.C)D$ **3a-** R in C, $M = \cdots (\lambda y.\cdots R\cdots)D\cdots \xrightarrow{S} \cdots R\{y:=D\}\cdots = N$ **3b-** R in D, $M = \cdots (\lambda y.C)(\cdots R\cdots)\cdots \xrightarrow{S} \cdots (\cdots R\cdots)\cdots (\cdots R\cdots)\cdots = N$
- **4-** R is S, no residuals of R.

- when ρ is a reduction from M to N, i.e. $\rho: M \xrightarrow{*} N$ the set of residuals of R by ρ is defined by **transitivity** on the length of ρ and is written R/ρ
- notice that we can have $S \in R/\rho$ and $R \neq S$ residuals may **not** be syntacticly **equal** (see previous 3rd example)

- residuals depend on reductions. Two reductions between same terms may produce two distinct sets of residuals.
- a redex is residual of a single redex (the inverse of the residual relation is a function): R ∈ S/ρ and R ∈ T/ρ implies S = T

Exercices

- Find redex R and reductions ρ and σ between M and N such that residuals of R by ρ and σ differ. Hint: consider M = I(Ix)
- Show that residuals of nested redexes keep nested.
- Show that residuals of disjoint redexes may be nested.
- Show that residuals of a redex may be nested after several reduction steps.

Created redexes

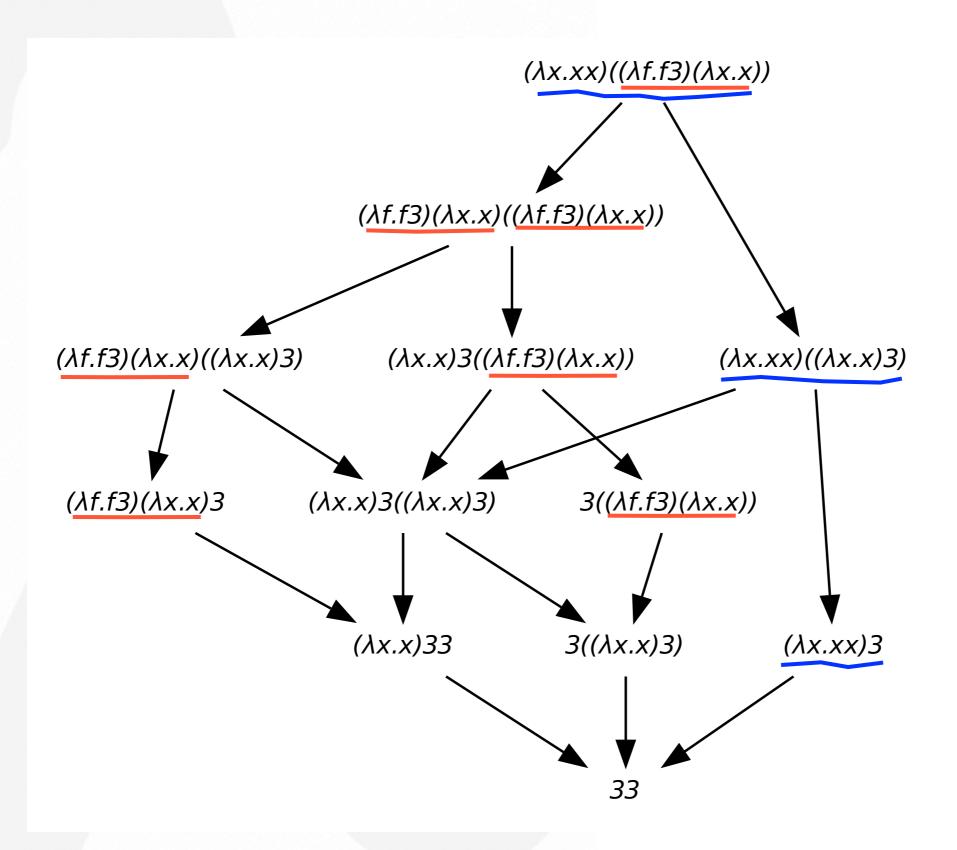
• A redex is **created by reduction** ρ if it is not a residual by ρ of a redex in initial term. Thus R is created by ρ when $\rho: M \xrightarrow{*} N$ and $\nexists S$, $R \in S/\rho$

