
Herding cats: Modelling, Simulation, Testing, and Data-mi ning for
Weak Memory

Jade Alglave, University College London

Luc Maranget, INRIA

Michael Tautschnig, Queen Mary University of London

We propose an axiomatic generic framework for modelling weak memory. We show how to instantiate this

framework for SC, TSO, C++ restricted to release-acquire atomics, and Power. For Power, we compare our

model to a preceding operational model in which we found a flaw. To do so, we define an operational model

that we show equivalent to our axiomatic model.

We also propose a model for ARM. Our testing on this architecture revealed a behaviour later acknowl-

edged as a bug by ARM, and more recently 31 additional anomalies.

We offer a new simulation tool, called herd, which allows the user to specify the model of his choice in a

concise way. Given a specification of a model, the tool becomes a simulator for that model. The tool relies on

an axiomatic description; this choice allows us to outperform all previous simulation tools. Additionally, we

confirm that verification time is vastly improved, in the case of bounded model checking.

Finally, we put our models in perspective, in the light of empirical data obtained by analysing the C and

C++ code of a Debian Linux distribution. We present our new analysis tool, called mole, which explores a

piece of code to find the weak memory idioms that it uses.

Categories and Subject Descriptors: B.3.2 [Shared memory]; C.0 [Hardware/software interfaces]

General Terms: Theory, Experimentation, Verification

Additional Key Words and Phrases: Concurrency, Weak Memory Models, Software Verification

1. INTRODUCTION

There is a joke where a physicist and a mathematician are asked to herd cats. The
physicist starts with an infinitely large pen, which he reduces until it is of reasonable
diameter yet contains all the cats. The mathematician builds a fence around himself
and declares the outside to be the inside. Defining memory models is akin to herding
cats: both the physicist’s or mathematician’s attitudes are tempting, but neither can
go without the other.
Recent years have seen many formalisations of memory models emerge

both on the hardware and software sides; see for example [Adir et al. 2003;
Arvind and Maessen 2006; Boehm and Adve 2008; Chong and Ishtiaq 2008;
Boudol and Petri 2009; Sarkar et al. 2009; 2011; 2012; Alglave et al. 2009; 2010;
2012; Batty et al. 2011; Alglave 2012; Mador-Haim et al. 2012; Boudol et al. 2012].
Yet we feel the need for more work in the area of defining models. There are several
reasons for this.

On the hardware side, all existing models of Power (some of which we list in Tab. I)
have some flaws (see Sec. 2). This calls for reinvestigating the model, for the sake of
repairing it of course, but for several other reasons too, which we explain below.
One particularly important reason is that Power underpins C++’s atomic concur-

rency features [Boehm and Adve 2008; Batty et al. 2011; Sarkar et al. 2012]: imple-
mentability on Power has had a major influence on the design of the C++ model. Thus
modelling flaws in Power could affect C++.

Author’s addresses: J. Alglave, University College London, Dept. of Computer Science, Gower Street, London
WC1E 6BT, United Kingdom, email: J.Alglave@cs.ucl.ac.uk; L. Maranget, INRIA Paris-Rocquencourt,
B.P. 105, 78153 Le Chesnay France, email: Luc.Maranget@inria.fr; M. Tautschnig, School of Electronic
Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS,
United Kingdom, email: michael.tautschnig@qmul.ac.uk.

2 J. Alglave et al.

Another important reason is that, at present, the code in the wild (see our experi-
ments in Sec. 9 on release 7.1 of the Debian Linux distribution) still does not use the
C++ atomics. Thus, we believe that programmers have to rely on what the hardware
does, which requires descriptive models of the hardware.

On the software side, recent work shows that the C++ model allows behaviours
that break modular reasoning (see the satisfaction cycles issue in [Batty et al. 2013]),
whereas Power does not, since it prevents out of thin air values (see Sec. 4). More-
over, C++ requires the irreflexivity of a certain relation (see the HBVSMO axiom
in [Batty et al. 2013]), whereas Power offers a stronger acyclicity guarantee, as we
show in this paper.
Ideally, we believe that these models would benefit from stating principles that un-

derpin weak memory as a whole, not just one particular architecture or language. Not
only would it be aesthetically pleasing, but it would allow more informed decisions on
the design of high-level memory models, ease the conception and proofs of compilation
schemes, and allow the reusability of simulation and verification techniques from one
model to another.
Models roughly fall into two classes: operational and axiomatic. Operational mod-

els, e.g. the Power model of [Sarkar et al. 2011], are abstractions of actual machines,
composed of idealised hardware components such as buffers and queues. Axiomatic
models, e.g. the C++ model of [Batty et al. 2011], distinguish allowed behaviours from
forbidden behaviours, usually by constraining various relations on memory accesses.
We now list a few criteria that we believe our models should meet; we do not claim to

be exhaustive, nor do we claim that the present work fully meets all of them, although
we discuss in the conclusion of this paper to what extent it does. Rather, we see this list
as enunciating some wishes for works on weak memory (including ours of course), and
more generally weak consistency, as can be found for example in distributed systems.

Stylistic proximity of models,whether hardware (e.g. x86, Power or ARM) or software
(e.g. C++), would permit the statement of general principles spanning several models
of weak memory. It should be easier to find principles common to Power and C++,
amongst others, if their respective models were described in the same terms.

Rigour is not our only criterion: for example, all the recent Power models enjoy a
considerable amount of rigour, yet are still somewhat flawed.

Concision of the model seems crucial to us: we want to specify a model concisely to
grasp it and modify it rapidly, without needing to dive into a staggering number of
definitions.
One could tend towards photorealistic models and account for each and every detail

of the machine. We find that operational models in general have such traits, although
some do more than others. For example, we find that the work of Sarkar et al. [2011;
2012] is too close to the hardware, and, perhaps paradoxically, too precise, to be easily
amenable to pedagogy, automated reasoning and verification. Although we do recog-
nise the effort and the value of this work, without which we would not have been able
to build the present work, we believe that we need models that are more rationally
descriptive (as coined by Richard Bornat). We go back to what we mean by “rational”
at the end of the introduction.

Efficient simulation and verificationhave not been the focus of previousmodelling work,
except for [Mador-Haim et al. 2010; Alglave et al. 2013a; 2013b]. These works show
that simulation [Mador-Haim et al. 2010] and verification [Alglave et al. 2013b] (for

Herding cats 3

boundedmodel checking) can be orders of magnitude faster when it relies on axiomatic
models rather than operational ones.
Yet operational models are often considered more intuitive than axiomatic models.

Perhaps the only tenable solution to this dilemma is to propose both styles in tandem,
and show their equivalence. As exposed in [Hoare and Lauer 1974], “a single formal
definition is unlikely to be equally acceptable to both implementor and user, and [. . .]
at least two definitions are required, a constructive one [. . .] for the implementor, and
an implicit one for the user [. . .].”

Soundness w.r.t. hardware is mandatory regardless of the modelling style. Ideally,
one would prove the soundness of a model w.r.t. the formal description of the hard-
ware, e.g. at RTL [Gordon 2002]. However, we do not have access to these data be-
cause of commercial confidentiality. To overcome this issue, some previous work has
involved experimental testing of hardware (see e.g. [Collier 1992; Sarkar et al. 2009;
2011; Alglave et al. 2012; Mador-Haim et al. 2012]), with increasing thoroughness
over time.1

A credible model cannot forbid behaviours exhibited on hardware, unless the hard-
ware itself is flawed. Thus models should be extensively tested against hardware, and
retested regularly: this is how we found flaws in the model of [Sarkar et al. 2011]
(see Sec. 2). Yet, we find the experimental flaws themselves to be less of an issue than
the fact that the model does not seem to be easily fixable.

Adaptability of the model, i.e. setting the model in a flexible formalism, seems cru-
cial, if we want stable models. By stable we mean that even though we might need to
change parameters to account for an experimentally shown flaw, the general shape of
the model, its principles, should not need to change.
Testing (as extensive as it may be) cannot be sufficient, since it cannot guarantee

that a behaviour that was not observed yet might not be triggered in the future. Thus
one needs some guarantee of completeness of the model.

Being in accord with the architectural intent might give some guarantee of com-
pleteness. We should try to create models that respect or take inspiration
from the architects’ intents. This is one of the great strengths of the model
of [Sarkar et al. 2011]. However, this cannot be the only criterion, as the experimental
flaws of [Sarkar et al. 2011] show. Indeed the architects’ intents might not be as formal
as one might need in a model, two intents might be contradictory, or an architect might
not realise all the consequences of a given design.

Accounting for what programmers do seems a sensible criterion. One cannot derive
a model from programming patterns, since some of these patterns might rely on er-
roneous understanding of the hardware. Yet to some extent, these patterns should
reflect part of the architectural intent, since systems programmers or compiler writers
communicate relatively closely with hardware designers.
Crucially, we have access to open-source code, as opposed to the chips’ designs. Thus

we can analyse the code, and derive some common programming patterns from it.

Rational models is what we advocate here. We believe that a model should allow a
rational explanation of what programmers can rely on. We believe that by balancing
all the criteria above, one can provide such a model. This is what we set out to do in
this paper.

1Throughout this paper, we refer to online material to justify our experimental claims; the reader should
take these as bibliography items, and refer to them when details are needed.

