
Moscova 08

Jean-Jacques Lévy

INRIA Rocquencourt

May 15, 2008



Research team



Personal et history

Present staff
I 1 DR (Lévy)

I 3 CR1 (Maranget, Leifer, Zappa Nardelli), 1 CR2 (Corin)

I 4 PhD students (Peskine, Deniélou, Alglave, Guts)

I 1 assistant (S. Loubressac)

I 2 interns (Braibant, Planul from ENS Lyon)

INRIA Rocquencourt ↔ MSR-INRIA Saclay (Fournet)

Moscova history:
I Para (1988), Head: Lévy

I Moscova (2000), Head: Gonthier

I 15 PhDs: Fournet[msr], le Fessant[saclay], Schmitt[grenoble], Melliès[pps],
Pouzet[iuf], Conchon[orsay], Doligez, Maranget, · · · Laneve, Ariola.

I in Para/Moscova: 75% Coq proof of the 4-color thm; debugging of 3 modules of
Ariane-501 PV; spinoff of Polyspace [Deutsch]; etc.

I recent departures: Gonthier[msr], Doligez[gallium], Hardin[p6]



Research themes



Research themes

programming languages
[safe marshalling, ott]

concurrency
[jocaml, separation logic/c-minor/concurrency, relaxed memory models]

compiling security
[secured sessions, tls, audits, history based information flow]



Research results



Example 1 PoplMark −→ OTT

formal semantics of SML or Acute are too large (40-80 pages)
⇒ tools for complete definitions of full languages

problems:
1. Readability and writability
3. Correctness of proofs

2. Consistency of definitions
4. Relationship semantics/implementations

OTT

I ASCII as input
I outputs to TeX, Isabelle, HOL, Coq
I proofs are still manual

[Sewell, Zappa Nardelli]

[demo]

file:/Applications/Utilities/Terminal.app


Call-by-value λ-calculus (1/4 – TeX)



Call-by-value λ-calculus (2/4 – Ott)



Call-by-value λ-calculus (3/4 – Coq)



Call-by-value λ-calculus (4/4 – Isabelle)



Lists: a more typical not-so-mini example

proof of the subject reduction theorem for Ocaml
without objects + modules in 7 weeks
(3 Harper-years)



Example 2 Relaxed memory models

description of Intel [Cambridge] / PPC [INRIA] memory model
constraints using event structures

formalisation in Isabelle/Coq, symbolic evaluator, test wrt processor
behaviour

formal proof of simple concurrent code (eg. Linux spinlocks)

operational reasoning: data-race freedom, separation logic

certified compiler back-ends for concurrent primitives

[Zappa Nardelli, Alglave, Braibant, Sewell et al]



Intel whitepaper (1/3)



Intel whitepaper (2/3)



Intel whitepaper (3/3)



Example 3 Secure Communication – INRIA/MSR

passing authenticated (signed) values between 2 run-times;

design of a mini F# + primitives for authentication
+ global contract with sessions types;
[Corin, Deniélou, Leifer, Fournet, Bhargavan, CSFW’07]

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols;

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives.

extension to other security properties
(privacy, integrity, sessions, etc)

F# = Ocaml − modules + .NET



Example 3 Secure Communication – INRIA/MSR

passing authenticated (signed) values between 2 run-times;

design of a mini F# + primitives for authentication
+ global contract with sessions types;
[Corin, Deniélou, Leifer, Fournet, Bhargavan, CSFW’07]

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols;

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives.

extension to other security properties
(privacy, integrity, sessions, etc)

F# = Ocaml − modules + .NET



Example 3 Secure Communication – INRIA/MSR

passing authenticated (signed) values between 2 run-times;

design of a mini F# + primitives for authentication
+ global contract with sessions types;
[Corin, Deniélou, Leifer, Fournet, Bhargavan, CSFW’07]

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols;

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives.

extension to other security properties
(privacy, integrity, sessions, etc)

F# = Ocaml − modules + .NET













Example 4 Certified implementation of SSL/TLS



SSL/TLS

simple TLS client C and server S written in Ocaml

checking interoperability with other clients/servers

proof of secured implementation of C/S in Proverif (formal security)

same with Cryptoverif (computational security)

[Corin, Zalinescu, Fournet]



Other works

Jocaml (version 3; more portable, documentation)
[Maranget, Mandel]

Security through logs
[Guts, Fournet, Zappa Nardelli]

Acute – type safed marshalling
[Leifer, Peskine, Zappa Nardelli]

Pattern-matching in Ocaml
[Maranget]

Process calculi (bigraphs, reversible processes)
[Leifer, Krivine]

History based flow analysis
[Blanc, Lévy]



Miscellaneous



Links

through Joint Centre with Microsoft Research

ANR Parsec with Mimosa, Everest, Lande, PPS

Gallium for general discussion about programming languages

several projects with Computer Lab in Cambridge University

Andrew Appel, Princeton



Competitors

POPL/ICFP community, . . .

formal security (MSR – Abadi, Bhargavan, Gordon, etc)

concurrency and formal proofs (Milner, Peter O’Hearn, Sewell)

· · · many others



Extra softwares – Admin

Jocaml [Maranget, Mandel]

5% Ocaml (pattern matching)
[Maranget]

Hévéa: an efficient translator of Tex into Html
[Maranget]

Advix: efficient previewer of Dvi
[Rémy, Zappa Nardelli]

Burfiks: bayesian filter for the web [burfiks.gforge.inria.fr]

[Zappa Nardelli + several indian interns]

Lévy as Director of the MSR-INRIA Joint Centre



Teaching

MPRI (master course at Paris 7)

Ecole polytechnique
[Lévy on leave 1/1/06 -- ??, Maranget]

lecture notes + web pages + book
“Introduction à la théorie des langages de programmation”
with [Dowek], similar plan with [Cori]

Entrance examination at Polytechnique
[Maranget (4 years), Lévy since beginning]

Bertinoro, Bangalore, etc.



Objectives for next years



Future

Ott, Jocaml widely used

easy binders in Ott

concurrent secured sessions

proofs of concurrent algorithms with relaxed memory models

security with logs

programming languages with secure primitives safely compiled.