$$(\lambda x.xa)I \longrightarrow Ia$$

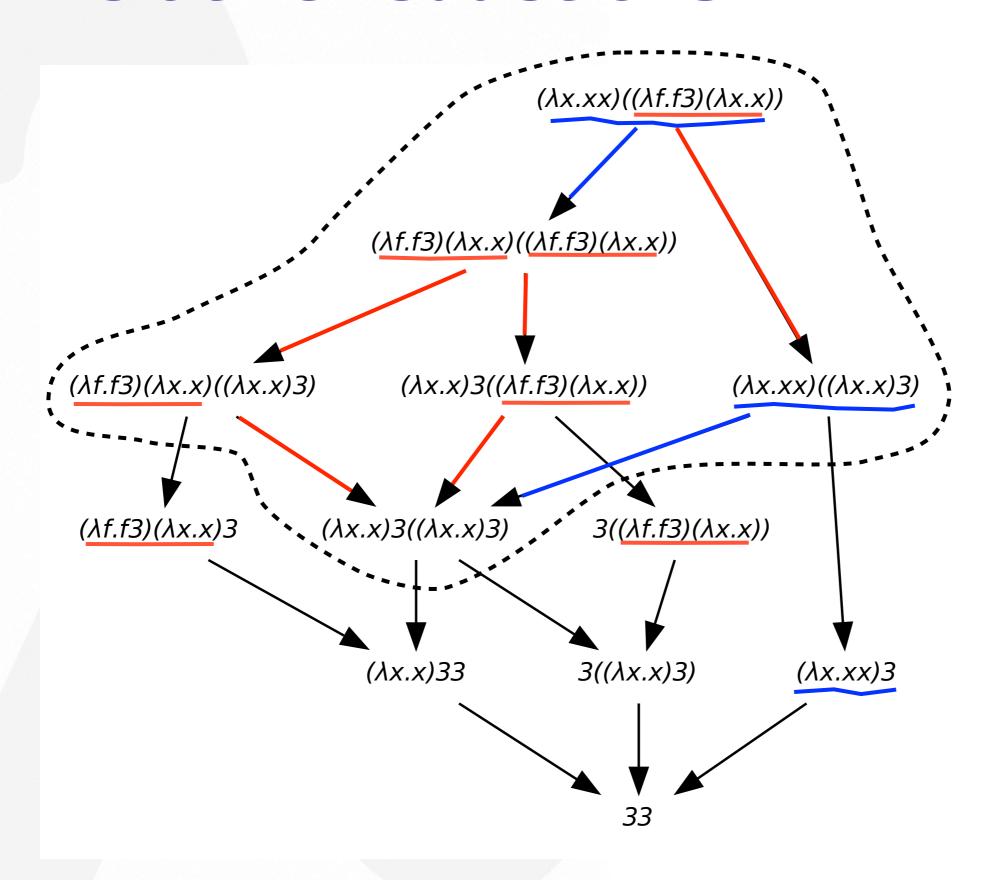
$$(\lambda xy.xy)ab \longrightarrow (\lambda y.ay)b$$

$$IIa \longrightarrow Ia$$

$$\Delta \Delta \longrightarrow \Delta \Delta$$



Relative reductions



Finite developments

- Let \mathcal{F} be a set of redexes in M. A reduction relative to \mathcal{F} only contracts residuals of \mathcal{F} .
- When there are no more residuals of \mathcal{F} to contract, we say the relative reduction is a **development of** \mathcal{F} .