4 J. Alglave et al.

By rational we mean the following: we think that we, as architects, semanticists,
programmers, compiler writers, are to understand concurrent programs. Moreover we
find that to do so, we are to understand some particular patterns (e.g. the message
passing pattern given in Fig. 1 and 8, the very classical store buffering pattern given
in Fig. 14, or the controversial load buffering pattern given in Fig. 7). We believe that
by being able to explain a handful of patterns, one should be able to generalise the
explanation and thus be able to understand a great deal of weak memory.
To make this claim formal and precise, we propose a generic model of weak memory,

in axiomatic style. Each of our four axioms has a few canonical examples, which should
be enough to understand the full generality of the axiom. For example, we believe
that our NO THIN AIR axiom is fully explained by the load buffering pattern of Fig. 7.
Similarly our OBSERVATION axiom is fully explained by the message passing, write to
read causality and Power ISA2 patterns of Fig. 8, 11 and 12 respectively.
On the modelling front, our main stylistic choices and contributions are as follows:

to model the propagation of a given store instruction to several different threads, we
use only one memory event per instruction (see Sec. 4), instead of several subevents
(one per thread for example, as one would do in Itanium [Intel Corp. 2002] or in the
Power model of [Mador-Haim et al. 2012]). We observe that this choice makes simula-
tion much faster (see Sec. 8).
To account for the complexity of write propagation, we introduce the novel notion of

propagation order. This notion is instrumental in describing the semantics of fences
for instance, and the subtle interplay between fences and coherence (see Sec. 4).
We deliberately try to keep our models concise, as we aim at describing them as

simple text files that one can use as input to an automated tool (e.g. a simulation tool,
or a verification tool). We note that we are able to describe IBM Power in less than a
page (see Fig. 38).

Outline We present related works in Sec. 2. After a tutorial on axiomatic mod-
els (Sec. 3), we describe our new generic model of weak memory in Sec. 4, and
show how to instantiate it to describe Sequential Consistency (SC) [Lamport 1979],
Total Store Order (TSO) (used in Sparc [SPARC International Inc. 1994] and
x86’s [Owens et al. 2009] architectures) and C++ restricted to release-acquire atomics.
Sec. 5 presents examples of the semantics of instructions, which are necessary to

understand Sec. 6, where we explain how to instantiate our model to describe Power
and ARMv7. We compare formally our Power model to the one of [Sarkar et al. 2011]
in Sec. 7. To do so, we define an operational model that we show equivalent to our
axiomatic model.
We then present our experiments on Power and ARM hardware in Sec. 8, detailing

the anomalies that we observed on ARM hardware. We also describe our new herd
simulator, which allows the user to specify the model of his choice in a concise way.
Given a specification of a model, the tool becomes a simulator for that model.
Additionally, we demonstrate in the same section that our model is suited for verifi-

cation by implementing it in the bounded model checker CBMC [Clarke et al. 2004]
and comparing it with the previously implemented models of [Alglave et al. 2012]
and [Mador-Haim et al. 2012].
In Sec. 9, we present our analysis tool mole, which explores a piece of code to find

the weak memory behaviours that it contains. We detail the data gathered by mole by
analysing the C and C++ code in a Debian Linux distribution. This gives us a prag-
matic perspective on the models that we present in Sec. 4. Additionally, mole may be
used by programmers to identify areas of their code that may be (unwittingly) affected
by weak memory, or by static analysis tools to identify areas where more fine-grained
analysis may be required.

Herding cats 5

Online companion material We provide the source and documentation of herd at
http://diy.inria.fr/herd. We provide all our experimental reports w.r.t. hardware at http://
diy.inria.fr/cats. We provide our Coq scripts at http://diy.inria.fr/cats/proofs. We provide the
source and documentation of mole at http://diy.inria.fr/mole, as well as our experimental
reports w.r.t. release 7.1 of the Debian Linux distribution.

2. RELATED WORK

Our introduction echoes position papers by Burckhardt and Musuvathi [2008], Zappa
Nardelli et al. [2009] and Adve and Boehm [2010; 2012], which all formulate criteria,
prescriptions or wishes as to how memory models should be defined.
Looking for general principles of weak memory, one might look at the hardware

documentation: we cite Alpha [Compaq Computer Corp. 2002], ARM [ARM Ltd. 2010],
Intel [Intel Corp. 2009], Itanium [Intel Corp. 2002], IBM Power [IBM Corp. 2009] and
Sparc [SPARC International Inc. 1992; 1994]. Ancestors of our SC PER LOCATION and
NO THIN AIR axioms (see Sec. 4) appear notably in Sparc’s and Alpha’s documentations.
We also refer the reader to work on modelling particular instances of

weak memory, e.g. ARM [Chong and Ishtiaq 2008], TSO [Boudol and Petri 2009] or
x86 [Sarkar et al. 2009; Owens et al. 2009] (which indeed happens to implement a
TSO model; see [Owens et al. 2009]), C++ [Boehm and Adve 2008; Batty et al. 2011],
or Java [Manson et al. 2005; Cenciarelli et al. 2007]. We revisit Power at the end of
this section.
In the rest of this paper, we write TSO for Total Store Order, implemented in Sparc

TSO [SPARC International Inc. 1994] and Intel x86 [Owens et al. 2009]. We write PSO
for Partial Store Order and RMO for RelaxedMemory Order, two other Sparc execution
models. We write Power for IBM Power [IBM Corp. 2009].
Collier [1992], Neiger [2000], as well as Adve and Gharachorloo [1996] have provided

general overviews of weak memory, but in a less formal style than one might prefer.
Steinke and Nutt [2004] provide a unified framework to describe consistency models.

They choose to express their models in terms of the view order of each processor, and
describe instances of their framework, amongst them several classical models such as
PRAM [Lipton and Sandberg 1988] or Cache Consistency [Goodman 1989].
Rational models appear in Arvind and Maessen’s work [2006], aiming at weak mem-

ory in general but applied only to TSO, and in Batty et al.’s [2013] for C++. Interest-
ingly, Burckhardt et al.’s work [2013; 2014] on distributed systems follows this trend.
Some works on weak memory provide simulation tools: the ppcmem tool of Sarkar

et al. [2011] and Boudol et al.’s [2012] implement their respective operational model of
Power, whilst the cppmem tool of Batty et al. [2011] enumerates the axiomatic execu-
tions of the associated C++ model. Mador-Haim et al.’s tool [2012] does the same for
their axiomatic model of Power. MemSAT has an emphasis towards the Java memory
model [Torlak et al. 2010], whilst Nemos focusses on classical models such as SC or
causal consistency [Yang et al. 2004], and TSOTool handles TSO [Hangal et al. 2004].
To some extent, decidability and verification papers [Gopalakrishnan et al. 2004;

Burckhardt et al. 2007; Atig et al. 2010; 2011; 2012; Bouajjani et al. 2011; 2013;
Kuperstein et al. 2010; 2011; Liu et al. 2012; Abdulla et al. 2012; 2013] do provide
some general principles about weak memory, although we find them less directly ap-
plicable to programming than semantics work. Unlike our work, most of them are
restricted to TSO, or its siblings PSO and RMO, or theoretical models.
Notable exceptions are [Alglave et al. 2013a; 2013b] which use the generic model

of [Alglave et al. 2012]. The present paper inherits some of the concepts developed
in [Alglave et al. 2012]: it adopts the same style in describing executions of programs,
and pursues the same goal of defining a generic model of weak memory. Moreover, we

http://diy.inria.fr/herd
http://diy.inria.fr/cats
http://diy.inria.fr/cats
http://diy.inria.fr/cats/proofs
http://diy.inria.fr/mole

6 J. Alglave et al.

adapt the CBMC tool of [Alglave et al. 2013b] to our new models, and reuse the diy
testing tool of [Alglave et al. 2012] to conduct our experiments against hardware.
Yet we emphasise that the model that we present here is quite different from

the model of [Alglave et al. 2012], despite the stylistic similarities: in particu-
lar [Alglave et al. 2012] did not have a distinction between the OBSERVATION and
PROPAGATION axioms (see Sec. 4), which were somewhat merged into the global
happens-before notion of [Alglave et al. 2012].

model style comments

[Adir et al. 2003] axiomatic based on discussion with IBM ar-
chitects; pre-cumulative barriers

[Alglave et al. 2009] axiomatic based on documentation; not
tested on h/w

[Alglave et al. 2012;
Alglave and Maranget 2011]

single-event
axiomatic

based on extensive testing;
semantics of lwsync stronger
than [Sarkar et al. 2011] on
r+lwsync+sync, weaker on
mp+lwsync+addr

[Sarkar et al. 2011; 2012] operational based on discussion with IBM
architects and extensive testing;
flawed w.r.t. Power h/w on e.g.
mp+lwsync+addr-po-detour (see
Fig. 36 and http://diy.inria.fr/cats/
pldi-power/#lessvs) and ARM h/w on
e.g. mp+dmb+fri-rfi-ctrlisb (see http://
diy.inria.fr/cats/pldi-arm/#lessvs)

[Mador-Haim et al. 2012] multi-event
axiomatic

thought to be equivalent
to [Sarkar et al. 2011] but
not experimentally on e.g.
mp+lwsync+addr-po-detour (see
http://diy.inria.fr/cats/cav-power)

[Boudol et al. 2012] operational semantics of lwsync stronger
than [Sarkar et al. 2011] on e.g.
r+lwsync+sync