- Theorem 3 [finite developments] (Curry) Let \mathcal{F} be a set of redexes in M. Then:
 - relative reductions cannot be infinite; they all end in a development of \mathcal{F}
 - all developments end on a same term N
 - let R be a redex in M. Then **residuals** of R by finite developments of \mathcal{F} are the same.

Finite developments

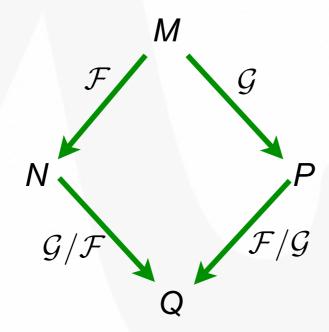
• Therefore we can define (without ambiguity) a new parallel step reduction:

$$\rho: M \xrightarrow{\mathcal{F}} N$$

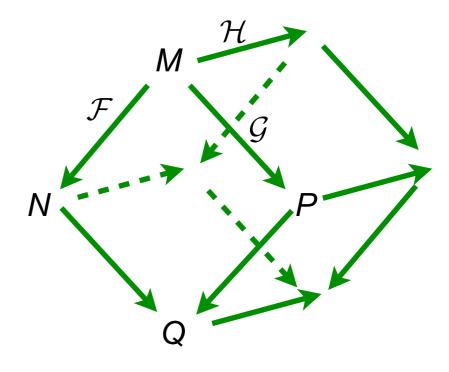
and when R is a redex in M, we can write R/\mathcal{F} for its residuals in N

Two corollaries:

Lemma of Parallel Moves



Cube Lemma



Labeled calculus

- Finite developments will be shown with a labeled calculus.
- Lambda calculus with labeled redexes

$$M, N, P$$
 ::= $x, y, z, ...$ (variables)

| $(\lambda x.M)$ (M as function of x)

| $(M N)$ (M applied to N)

| $(x, d, ...$ (constants)

| $(x, d, ...$ (labeled redexes)

F-labeled reduction

$$(\lambda x.M)^r N \longrightarrow M\{x := N\}$$
 when $r \in \mathcal{F}$

Labeled substitution

```
... as before  ((\lambda x.M)^r N) \{ y := P \} = ((\lambda x.M) \{ y := P \})^r (N \{ y := P \})
```

Labeled calculus

- Theorem For any F, the labeled calculus is confluent.
- Theorem For any \mathcal{F} , the labeled calculus is **strongly normalizable** (no infinite labeled reductions).
- Lemma For any \mathcal{F} -reduction $\rho: M \xrightarrow{*} N$, a labeled redex in N has label r if and only if it is **residual** by ρ of a redex with label r in M.

• Theorem 3 [finite developments] (Curry)

Labeled calculus

- Proof of confluency is again with Martin-Löf's axiomatic method.
- Proof of residual property is by simple inspection of a reduction step.
- Proof of termination is slightly more complex with following lemmas:
- Notation $M \xrightarrow[int]{} N$ if M reduces to N without contracting a toplevel redex.
- Lemma 1 [Barendregt-like] $M\{x := N\} \xrightarrow{*} (\lambda y.P)^r Q$ implies $M = (\lambda y.A)^r B$ with $A\{x := N\} \xrightarrow{*} P$, $B\{x := N\} \xrightarrow{*} Q$ or M = x and $N \xrightarrow{*} (\lambda y.P)^r Q$
- Lemma 2 $M, N \in SN$ (strongly normalizing) implies $M\{x := N\} \in SN$
- Theorem $M \in \mathcal{SN}$ for all M.

Labeled calculus proofs

• Lemma 1 [Barendregt-like] $M\{x := N\} \xrightarrow{\star} (\lambda y.P)^r Q$ implies

$$M = (\lambda y.A)^r B$$
 with $A\{x := N\} \xrightarrow{\bullet} P$, $B\{x := N\} \xrightarrow{\bullet} Q$

or

$$M = x$$
 and $N \xrightarrow{*} (\lambda y.P)^r Q$

Proof Let P^* be $P\{x := N\}$ for any P.

Case 1: M = x. Then $M^* = N$ and $N \xrightarrow{*} (\lambda y.P)^r Q$.

Case 2: M = y. Then $M^* = y$. Impossible.

Case 2: $M = \lambda y.M_1$. Again impossible.

Case 3: $M = M_1 M_2$ or $M = (\lambda y. M_1)^s M_2$ with $s \neq r$. These cases are also impossible.

Case 4: $M = (\lambda y. M_1)^r M_2$. Then $M_1^* \xrightarrow{\bullet} P$ and $M_2^* \xrightarrow{\bullet} Q$.

Labeled calculus proofs

• Lemma 2 $M, N \in SN$ (strongly normalizing) implies $M\{x := N\} \in SN$

Proof: by induction on $\langle depth(M), ||M|| \rangle$. Let P^* be $P\{x := N\}$ for any P.

Case 1: M = x. Then $M^* = N \in \mathcal{SN}$. If M = y. Then $M^* = y \in \mathcal{SN}$.

Case 2: $M = \lambda y. M_1$. Then $M^* = \lambda y. M_1^*$ and by induction $M_1^* \in \mathcal{SN}$.

Case 3: $M = M_1 M_2$ and never $M^* \longrightarrow (\lambda y.A)^r B$. Same argument on M_1 and M_2 .

Case 4: $M = M_1 M_2$ and $M^* \xrightarrow{} (\lambda y.A)^r B$. We can always consider first time when this toplevel redex appears. Hence we have $M^* \xrightarrow{} (\lambda y.A)^r B$. By lemma 1, we have two cases:

Case 4.1: $M = (\lambda y. M_3)^r M_2$ with $M_3^* \xrightarrow{*} A$ and $M_2^* \xrightarrow{*} B$. Then $M^* = (\lambda y. M_3^*)^r M_2^*$. As $M_3 \in \mathcal{SN}$ and $M_2 \in \mathcal{SN}$, the internal reductions from M^* terminate by induction. If $r \notin \mathcal{F}$, there are no extra reductions. If $r \in \mathcal{F}$, we can have $M_3^* \xrightarrow{*} A$, $M_2^* \xrightarrow{*} B$ and $(\lambda y. A)^r B \xrightarrow{*} A \{y := B\}$. But $M \xrightarrow{*} M_3 \{y := M_2\}$ and $(M_3 \{y := M_2\})^* \xrightarrow{*} A \{y := B\}$. As depth $(A \{y := B\}) \subseteq A \{y := B\}$ depth $(A \{y := B\}) \subseteq A \{y := B\}$.

Case 4.2: M = x. Impossible.

Labeled calculus proofs

• Theorem $M \in \mathcal{SN}$ for all M.

Proof: by induction on ||M||.

Case 1: M = x. Obvious.

Case 2: $M = \lambda x. M_1$. Obvious since $M_1 \in \mathcal{SN}$ by induction.

Case 3: $M = M_1 M_2$ and $M_1 \neq (\lambda x.A)^r$. Then all reductions are internal to M_1 and M_2 . Therefore $M \in \mathcal{SN}$ by induction on M_1 and M_2 .

Case 4: $M = (\lambda x. M_1)^r M_2$ and $r \notin \mathcal{F}$. Same argument on M_1 and M_2 .

Case 5: $M = (\lambda x. M_1)^r M_2$ and $r \in \mathcal{F}$. Then M_1 and M_2 in \mathcal{SN} by induction. But we can also have $M \xrightarrow{*} (\lambda x. A)^r B \longrightarrow A\{x := B\}$ with A and B in \mathcal{SN} . By Lemma 2, we know that $A\{x := B\} \in \mathcal{SN}$.