[Alglave et al. 2013a] operational equivalent to [Alglave et al. 2012]
Table I. A decade of Power models in order of publication

A decade of Power models is presented in Tab. I. Earlier work (omitted for brevity)
accounted for outdated versions of the architecture. For example in 2003, Adir et al. de-
scribed an axiomatic model [Adir et al. 2003], “developed through [. . .] discussionswith
the PowerPC architects”, with outdated non-cumulative barriers, following the pre-PPC
1.09 PowerPC architecture.
Below, we refer to particular weak memory behaviours which serve as test cases

for distinguishing different memory architectures. These behaviours are embodied
by litmus tests, with standardised names in the style of Sarkar et al. [2011], e.g.
mp+lwsync+addr. All these behaviours will appear in the rest of the paper, so that
the novice reader can refer to them after a first read through. We explain the naming
convention in Sec. 4.

http://diy.inria.fr/cats/pldi-power/#lessvs
http://diy.inria.fr/cats/pldi-power/#lessvs
http://diy.inria.fr/cats/pldi-arm/#lessvs
http://diy.inria.fr/cats/pldi-arm/#lessvs
http://diy.inria.fr/cats/cav-power

Herding cats 7

In 2009, Alglave et al. proposed an axiomatic model [Alglave et al. 2009], but this
was not compared to actual hardware. In 2010, they provided another axiomatic
model [Alglave et al. 2010; 2012], as part of a generic framework. This model is based
on extensive and systematic testing. It appears to be sound w.r.t. Power hardware,
but its semantics for lwsync cannot guarantee the mp+lwsync+addr behaviour (see
Fig. 8), and allows the r+lwsync+sync behaviour (see Fig. 16), both of which clearly
go against the architectural intent (see [Sarkar et al. 2011]). This model (and the
generic framework to which it belongs) has a provably equivalent operational coun-
terpart [Alglave et al. 2013a].
In 2011, Sarkar et al. [2011; 2012] proposed an operational model in collaboration

with an IBM designer, which might be taken to account for the architectural intent.
Yet, we found this model to forbid several behaviours observed on Power hardware
(e.g. mp+lwsync+addr-po-detour, see Fig. 36 and http://diy.inria.fr/cats/pldi-power/#lessvs).
Moreover, although this model was not presented as a model for ARM, it was thought
to be a suitable candidate. Yet, it forbids behaviours (e.g. mp+dmb+fri-rfi-ctrlisb, see
Fig. 32 http://diy.inria.fr/cats/pldi-arm/#lessvs) that are observable on ARM machines, and
claimed to be desirable features by ARM designers.
In 2012, Mador-Haim et al. [2012] proposed an axiomatic model, thought to be

equivalent to the one of Sarkar et al. [2011]. Yet, this model does not forbid the
behaviour of mp+lwsync+addr-po-detour (see http://diy.inria.fr/cats/cav-power), which is a
counter-example to the proof of equivalence appearing in [Mador-Haim et al. 2012].
The model of Mador-Haim et al. [2012] also suffers from the same experimental flaw
w.r.t. ARM hardware as the model of Sarkar et al. [2011].
More fundamentally, the model of Mador-Haim et al. [2012] uses several write

events to represent the propagation of one memory store to several different threads,
which in effect mimics the operational transitions of the model of Sarkar et al. [2011].
We refer to this style as multi-event axiomatic, as opposed to single-event axiomatic
(as in e.g. [Alglave et al. 2010; 2012]), where there is only one event to represent the
propagation of a given store instruction. Our experiments (see Sec. 8) show that this
choice impairs the simulation time by up to a factor of ten.
Later in 2012, Boudol et al. [2012] proposed an operational model where the se-

mantics of lwsync is stronger than the architectural intent on e.g. r+lwsync+sync (like
Alglave et al.’s [2010]).

3. PREAMBLE ON AXIOMATIC MODELS

We give here a brief presentation of axiomatic models in general. The expert reader
might want to skip this section.
Axiomatic models are usually defined in three stages. First, an instruction seman-

tics maps each instruction to some mathematical objects. This allows us to define the
control-flow semantics of a multi-threaded program. Second, we build a set of candi-
date executions from this control-flow semantics: each candidate execution represents
one particular data-flow of the program, i.e. which communications might happen be-
tween the different threads of our program. Third, a constraint specification decides
which candidate executions are valid or not.
We now explain these concepts in a way that we hope to be intuitive. Later in this

paper, we give the constraint specification part of our model in Sec. 4, and an outline
of the instruction semantics in Sec. 5.

Multi-threaded programs, such as the one given in Fig. 1, give one sequence of in-
structions per thread. Instructions can come from a given assembly language instruc-
tion set, e.g. Power ISA, or be pseudo-code instructions, as is the case in Fig. 1.

http://diy.inria.fr/cats/pldi-power/#lessvs
http://diy.inria.fr/cats/pldi-arm/#lessvs
http://diy.inria.fr/cats/cav-power

8 J. Alglave et al.

mp

initially x=0; y=0

T0 T1

(a) x← 1 (c) r1← y
(b) y← 1 (d) r2← x

Fig. 1. A multi-threaded program implementing a message passing pattern

In Fig. 1, we have two threads T0 and T1 in parallel. These two threads communicate
via the two memory locations x and y, which hold the value 0 initially. On T0 we have a
store of value 1 into memory location x, followed in program order by a store of value 1
into memory location y. On T1 we have a load of the contents of memory location y into
register r1, followed in program order by a load of the contents of memory location x
into register r2. Memory locations, e.g. x and y, are shared by the two threads, whereas
the registers are private to the thread holding them, here T1.
The snippet in Fig. 1 is at the heart of a message passing (mp) pattern, where T0

would write some data into memory location x, then set a flag in y. T1 would then
check if it has the flag, then read the data in x.

Control-flow semantics The instruction semantics, in our case, translates instruc-
tions into events, which represent e.g.memory or register accesses (i.e. reads and writes
from and to memory or registers), branching decisions or fences.

mp (control flow)

T0

a: Wx=1

b: Wy=1

T1

c: Ry=?

d: Rx=?

po po

Fig. 2. Control-flow semantics for the message passing pattern of Fig. 1

Consider Fig. 2: we give a possible control-flow semantics to the program in Fig. 1.
To do so, we proceed as follows: each store instruction, e.g. x ← 1 on T0, corresponds
to a write event specifying a memory location and a value, e.g. Wx=1. Each load in-
struction, e.g. r1 ← y on T1 corresponds to a read event specifying a memory location
and a undetermined value, e.g. Ry=?. Note that the memory locations of the events
are determined by the program text, as well as the values of the writes. For reads, the
values will be determined in the next stage.
Additionally, we also have implicit write events Wx=0 and Wy=0 representing the

initial state of x and y that we do not depict here.
The instruction semantics also defines relations over these events, representing for

example the program order within a thread, or address, data or control dependencies
from one memory access to the other, via computations over register values.
Thus in Fig. 2, we also give the program order relation, written po, which lifts the

order in which instructions have been written to the level of events. For example, the

Herding cats 9

two stores on T0 in Fig. 1 have been written in program order, thus their corresponding
events Wx=1 and Wy=1 are related by po in Fig. 2.
We are now at a stage where we have, given a program such as the one in Fig. 1,

several event graphs, such as the one in Fig. 2. Each graph gives a set of events rep-
resenting accesses to memory and registers, the program order between these events,
including branching decisions, and the dependencies.

Data-flow semantics The purpose of introducing data flow is to define which commu-
nications, or interferences, might happen between the different threads of our program.
To do so, we need to define two relations over memory events: the read-from relation
rf, and the coherence order co.

mp (data flow 1)

T0

a: Wx=1

b: Wy=1

T1

c: Ry=0

d: Rx=0

po po

rf

rf

mp (data flow 3)

T0

a: Wx=1

b: Wy=1

c: Ry=1

T1

d: Rx=0

po
rf

po

rf

mp (data flow 2)

T0

a: Wx=1

b: Wy=1 d: Rx=1

T1

c: Ry=0

po
rf

po

rf

mp (data flow 4)

T0

a: Wx=1

b: Wy=1 d: Rx=1

c: Ry=1

T1

po
rf rf

po

Fig. 3. One possible data-flow semantics for the control-flow semantics given in Fig. 2

The read-from relation rf describes, for any given read, from which write this read
could have taken its value. A read-from arrow with no source, as in the top left of Fig. 3,
corresponds to reading from the initial state.
For example in Fig. 3, consider the drawing at the bottom left-most corner. The read

c from y takes its value from the initial state, hence reads the value 0. The read d from
x takes its value from the update a of x by T0, hence reads the value 1.
The coherence order gives the order in which all the memory writes to a given lo-

cation have hit that location in memory. For example in Fig. 3, the initial write to x
(not depicted) hits the memory before the write a on T0, by convention, hence the two
writes are ordered in coherence.
We are now at a stage where we have, given a program such as the one in Fig. 1, an

event graph as given by the control-flow semantics (see Fig. 2), and several read-from
relations and coherence orders describing possible communications across threads (see
Fig. 3). In Fig. 3, we do not display any coherence order, because there is only one write
per location.
Note that for a given control-flow semantics there could be several suitable data-flow

semantics, if for example there were several writes to x with value 1 in our example: in
that case there would be two possible read-from to give a value to the read of x on T1.

10 J. Alglave et al.

Each such object (see Fig. 3), which gathers events, program order, dependencies,
read-from and coherence, is called a candidate execution. As one can see in Fig. 3,
there can be more than one candidate execution for a given program.

Constraint specification For each candidate execution, the constraint specification
part of our model decides whether this candidate represents a valid execution or not.
Traditionally, such specifications are in terms of acyclicity or irreflexivity of vari-

ous combinations of the relations over events given by the candidate execution. This
means for example that the model would reject a candidate execution if this candidate
contains a cycle amongst a certain relation defined in the constraint specification.
For example in Fig. 3, the constraints for describing Lamport’s Sequential Consis-

tency [Lamport 1979] (see also Sec. 4.7) would rule out the right top-most candidate
execution because the read from x on T1 reads from the initial state, whereas the read
of y on T1 has observed the update of y by T0.

4. A MODEL OF WEAK MEMORY

We present our axiomatic model, and show its SC and TSO instances. We also explain
how to instantiate our model to produce C++ R-A, i.e. the fragment of C++ restricted
to the use of release-acquire atomics. Sec. 6 presents Power.
The inputs to ourmodel are candidate executions of a givenmulti-threaded program.

Candidate executions can be ruled out by the four axioms of our model, given in Fig. 5:
SC PER LOCATION, NO THIN AIR, OBSERVATION and PROPAGATION.

4.1. Preliminaries

Before explaining each of these axioms, we define a few preliminary notions.

Conventions In this paper, we use several notations that rely on relations and or-
ders. We denote the transitive (resp. reflexive-transitive) closure of a relation r as r+

(resp. r∗). We write r1; r2 for the sequential composition of two relations r1 and r2, i.e.
(x, y) ∈ (r1; r2) , ∃z.(x, z) ∈ r1 ∧ (z, y) ∈ r2. We write irreflexive(r) to express the ir-
reflexivity of r, i.e. ¬(∃x.(x, x) ∈ r). We write acyclic(r) to express its acyclicity, i.e. the
irreflexivity of its transitive closure: ¬(∃x.(x, x) ∈ r+).
A partial order is a relation r that is transitive (i.e. r = r+), and irreflexive. Note that

this entails that r is also acyclic. A total order is a partial order r defined over a set S
that enjoys the totality property: ∀x 6= y ∈ S.(x, y) ∈ r ∨ (y, x) ∈ r.

Executions are tuples (E, po, rf, co), which consist of a set of events E, giving a seman-
tics to the instructions, and three relations over events: po, rf and co (see below).

Events consist of a unique identifier (in this paper we use lower-case letters, e.g. a),
the thread holding the corresponding instruction (e.g. T0), the line number or program
counter of the instruction, and an action.
Actions are of several kinds, which we detail in the course of this paper. For now, we

only consider read and write events relative to memory locations. For example for the
location x we can have a read of the value 0 noted Rx = 0, or a write of the value 1,
noted Wx = 1. We write proc(e) for the thread holding the event e, and addr(e) for its
address, or memory location.
Given a candidate execution, the events are determined by the program’s instruction

semantics – we give examples in Sec. 5.
Given a set of events, we writeWR,WW,RR,RW for the set of write-read, write-write,

read-read and read-write pairs respectively. For example (w, r) ∈ WR means that w is
a write and r a read. We write po ∩WR for the write-read pairs in program order, and
po \WR for all the pairs in program order except the write-read pairs.

Herding cats 11

Relations over events The program order po lifts the order in which instructions have
been written in the program to the level of events. The program order is a total order
over the memory events of a given thread, but does not order events from different
threads. Note that program order unrolls loops and determines the branches taken.
The read-from rf links a read from a register or a memory location to a unique write

to the same register or location. The value of the read must be equal to the one of the
write. We write rfe (external read-from) when the events related by rf belong to distinct

threads, i.e. (w, r) ∈ rfe , (w, r) ∈ rf ∧ proc(w) 6= proc(r). We write rfi for internal read-
from, when the events belong to the same thread.
The coherence order co totally orders writes to the same memory location. We write

coi (resp. coe) for internal (resp. external) coherence.
We derive the from-read fr from the read-from rf and the coherence co, as follows:

r

w1

w2

w0

fr

fr

rf
co

co

That is, a read r is in fr with a write w1 (resp. w2) if r reads from a write w0 such that
w0 is in the coherence order before w1 (resp. w2). We write fri (resp. fre) for the internal
(resp. external) from-read.

We gather all communications in com , co ∪ rf ∪ fr. We give a glossary of all the re-
lations that we describe in this section in Tab. II. For each relation we give its notation,
its name in English, the directions (i.e. write W or read R) of the source and target of
the relation (column “dirns”), where to find it in the text (column “reference”), and an
informal prose description. Additionally in the column “nature”, we give a taxonomy
of our relations: are they fundamental execution relations (e.g. po, rf), architectural
relations (e.g. ppo), or derived (e.g. fr, hb)?

Reading notes We refer to orderings of events w.r.t. several relations. To avoid am-
biguity, given a relation r, we say that an event e1 is r-before another event e2 (or e1 is
an r-predecessor of e1, or e2 is r-after e1, or e2 is r-subsequent, etc.) when (e1, e2) ∈ r.

In the following we present several examples of executions, in the style of Sarkar et
al. [2011]. We depict the events of a given thread vertically to represent the program
order, and the communications by arrows labelled with the corresponding relation.
Fig. 4 shows a classic message passing (mp) example.
This example is a communication pattern involving two memory locations x and y: x

is a message, and y a flag to signal to the other thread that it can access the message.
T0 writes the value 1 to memory at location x (see the event a). In program order

after a (hence the po arrow between a and b), we have a write of value 1 to memory at
location y. T1 reads from y (see the event c). In the particular execution shown here,
this read takes its value from the write b by T0, hence the rf arrow between b and c. In
program order after c, we have a read from location x. In this execution, we suppose

12 J. Alglave et al.

notation name nature dirns reference description

po program order execution any, any §Relations
over events

instruction order lifted to
events

rf read-from execution WR §Relations
over events

links a write w to a read r
taking its value from w

co coherence execution WW §Relations
over events

total order over writes to
the same memory loca-
tion

ppo preserved pro-
gram order

architecture any, any §Architectures program order main-
tained by the architecture

ffence, ff full fence architecture any, any §Architectures e.g. sync on Power, dmb
and dsb on ARM

lwfence, lwf lightweight fence architecture any, any §Architectures e.g. lwsync on Power

cfence control fence architecture any, any §Architectures e.g. isync on Power, isb on
ARM

fences fences architecture any, any §Architectures architecture-dependent
subset of the
fence relations, e.g.
ffence, lwfence, cfence

prop propagation architecture WW §Architectures order in which writes
propagate, typically en-
forced by fences

po-loc program order
restricted to the
same memory
location

derived any, any §SC PER LO-
CATION

{(x, y) | (x, y) ∈ po ∧
addr(x) = addr(y)}

com communications derived any, any §Relations
over events

co ∪ rf ∪ fr

fr from-read derived RW §Relations
over events

links a read r to a write w′

co-after the write w from
which r takes its value

hb happens before derived any, any §NO THIN AIR ppo ∪ fences ∪ rfe

rdw read different
writes

derived RR Fig. 27 two threads; first thread
holds a write, second
thread holds two reads

detour detour derived WR Fig. 28 two threads; first thread
holds a write, second
threads hold a write and
a read

Table II. Glossary of relations

mp

T0

a: Wx=1

b: Wy=1

c: Ry=1

T1

d: Rx=0

po
rf

po
fr

Fig. 4. Message passing pattern

that this event d reads from the initial state (not depicted), which by convention sets
the values in all memory locations and registers to 0. This is the reason why the read d

Herding cats 13

has the value 0. This initial write to x is, by convention, co-before the write a of x by T0,
hence we have an fr arrow between d and a.
Note that, in the following, even if we do not always depict all of the program order,

a program order edge is always implied between each pair of events ordered vertically
below a thread id, e.g. T0.

Convention for naming tests We refer to tests following the same convention as in
Sarkar et al. [2011]. We roughly have two flavours of names: classical names, which are
abbreviations of classical litmus test names appearing in the literature; and systematic
names, which describe the accesses occurring on each thread of a test.
Classical patterns, such as the message passing pattern above, have an abbreviated

name: mp stands for “message passing”, sb for “store buffering”, lb for “load buffering”,
wrc for “write-to-read causality”, rwc for “read-to-write causality”.
When a pattern does not have a classical name from the literature, we give it a name

that simply describes which accesses occur: for example 2+2w means that the test is
made of two threads holding two writes each; w+rw+2w means that we have three
threads: a write on a first thread, a read followed by a write on a second thread, and
then two writes on another thread.
Finally when we extend a test (e.g. rwc, “read-to-write causality”) with an access (e.g.

a write) on an extra thread, we extend the name appropriately: w+rwc (see Fig. 19). We
give a glossary of the test names presented in this paper in Tab. III, in the order in
which they appear; for each test we give its systematic name, and its classic name (i.e.
borrowed from previous works) when there is one.
Note that in every test we choose the locations so that we can form a cycle in the

relations of our model: for example, 2+2w has two threads with two writes each, such
that the first one accesses e.g. the locations x and y and the second one accesses y
and x. This precludes having the first thread accessing x and y and the second one z
and y, because we could not link the locations to form a cycle.
Given a pattern such as mp above, we write mp+lwfence+ppo for the same underlying

pattern where in addition the first thread has a lightweight fence lwfence between the
two writes and the second thread maintains its two accesses in order thanks to some
preserved program order mechanism (ppo, see below). We write mp+lwfences for the
mp pattern with two lightweight fences, one on each thread. We sometimes specialise
the naming to certain architectures and mechanisms, as in mp+lwsync+addr, where
lwsync refers to Power’s lightweight fence, and addr denotes an address dependency—a
particular way of preserving program order on Power.