Standardization

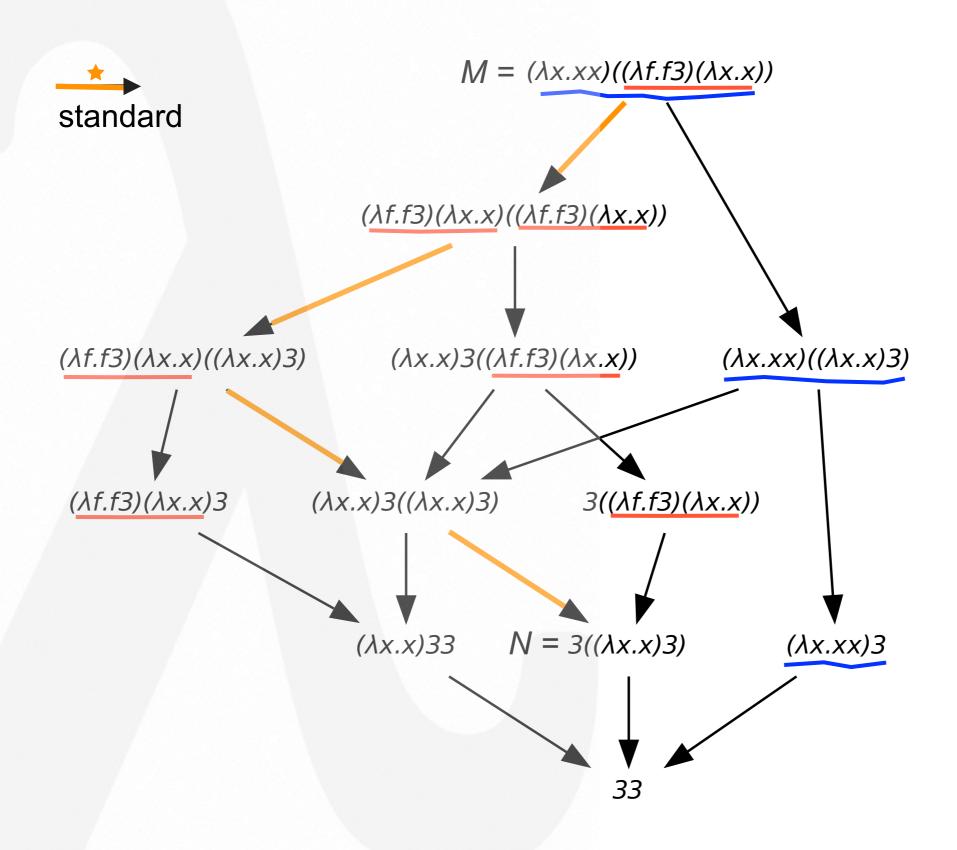
CENTRE DE RECHERCHE COMMUN INRIA MICROSOFT RESEARCH

Standard reduction

Redex R is to the left of redex S if the λ of R is to the left of the λ of S.

The reduction $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ is standard iff for all $i, j \ (0 < i < j \le n)$, redex R_j is not a residual of redex R'_j to the left of R_i in M_{i-1} .

Standard reduction



Standardization

• Theorem [standardization] (Curry) Any reduction can be standardized.

• The **normal reduction** (each step contracts the leftmost-outermost redex) is a standard reduction.

• Corollary [normalization] If *M* has a normal form, the normal reduction reaches the normal form.

Standardization lemma

- **Notation:** write $R <_{\ell} S$ if redex R is to the left of redex S.
- Lemma 1 Let R, S be redexes in M such that $R <_{\ell} S$. Let $M \xrightarrow{S} N$. Then $R/S = \{R'\}$. Furthermore, if $T' <_{\ell} R'$, then $\exists T, T <_{\ell} R, T' \in T/S$. [one cannot create a redex through another more-to-the-left]

 Proof of standardization thm: [Klop] application of the finite developments theorem and previous lemma.