Architectures are instances of our model. An architecture is a triple of functions
(ppo, fences, prop), which specifies the preserved program order ppo, the fences fences
and the propagation order prop.

The preserved program order gathers the set of pairs of events which are guaranteed
not to be reordered w.r.t. the order in which the corresponding instructions occur in the
program text. For example on TSO, only write-read pairs can be reordered, so that the
preserved program order for TSO is po \ WR. On weaker models such as Power or
ARM, the preserved program order merely includes dependencies, for example address
dependencies, when the address of a memory access is determined by the value read by
a preceding load. We detail these notions, and the preserved program order for Power
and ARM, in Sec. 6.
The function ppo, given an execution (E, po, co, rf), returns the preserved program

order. For example, consider the execution of the message passing example given in
Fig. 8. Assume that there is an address dependency between the two reads on T1. As

14 J. Alglave et al.

classic systematic diagram description

coXY Fig. 6 coherence test involving an access of kind X and
an access of kind Y; X and Y can be either R
(read) or W (write)

lb rw+rw Fig. 7 load buffering i.e. two threads each holding a
read then a write

mp ww+rr Fig. 8 message passing i.e. two threads; first thread
holds two writes, second thread holds two reads

wrc w+rw+rr Fig. 11 write to read causality i.e. three threads; first
thread holds a write, second thread holds a read
then a write, third thread holds two reads

isa2 ww+rw+rr Fig. 12 one of the tests appearing in the Power ISA doc-
umentation [IBM Corp. 2009] i.e. write to read
causality prefixed by a write, meaning that the
first thread holds two writes instead of just one
as in the wrc case

2+2w ww+ww Fig. 13(a) two threads holding two writes each

w+rw+2w Fig. 13(b) three threads; first thread holds a write, second
thread holds a read then a write, third thread
holds two writes

sb wr+wr Fig. 14 store buffering i.e. two threads each holding a
write then a read

rwc w+rr+wr Fig. 15 read to write causality three threads; first
thread holds a write, second thread holds two
reads, third thread holds a write then a read

r ww+wr Fig. 16 two threads; first thread holds two writes, sec-
ond thread holds a write and a read

s ww+rw Fig. 16 two threads; first thread holds two writes, sec-
ond thread holds a read and a write

w+rwc ww+rr+wr Fig. 19 read to write causality pattern rwc, prefixed by
a write i.e. the first thread holds two writes in-
tead of just one as in the rwc case

iriw w+rr+w+rr Fig. 20 independent reads of independent writes i.e.
four threads; first thread holds a write, sec-
ond holds two reads, third holds a write, fourth
holds two reads

Table III. Glossary of litmus tests names

such a dependency constitutes a preserved program order relation on Power, the ppo
function would return the pair (c, d) for this particular execution.

Fences (or memory barriers) are special instructions which prevent certain be-
haviours. On Power and ARM (see Sec. 6), we distinguish between control fence (which
we write cfence), lightweight fence (lwfence) and full fence (ffence). On x86, implement-
ing TSO, there is only one fence, called mfence.
In this paper, we use the same names for the fence instructions and the relations

that they induce over events. For example, consider the execution of the message pass-

Herding cats 15

ing example given in Fig. 8. Assume that there is a lightweight Power fence lwsync
between the two writes a and b on T0. In this case, we would have (a, b) ∈ lwsync.2

The function fences returns the pairs of events in program order which are separated
by a fence, when given an execution. For example, consider the execution of the mes-
sage passing example given in Fig. 8. Assume that there is a lightweight Power fence
lwsync between the two writes on T0. On Power, the fences function would thus return
the pair (a, b) for this particular execution.

The propagation order constrains the order in which writes are propagated to the
memory system. This order is a partial order between writes (not necessarily to the
same location), which can be enforced by using fences. For example on Power, two
writes in program order separated by an lwsync barrier (see Fig. 8) will be ordered the
same way in the propagation order.
We note that the propagation order is distinct from the coherence order co: indeed

co only orders writes to the same location, whereas the propagation order can relate
writes with different locations through the use of fences. However, both orders have to
be compatible, as expressed by our PROPAGATION axiom, which we explain next (see
Fig. 5 and Fig. 13(a)).
The function prop returns the pairs of writes ordered by the propagation order, given

an execution. For example, consider the execution of the message passing example
given in Fig. 8. Assume that there is a lightweight Power fence lwsync between the two
writes on T0. On Power, the presence of this fence forces the two writes to propagate
in the order in which they are written on T0. The function prop would thus return the
pair (a, b) for this particular execution.

We can now explain the axioms of our model (see Fig. 5). For each example execution
that we present in this section, we write in the caption of the corresponding figure
whether it is allowed or forbidden by our model.

4.2. SC PER LOCATION

SC PER LOCATION ensures that the communications com cannot contradict po-loc (pro-
gram order between events relative to the same memory location), i.e. acyclic(po-loc ∪
com). This requirement forbids exactly the five patterns (as shown in [Alglave 2010,
A.3 p. 184]) given in Fig. 6.
The pattern coWW forces two writes to the same memory location x in program

order to be in the same order in the coherence order co. The pattern coRW1 forbids a
read from x to read from a po-subsequent write. The pattern coRW2 forbids the read a
to read from a write c which is co-after a write b, if b is po-after a. The pattern coWR
forbids a read b to read from a write c which is co-before a previous write a in program
order. The pattern coRR imposes that if a read a reads from a write c, all subsequent
reads in program order from the same location (e.g. the read b) read from c or a co-
successor write.

2Note that if there is a fence “fence” between two events e1 and e2 in program order, the pair of events
(e1, e2) belongs to the eponymous relation “fence” (i.e. (e1, e2) ∈ fence), regardless of whether the particular
fence “fence” actually orders these two accesses. For example on Power, the lightweight fence lwsync does
not order write-read pairs in program order. Now consider the execution of the store buffering pattern in
Fig. 14, and assume that there is an lwsync between the write a and the read b on T0. In this case, we have
(a.b) ∈ lwsync. However, the pair (a, b) would not be maintained in that order by the barrier, which we model
by excluding write-read pairs separated by an lwsync from the propagation order on Power (see Fig. 17 and
18: the propagation order prop contains lwfence, which on Power is defined as lwsync \WR only, not lwsync).

16 J. Alglave et al.

Input data: (ppo, fences, prop) and (E, po, co, rf)

(SC PER LOCATION) acyclic(po-loc ∪ com) with

po-loc , {(x, y) ∈ po ∧ addr(x) = addr(y)}

fr , {(r, w1) | ∃w0.(w0, r) ∈ rf ∧ (w0, w1) ∈ co}

com , co ∪ rf ∪ fr

(NO THIN AIR) acyclic(hb) with

hb , ppo ∪ fences ∪ rfe

(OBSERVATION) irreflexive(fre; prop; hb∗)

(PROPAGATION) acyclic(co ∪ prop)

Fig. 5. A model of weak memory

coWW

T0

a: Wx=1

b: Wx=2

poco

coRW1

T0

a: Rx=1

b: Wx=1

rfpo

coRW2

T0

a: Rx=2

b: Wx=1

c: Wx=2

T1

po
co

rf

coWR

T0

a: Wx=1

b: Rx=2

T1

c: Wx=2
pofr

co

rf

coRR

T0

a: Rx=1

b: Rx=0

c: Wx=1

T1

po
fr

rf

Fig. 6. The five patterns forbidden by SC PER LOCATION

4.3. NO THIN AIR

NO THIN AIR defines a happens-before relation, written hb, defined as ppo ∪ fences∪ rfe,
i.e. an event e1 happens before another event e2 if they are in preserved program order,
or there is a fence in program order between them, or e2 reads from e1.

NO THIN AIR requires the happens-before relation to be acyclic, which prevents val-
ues from appearing out of thin air. Consider the load buffering pattern (lb+ppos) in
Fig. 7. T0 reads from x and writes to y, imposing (for example) an address dependency
between the two accesses, so that they cannot be reordered. Similarly T1 reads from y
and (dependently) writes to x. NO THIN AIR ensures that the two threads cannot com-
municate in a manner that creates a happens-before cycle, with the read from x on T0

reading from the write to x on T1, whilst T1 reads from T0’s write to y.
In the terminology of Sarkar et al. [2011], a read is satisfied when it binds its value;

note that the value is not yet irrevocable. It becomes irrevocable when the read is

Herding cats 17

lb+ppos

T0

a: Rx=1

b: Wy=1

c: Ry=1

T1

d: Wx=1

ppo
rfrf

ppo

Fig. 7. The load buffering pattern lb with ppo on both sides (forbidden)

committed. We say that a write is committed when it makes its value available to
other threads. See Sec. 6 for further discussion of these steps.
Our happens-before relation orders the point in time where a read is satisfied, and

the point in time where a write is committed.
The pattern above shows that the ordering due to happens-before applies to any

architecture that does not speculate values read from memory (i.e. values written by
external threads as opposed to the same thread as the reading thread), nor allows
speculative writes (e.g. in a branch) to send their value to other threads.
Indeed, in such a setting, a read such as the read a on T0 can be satisfied from an

external write (e.g. the write d on T1) only after this external write has made its value
available to other threads, and its value is irrevocable.
Our axiom forbids the lb+o pattern regardless of the method o chosen to maintain the

order between the read and the write on each thread: address dependencies on both
(lb+addrs), a lightweight fence on the first and an address dependency on the second
(lb+lwfence+addr), two full fences (lb+ffences). If, however, one or both pairs are not
maintained, the pattern can happen.

4.4. OBSERVATION

OBSERVATION constrains the value of reads. If a write a to x and a write b to y are
ordered by the propagation order prop, and if a read c reads from the write of y, then
any read d from x which happens after c (i.e. (c, d) ∈ hb) cannot read from a write that
is co-before the write a (i.e. (d, a) 6∈ fr).

4.4.1. Message passing (mp) A typical instance of this pattern is the message passing
pattern (mp+lwfence+ppo) given in Fig. 8.

mp+lwfence+ppo

T0

a: Wx=1

b: Wy=1

c: Ry=1

T1

d: Rx=0

lwf
rffr

ppo

Fig. 8. The message passing pattern mp with lightweight fence and ppo (forbidden)

T0 writes a message in x, then sets up a flag in y, so that when T1 sees the flag (via
its read from y), it can read the message in x. For this pattern to behave as intended,
following the message passing protocol described above, the write to x needs to be
propagated to the reading thread before the write to y.

18 J. Alglave et al.

TSO guarantees it, but Power or ARM need at least a lightweight fence (e.g. lwsync
on Power) between the writes. We also need to ensure that the two reads on T1 stay in
the order in which they have been written, e.g. with an address dependency.
The protocol would also be ensured with a full fence on the writing thread

(mp+ffence+addr), or with two full fences (mp+ffences).
More precisely, our model assumes that a full fence is at least as powerful as a

lightweight fence. Thus the behaviours forbidden by the means of a lightweight fence
are also forbidden by the means of a full fence. We insist on this point since, as we
shall see, our ARM model does not feature any lightweight fence. Thus when reading
an example such as the message passing one in Fig. 8, the “lwf” arrow should be in-
terpreted as any device that has at least the same power as a lightweight fence. In the
case of ARM, this means a full fence, i.e. dmb or dsb.
From a micro-architectural standpoint, fences order the propagation of writes to

other threads. A very naive implementation can be by waiting until any write instruc-
tions in flight complete and all writes are propagated to the complete systems before
completing a fence instruction; modern systems feature more sophisticated protocols
for ordering write propagation.
By virtue of the fence, the writes to x and y on T0 should propagate to T1 in the

order in which they are written on T0. Since the reads c and d on T1 are ordered by
ppo (e.g. an address dependency), they should be satisfied in the order in which they
are written on T1. In the scenario depicted in Fig. 8, T1 reads the value 1 in y (see the
read event c) and the value 0 in x (see the read event d). Thus T1 observes the write a
to x after the write b to y. This contradicts the propagation order of the writes a and b
enforced by the fence on T0.
We note that the Alpha architecture [Compaq Computer Corp. 2002] allows the

pattern mp+fence+addr (a specialisation of Fig. 8). Indeed some implementations
feature more than one memory port per processor, e.g. by the means of a split
cache [Howells and McKenney 2013]. Thus in our mp pattern above, the values writ-
ten on x and y by T0 could reach T1 on different ports. As a result, although the address
dependency forces the reads c and d to be satisfied in order, the second read may read
a stale value of x, while the current value of x is waiting in some queue. One could
counter this effect by synchronising memory ports.

4.4.2. Cumulativity To explain a certain number of the following patterns, we need to
introduce the concept of cumulativity.
We consider that a fence has a cumulative effect when it ensures a propagation order

not only between writes on the fencing thread (i.e. the thread executing the fence), but
also between certain writes coming from threads other than the fencing thread.

A-cumulativity

T0

a: Wx=1 b: Rx=1

c: Wy=1

T1

rf
lwf

B-cumulativity

T0

a: Wx=1

b: Wy=1

c: Ry=1

d: Wz=1

e: Rz=1

f: Wt=1

T1 T2

lwf
rf

ppo
rf

ppo

Fig. 9. Cumulativity of fences

Herding cats 19

A-cumulativity More precisely, consider a situation as shown on the left of Fig. 9.
We have a write a to x on T0, which is read by the read b of x on T1. On T1 still, we
have an access in program order after b. This access could be either a read or a write
event; it is a write c in Fig. 9. Note that b and c are separated by a fence.
We say that the fence between b and c on T1 is A-cumulative when it imposes that

the read b is satisfied before c is either committed (if it is a write) or satisfied (if it is a
read). Note that for b to be satisfied, the write a on T0 from which b reads must have
been propagated to T1, which enforces an ordering between a and c. We display this
ordering in Fig. 9 by a thicker arrow from a to c.
The vendors’ documentations describe A-cumulativity as follows. On Power, quot-

ing [IBM Corp. 2009, Book II, Sec. 1.7.1]: “[the group] A [of T1] includes all [. . .] ac-
cesses by any [. . .] processor [. . .] [e.g. T0] that have been performed with respect to
[T1] before the memory barrier is created.” We interpret “performed with respect to
[T1]” as a write (e.g. the write a on the left of Fig. 9) having been propagated to T1 and
read by T1 such that the read is po-before the barrier.
On ARM, quoting [Grisenthwaite 2009, Sec. 4]: “[the] group A [of T1] contains: All

explicit memory accesses [. . .] from observers [. . .] [e.g. T0] that are observed by [T1]
before the dmb instruction.” We interpret “observed by [T1]” on ARM as we interpret
“performed with respect to [T1]” on Power (see paragraph above).

strong A-cumulativity (1)

T0

a: Wx=1

b: Ry=0

T1

c: Rx=0

ff
fr

strong A-cumulativity (2)

T0

a: Wx=1 a’: Rx=1

T1

b: Ry=0

T2

c: Rx=0

rf
ff fr

Fig. 10. Strong A-cumulativity of fences

Strong A-cumulativity Interestingly, the ARM documentation does not stop there,
and includes in the group A “[a]ll loads [. . .] from observers [. . .] [(e.g. T1)] that have
been observed by any given observer [e.g. T0], [. . .] before [T0] has performed a memory
access that is a member of group A.”
Consider the situation on the left of Fig. 10. We have the read c on T1, which reads

from the initial state for x, thus is fr-before the write a on T0. The write a is po-before a
read b, such that a and b are separated by a full fence. In that case, we count the read
c as part of the group A of T0. This enforces a (strong) A-cumulativity ordering from c
to b, which we depict with a thicker arrow.
Similarly, consider the situation on the right of Fig. 10. The only difference with the

left of the figure is that we have one more indirection between the read c of x and the
read b of y, via the rf between a and a′. In that case too we count the read c as part of
the group A of T1. This enforces a (strong) A-cumulativity ordering from c to b, which
we depict with a thicker arrow.
We take strong A-cumulativity into account only for full fences (i.e. sync on Power

and dmb and dsb on ARM). We reflect this in Fig. 18, in the second disjunct of the
definition of the prop relation (com∗; prop-base∗; ffence; hb∗).

20 J. Alglave et al.

B-cumulativity Consider now the situation shown on the right of Fig. 9. On T0, we
have an access a (which could be either a read or a write event) in program order before
a write b to y. Note that a and b are separated by a fence. On T1 we have a read c from
y, which reads the value written by b.
We say that the fence between a and b on T0 is B-cumulative when it imposes that a

is either committed (if it is a write) or satisfied (if it is a read) before b is committed.
Note that the read c on T1 can be satisfied only after the write b is committed and
propagated to T1, which enforces an ordering from a to c. We display this ordering in
Fig. 9 by the mean of a thicker arrow from a to c.
This B-cumulativity ordering extends to all the events that happen after c (i.e. are

hb-after c), such as the write d on T1, the read a on T2 and the write f on T2. In Fig. 9,
we display all these orderings via thicker arrows.
The vendors’ documentations describe B-cumulativity as follows. On Power, quot-

ing [IBM Corp. 2009, Book II, Sec. 1.7.1]: “[the group] B [of T0] includes all [. . .] ac-
cesses by any [. . .] processor [. . .] that are performed after a load instruction [such as
the read c on the right of Fig. 9] executed by [T0] [. . .] has returned the value stored by
a store that is in B [such as the write b on the right of Fig. 9].” On the right of Fig. 9,
this includes for example the write d. Then the write d is itself in the group B, and
observed by the read e, which makes the write f part of the group B as well.
On ARM, quoting [Grisenthwaite 2009, Sec. 4]: “[the] group B [of T0] contains [a]ll

[. . .] accesses [. . .] by [T0] that occur in program order after the dmb instruction. [. . .]”
On the right of Fig. 9, this mean the write b.
Furthermore, ARM’s group B contains “[a]ll [. . .] accesses [. . .] by any given observer

[e.g. T1] [. . .] that can only occur after [T1] has observed a store that is a member of
group B.” We interpret this bit as we did for Power’s group B.