Standardization axioms

- 3 axioms are sufficient to get lemma 1
- Axiom 1 [linearity] $S \not\leq_{\ell} R$ implies $\exists !R', R' \in R/S$
- Axiom 2 [context-freeness] $S \not\leq_{\ell} R$ and $R' \in R/S$ and $T' \in T/S$ implies $T \Re R$ iff $T' \Re R'$ where \Re is $<_{\ell}$ or $>_{\ell}$
- Axiom 3 [left barrier creation] $R <_{\ell} S$ and $\nexists T'$, $T \in T'/S$ implies $R <_{\ell} T$

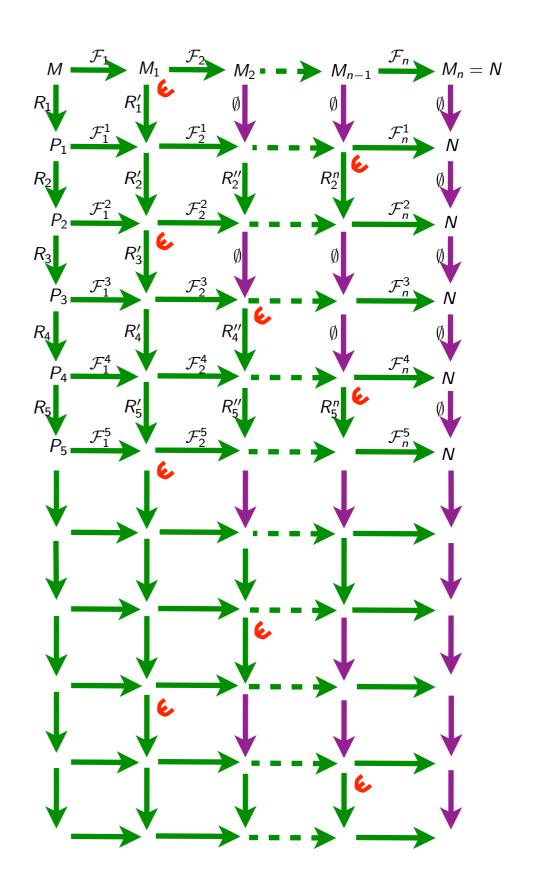
Standardization proof

Proof:

Each square is an application of the lemma of parallel moves. Let ρ_i be the horizontal reductions and σ_j the vertical ones. Each horizontal step is a parallel step, vertical steps are either elementary or empty.

We start with reduction ρ_0 from M to N. Let R_1 be the leftmost redex in M with residual contracted in ρ_0 . By lemma 1, it has a single residual R_1' in M_1 , M_2 , ... until it belongs to some \mathcal{F}_k . Here $R_1' \in \mathcal{F}_2$. There are no more residuals of R_1 in M_{k+1} , M_{k+2} ,

Let R_2 be leftmost redex in P_1 with residual contracted in ρ_1 . Here the unique residual is contracted at step n. Again with R_3 leftmost with residual contracted in ρ_2 . Etc.

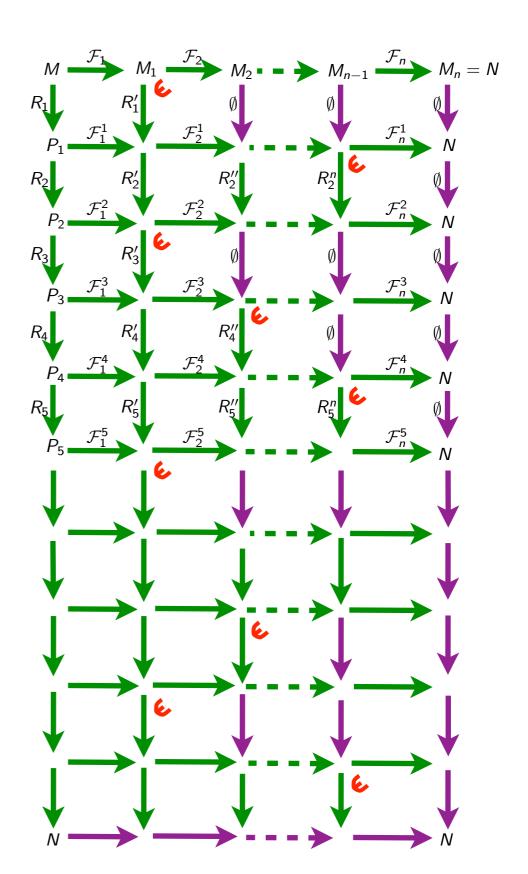


Standardization proof

Proof (cont'd):

Now reduction σ_0 starting from M cannot be infinite and stops for some p. If not, there is a rightmost column σ_k with infinitely non-empty steps. After a while, this reduction is a reduction relative to a set \mathcal{F}_i^j , which cannot be infinite by the Finite Development theorem.