4.4.3. Write to read causality (wrc) This pattern (wrc+lwfence+ppo, given in Fig. 11) illus-
trates the A-cumulativity of the lightweight fence on T1, namely the rfe; fences fragment
of the definition illustrated in Fig. 9 above.

wrc+lwfence+ppo

T0

a: Wx=1 b: Rx=1

T1

c: Wy=1

d: Ry=1

T2

e: Rx=0

rf
lwf

rf
fr ppo

Fig. 11. The write-to-read causality pattern wrc with lightweight fence and ppo (forbidden)

There are now two writing threads, T0 writing to x and T1 writing to y after reading
the write of T0. TSO still enforces this pattern without any help. But on Power and
ARM we need to place (at least) a lightweight fence on T1 between the read of T0 (the
read b from x) and the write c to y. The barrier will force the write of x to propagate
before the write of y to the T2 even if the writes are not on the same thread.
Current multiprocessors may implement A-cumulativity in many differ-

ent ways. One possible implementation of A-cumulative fences, discussed
in [Gharachorloo et al. 1990, Sec. 6], is to have the fences not only wait for the
previous read (a in Fig. 11) to be satisfied, but also for all stale values for x to be
eradicated from the system, e.g. the value 0 read by e on T2.

Herding cats 21

4.4.4. Power ISA2 (isa2) This pattern (isa2+lwfence+ppos, given in Fig. 12), distributes
the message passing pattern over three threads like wrc+lwfence+ppo, but keeping the
writes to x and y on the same thread.

isa2+lwfence+ppos

T0

a: Wx=1

b: Wy=1

c: Ry=1

T1

d: Wz=1

e: Rz=1

T2

f: Rx=0

lwf
rf

ppo
rf
fr ppo

Fig. 12. The pattern isa2 with lightweight fence and ppo twice (forbidden)

Once again TSO guarantees it without any help, but Power and ARM need a
lightweight fence between the writes, and (for example) an address or data depen-
dency between each pair of reads (i.e. on both T1 and T2).
Thus on Power and ARM, the pattern isa2+lwfence+ppos illustrates the B-

cumulativity of the lightweight fence on T0, namely the fences; hb∗ fragment of the
definition of cumul illustrated in Fig. 9.

4.5. PROPAGATION

PROPAGATION constrains the order in which writes to memory are propagated to the
other threads, so that it does not contradict the coherence order, i.e. acyclic(co ∪ prop).

On Power and ARM, lightweight fences sometimes constrain the propagation of
writes, as we have seen in the cases of mp (see Fig. 8), wrc (see Fig. 11) or isa2 (see
Fig. 12). They can also, in combination with the coherence order, create new ordering
constraints.
The 2+2w+lwsync pattern (given in Fig. 13(a)) is for us the archetypal illustration

of coherence order and fences interacting to yield new ordering constraints. It came
as a surprise when we proposed it to our IBM contact, as he wanted the lightweight
fence to be as lightweight as possible (i.e. he wanted 2+2w+lwsync to be allowed), for
the sake of efficiency.
However, the pattern is acknowledged to be forbidden. By contrast and as we shall

see below, other patterns (such as the r pattern in Fig. 16) that mix the co communica-
tion with fr require full fences to be forbidden.
The w+rw+2w+lwfences pattern in Fig. 13(b) distributes 2+2w+lwfences over three

threads. This pattern is to 2+2w+lwfences what wrc is to mp. Thus, just as in the case
of mp and wrc, the lightweight fence plays an A-cumulative role, which ensures that
the two patterns 2+2w and w+rw+2w respond to the fence in the same way.

On TSO,every relation contributes to the propagation order (see Fig. 21), except the
write-read pairs in program order, which need to be fenced with a full fence (mfence on
x86 TSO).
Consider the store buffering (sb+ffences) pattern given in Fig. 14. We need a full

fence on each side to prevent the reads b and d from reading the initial state. The
pattern sb without fences being allowed, even on TSO, is perhaps one of the most well-
known examples of a relaxed behaviour. It can be explained by writes being first placed
into a thread-local store buffer, and then carried over asynchronously to the memory

22 J. Alglave et al.

2+2w+lwfences

T0

a: Wx=2

b: Wy=1

c: Wy=2

T1

d: Wx=1

lwf

coco

lwf

(a) The pattern 2+2w

w+rw+2w+lwfences

T0

a: Wx=2 b: Rx=2

T1

c: Wy=1

d: Wy=2

T2

e: Wx=1

rf
lwf

co
co lwf

(b) The pattern w+rw+2w

Fig. 13. Two similar patterns with lightweight fences (forbidden)

sb+ffences

T0

a: Wx=1

b: Ry=0

c: Wy=1

T1

d: Rx=0

ff
frfr

ff

Fig. 14. The store buffering pattern sb with full fences (forbidden)

system. In that context, the effect of a (full) fence can be described as flushing the store
buffer. Of course, on architectures more relaxed than TSO, the full fence has more work
to do, e.g. cumulativity duties (as illustrated by the iriw example given in Fig. 20).
On Power, the lightweight fence lwsync does not order write-read pairs in program

order. Hence in particular it is not enough to prevent the sb pattern; one needs to use
a full fence on each side. The sb idiom, and the following rwc idiom, are instances of
the strong A-cumulativity of full fences.
The read-to-write causality pattern rwc+ffences (see Fig. 15) distributes the sb pat-

tern over three threads with a read b from x between the write a of x and the read c of
y. It is to sb what wrc is to mp, thus responds to fences in the same way as sb. Hence it
needs two full fences too. Indeed, on Power, a full fence is required to order the write a

rwc+ffences

T0

a: Wx=1 b: Rx=1

T1

c: Ry=0

d: Wy=1

T2

e: Rx=0

rf
ff

fr
fr ff

Fig. 15. The read-to-write causality pattern rwc with full fences (forbidden)

and the read c, as lightweight fences do not apply from writes to reads. The full fence
on T1 provides such an order, not only on T1, but also by (strong) A-cumulativity from
the write a on T1 to the read c on T1, as the read b on T1 that reads from the write a
po-precedes the fence.

Herding cats 23

The last two patterns, r+ffences and s+lwfence+ppo (Fig. 16) illustrate the complexity
of combining coherence order and fences. In both patterns, the thread T0 writes to x
(event a) and then to y (event b). In the first pattern r+ffences, T1 writes to y and reads
from x. A full fence on each thread forces the write a to x to propagate to T1 before
the write b to y. Thus if the write b is co-before the write c on T1, the read d of x on
T1 cannot read from a write that is co-before the write a. By contrast, in the second
pattern s+lwfence+ppo, T1 reads from y, reading the value stored by the write b, and
then writes to x. A lightweight fence on T0 forces the write a to x to propagate to T1

before the write b to y. Thus, as T1 sees the write b by reading its value (read c) and as
the write d is forced to occur by a dependency (ppo) after the read c, that write d cannot
co-precede the write a.

r+ffences

T0

a: Wx=1

b: Wy=1

c: Wy=2

T1

d: Rx=0

ff
cofr

ff

s+lwfence+ppo

T0

a: Wx=2

b: Wy=1

c: Ry=1

T1

d: Wx=1

lwf
rfco

ppo

Fig. 16. The patterns r with full fences and s with lightweight fence and ppo (both forbidden)

Following the architect’s intent, inserting a lightweight fence lwsync between the
writes a and b does not suffice to forbid the r pattern on Power. It comes in sharp
contrast with, for instance, the mp pattern (see Fig. 8) and the s pattern, where a
lightweight fence suffices. Thus the interaction between (lightweight) fence order and
coherence order is quite subtle, as it does forbid 2+2w and s, but not r.
For completeness, we note that we did not observe the r+lwsync+sync pattern on

Power hardware. Thus the architect’s intent came as a surprise to us, as our first
intuition (and indeed our first model [Alglave et al. 2010; 2012]) was to have only a
lightweight fence on the first thread, and a full fence on the second thread.

4.6. Fences and propagation on Power and ARM

We summarise the fences and propagation order for Power and ARM in Fig. 17 and 18.
Note that the control fences (isync for Power and isb for ARM) do not contribute to
the propagation order. They contribute to the definition of preserved program order, as
explained in Sec. 5 and 6.

Power ffence , sync lwfence , lwsync \WR cfence , isync

ARM ffence , dmb ∪ dsb lwfence , ∅ cfence , isb

Fig. 17. Fences for Power and ARM

24 J. Alglave et al.

hb , ppo ∪ fences ∪ rfe fences , lwfence ∪ ffence A−cumul , rfe; fences

prop-base , (fences ∪ A−cumul); hb∗

prop , (prop-base∩WW) ∪ (com∗; prop-base∗; ffence; hb∗)

Fig. 18. Propagation order for Power and ARM

Fence placement is the problem of automatically placing fences between events to
prevent undesired behaviours. For example, the message passing pattern mp in Fig. 8
can be prevented by placing fences between events a and b in T0 and events c and d in
T1 in order to create a forbidden cycle.
This problem has been studied before for TSO and its siblings PSO and RMO (see e.g.