Then ρ_p is an empty reduction and therefore the final term of σ_0 is N.



Standardization proof

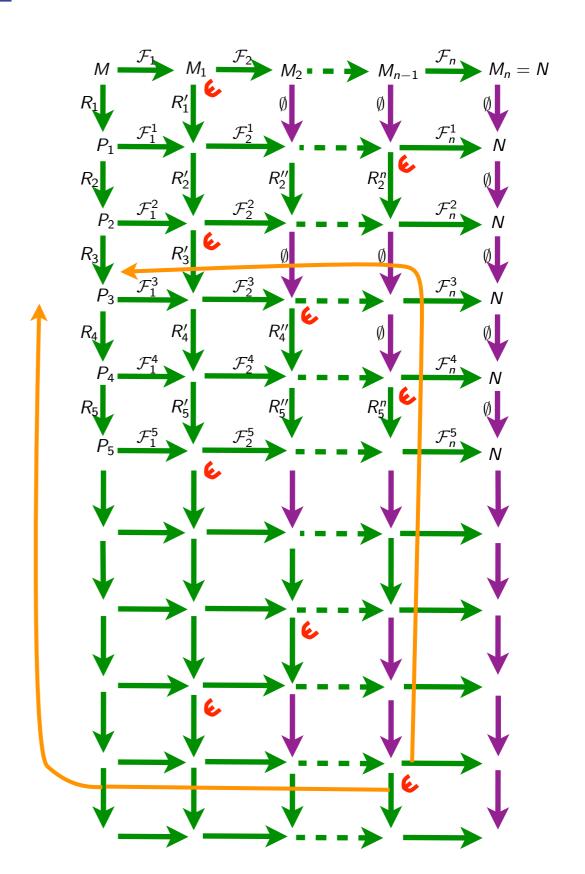
Proof (cont'd):

We claim σ_0 is a standard reduction. Suppose R_k (k > i) is residual of S_i to the left of R_i in P_{i-1} .

By construction R_k has residual S_k^j along ρ_{i-1} contracted at some j step. So S_k^j is residual of S_i .

By the cube lemma, it is also residual of some S_i^j along σ_{j-1} . Therefore there is S_i^j in \mathcal{F}_i^j residual of S_i leftmore or outer than R_i .

Contradiction.



Redex creation

Created redexes

• A redex is **created by reduction** ρ if it is not a residual by ρ of a redex in initial term. Thus R is created by ρ when $\rho: M \xrightarrow{*} N$ and $\nexists S$, $R \in S/\rho$

$$(\lambda x.xa)I \longrightarrow Ia$$

$$(\lambda xy.xy)ab \longrightarrow (\lambda y.ay)b$$

$$IIa \longrightarrow Ia$$

$$\Delta \Delta \longrightarrow \Delta \Delta$$

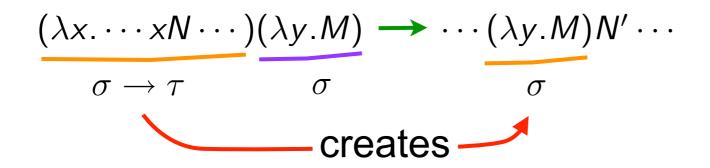
 By Finite Developments thm, a reduction can be infinite iff it does not stop creating new redexes.

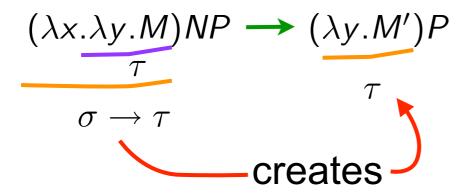
$$\Delta\Delta \longrightarrow \Delta\Delta \longrightarrow \Delta\Delta \longrightarrow \Delta\Delta \longrightarrow \cdots$$

 If the length of creation is bounded, there is also a generalized finite developments theorem.

Created redexes in typed calculus

only 2 cases for creation of redexes within a reduction step





length of creation is bounded by size of types of initial term

Other properties

Other properties

- confluency with eta-rules, delta-rules
- generalized finite developments theorem
- permutation equivalence
- redex families
- finite developments vs strong normalization
- completeness of reduction strategies
- head normal forms
- Bohm trees
- continuity theorem
- sequentiality of Bohm trees
- models of the type-free lambda-calculus
- typed lambda-calculi
- continuations and reduction strategies
- ...

- process calculi and lambda-calculus
- abstract reduction systems
- explicit substitutions
- implementation of functional languages
- lazy evaluators
- SOS
- all theory of programming languages
- •
- connection to mathematical logic
- calculus of constructions
- •

Homeworks

CENTRE DE RECHERCHE COMMUN INRIA MICROSOFT RESEARCH

Exercices

Show that:

1-
$$M \longrightarrow_{\eta} N \longrightarrow P$$
 implies $M \longrightarrow Q \xrightarrow{*}_{\eta} P$ for some Q

2-
$$M \xrightarrow{*}_{\eta} N \xrightarrow{*} P$$
 implies $M \xrightarrow{*} Q \xrightarrow{*}_{\eta} P$ for some Q

3-
$$M \xrightarrow{*}_{\beta,\eta} N$$
 implies $M \xrightarrow{*} P \xrightarrow{*}_{\eta} N$ for some P

4-
$$M \longrightarrow N$$
 and $M \longrightarrow_{\eta} P$ implies $N \xrightarrow{*}_{\eta} Q$ and $P \xrightarrow{1} Q$ for some Q

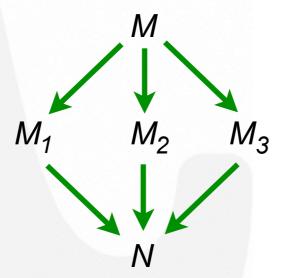
5-
$$M \xrightarrow{*}_{\eta} N$$
 and $M \xrightarrow{*}_{\eta} P$ implies $N \xrightarrow{*}_{\eta} Q$ and $P \xrightarrow{*}_{\eta} Q$ for some Q

6-
$$M \xrightarrow{*}_{\beta,\eta} N$$
 and $M \xrightarrow{*}_{\beta,\eta} P$ implies $N \xrightarrow{*}_{\beta,\eta} Q$ and $P \xrightarrow{*}_{\beta,\eta} Q$ for some Q Therefore $\xrightarrow{*}_{\beta,\eta}$ is confluent.

• Show same property for β -reduction and η -expansion ($\longrightarrow \cup \longleftarrow_{\eta}$)*

Exercices

- 7- Show there is no M such that $M \xrightarrow{*} Kac$ and $M \xrightarrow{*} Kbc$ where $K = \lambda x. \lambda y. x$.
- **8-** Find M such that $M \xrightarrow{*} Kab$ and $M \xrightarrow{*} Kac$.
- 9- (difficult) Show that 🚓 is not confluent.
- **10-** Show that $\Delta\Delta(II)$ has no normal form when $I = \lambda x.x$ and $\Delta = \lambda x.xx$.
- **11-** Show that $\Delta \Delta M_1 M_2 \cdots M_n$ has no normal form for any $M_1, M_2, \ldots M_n$ $(n \ge 0)$.
- **12-** Show there is no *M* whose reduction graph is exactly following:



13- Show that rightmost-outermost reduction may miss normal forms.