[Kuperstein et al. 2010; Bouajjani et al. 2011; 2013; Liu et al. 2012]), or for previous
versions of the Power model [Alglave and Maranget 2011].
We emphasise how easy fence placement becomes, in the light of our new model. We

can read them off the definitions of the axioms and of the propagation order. Placing
fences essentially amounts to counting the number of communications (i.e. the rela-
tions in com) involved in the behaviour that we want to forbid.
To forbid a behaviour that involves only read-from (rf) communications, or only one

from-read (fr) and otherwise rf communications, one can resort to the OBSERVATION

axiom, using the prop-base part of the propagation order. Namely to forbid a behaviour
of the mp (see Fig. 8), wrc (see Fig. 11) or isa2 (see Fig. 12) type, one needs a lightweight
fence on the first thread, and some preserved program order mechanisms on the re-
maining threads.
If coherence (co) and read-from (rf) are the only communications involved, one can

resort to the PROPAGATION axiom, using the prop-base part of the propagation order.
Namely to forbid a behaviour of the 2+2w (see Fig. 13(a)) or w+rw+2w (see Fig. 13(b))
type, one needs only lightweight fences on each thread.
If more than one from-read (fr) occurs, or if the behaviour involves both coherence (co)

and from-read (fr) communications, one needs to resort to the part of the propagation
order that involves the full fence (indeed that is the only part of the propagation order
that involves com). Namely to forbid behaviours of the type sb (see Fig. 14), rwc (see
Fig. 15) or r (see Fig. 16), one needs to use full fences on each thread.

Power’s eieio and ARM’s dmb.st and dsb.st We make two additional remarks, not
reflected in the figures, about write-write barriers, namely the eieio barrier on Power,
and the dmb.st and dsb.st barriers on ARM.
On Power, the eieio barrier only maintains write-write pairs, as far as ordinarymem-

ory (Memory Coherence Required) is concerned [IBM Corp. 2009, p. 702]. We demon-
strate (see http://diy.inria.fr/cats/power-eieio/) that eieio cannot be a full barrier, as this
option is invalidated by hardware. For example the following w+rwc+eieio+addr+sync
pattern (see Fig. 19) would be forbidden if eieio was a full barrier, yet is observed on
Power 6 and Power 7 machines. Indeed this pattern involves two from-reads (fr), in
which case our axioms require us to resort to the full fence part of the propagation
order. Thus we take eieio to be a lightweight barrier that maintains only write-write
pairs.
The ARM architecture features the dmb and dsb fences. ARM documenta-

tion [Grisenthwaite 2009] forbids iriw+dmb (see Fig. 20). Hence dmb is a full fence, as
this behaviour involves two from-reads (fr), and thus needs full fences to be forbidden.
The ARM documentation also specifies dsb to behave at least as strongly as

dmb [ARM Ltd. 2010, p. A3-49]: “A dsb behaves as a dmb with the same arguments,
and also has [. . .] additional properties [. . .]”. Thus we take both dmb and dsb to be

http://diy.inria.fr/cats/power-eieio/

Herding cats 25

w+rwc+eieio+addr+sync

T0

a: Wx=1

b: Wy=1

c: Ry=1

T1

d: Rz=0

e: Wz=1

T2

f: Rx=0

eieio
rf

addr
fr
fr sync

Fig. 19. The pattern w+rwc with eieio, address dependency and full fence (allowed)

iriw+ffences

T0

a: Wx=1 b: Rx=1

f: Rx=0

T1

c: Ry=0

d: Wy=1

T2

e: Ry=1

T3

rf
fr ff

fr rf
ff

Fig. 20. The independent reads from independent writes pattern iriw with full fences (forbidden)

full fences. We remark that this observation and our experiments (see Sec. 8) concern
memory litmus tests only; we do not know whether dmb and dsb differ (or indeed
should differ) when out-of-memory communication (e.g. interrupts) comes into play.
Finally, the ARM architecture specifies that, when suffixed by .st, ARM fences op-

erate on write-write pairs only. It remains to be decided whether the resulting dmb.st
and dsb.st fences are lightweight fences or not. In that aspect ARM documentation does
not help much, nor do experiments on hardware, as all our experiments are compatible
with both alternatives (see http://diy.inria.fr/cats/arm-st-fences). Thus we choose simplicity
and consider that .st fences behave as their unsuffixed counterparts, but limited to
write-write pairs. In other words, we assume that the ARM architecture makes no
provision for some kind of lightweight fence, unlike Power which provides lwsync.
Formally, to account for .st fences being full fences limited to write-write pairs,

we would proceed as follows. In Fig. 17 for ARM, we would extend the definition
of ffence to dmb ∪ dsb ∪ (dmb.st ∩ WW) ∪ (dsb.st ∩ WW). Should the option of .st
fences being lightweight fences be preferred (thereby allowing for instance the pat-
tern w+rwc+dmb.st+addr+dmb of Fig. 19), one would instead define lwfence as (dmb.st∩
WW) ∪ (dsb.st ∩WW) in Fig. 17 for ARM.

4.7. Some instances of our framework

We now explain how we instantiate our framework to produce the following mod-
els: Lamport’s Sequential Consistency [Lamport 1979] (SC), Total Store Order (TSO),
used in the Sparc [SPARC International Inc. 1994] and x86 [Owens et al. 2009] ar-
chitectures, and C++ R-A, i.e. C++ restricted to the use of release-acquire atom-
ics [Batty et al. 2011; 2013].

http://diy.inria.fr/cats/arm-st-fences

26 J. Alglave et al.

SC: ppo , po ffence , ∅ lwfence , ∅ fences , ffence ∪ lwfence

prop , ppo ∪ fences ∪ rf ∪ fr

TSO: ppo , po \WR ffence , mfence lwfence , ∅

fences , ffence ∪ lwfence prop , ppo ∪ fences ∪ rfe ∪ fr

C++ R-A ≈: ppo , sb (see [Batty et al. 2011]) fences , ∅ prop , hb

(we write ≈ to indicate that our definition has a discrepancy with the standard)

Fig. 21. Definitions of SC, TSO and C++ R-A

SC and TSOare described in our terms at the top of Fig. 21, which gives their pre-
served program order, fences and propagation order. We show that these instances of
our model correspond to SC and TSO:

LEMMA 4.1. Our model of SC as given in Fig. 21 is equivalent to Lamport’s
SC [Lamport 1979]. Our model of TSO as given in Fig. 21 is equivalent to Sparc
TSO [SPARC International Inc. 1994].

PROOF. An execution (E, po, co, rf) is valid on SC (resp. TSO) iff acyclic(po ∪ com)
(resp. acyclic(ppo ∪ co ∪ rfe ∪ fr ∪ fences)) (all relations defined as in Fig. 21) by [Alglave 2012,
Def. 21, p. 203] (resp. [Alglave 2012, Def. 23, p. 204].)

C++ R-A, i.e. C++ restricted to the use of release-acquire atomics, appears at the
bottom of Fig. 21, in a slightly stronger form than the current standard prescribes, as
detailed below.
We take the sequenced before relation sb of Batty et al. [2011] to be the preserved

program order, and the fences to be empty. The happens-before relation hb , sb ∪ rf is
the only relation contributing to propagation, i.e. prop = hb+. We take the modification
order mo of Batty et al. [2011] to be our coherence order.
The work of Batty et al. [2013] shows that C++ R-A is defined by three axioms:

ACYCLICITY, i.e. acyclic(hb) (which immediately corresponds to our NO THIN AIR ax-

iom); COWR, i.e. ∀r.¬(∃w1, w2. (w1, w2) ∈ mo∧ (w1, r) ∈ rf ∧ (w2, r) ∈ hb+) (which corre-

sponds to our OBSERVATION axiom by definition of fr and since prop = hb+ here); and
HBVSMO, i.e. irreflexive(hb+;mo). Our SC PER LOCATION is implemented by HBVSMO
for the coWW case, and the eponymous axioms for the coWR, coRW, coRR cases.
Thus C++ R-A corresponds to our version, except for the HBVSMO axiom, which

requires the irreflexivity of hb+;mo, whereas we require its acyclicity via the axiom
PROPAGATION. To adapt our framework to C++ R-A, one simply needs to weaken the
PROPAGATION axiom to irreflexive(prop; co).

4.8. A note on the genericity of our framework

We remark that our framework is, as of today, not as generic as it could be, for several
reasons that we explain below.

Types of events For a given read or write event, we handle only one type of this event.
For example we can express C++ when all the reads are acquire and all the writes are
release, but nothing more. As of today, we could not express a model where some writes
can be relaxed writes (in the C++ sense), and others can be release writes. To embrace
models with several types of accesses, e.g. C++ in its entirety, we would need to extend
the expressiveness of our framework. We hope to investigate this in future work.

Herding cats 27

Choice of axioms We note that our axiom SC PER LOCATION might be perceived as
too strong, as it forbids load-load hazard behaviours (see coRR in Fig. 6). This pattern
was indeed officially allowed by Sparc RMO [SPARC International Inc. 1994] and pre-
Power 4 machines [Tendler et al. 2002].
Similarly, the NO THIN AIR axiom might be perceived as controversial, as several

software models, such as Java or C++, allow certain lb patterns (see Fig. 7).
We also have already discussed, in the section just above, how the PROPAGATION

axiom needs to be weakened to reflect C++ R-A accurately.
Yet we feel that this is much less of an issue than having only one type of events.

Indeed one can very simply disable the NO THIN AIR check, or restrict the SC PER

LOCATION check so that it allows load-load hazard (see for example [Alglave 2012,
Sec. 5.1.2]), or weaken the PROPAGATION axiom (as we do above).
Rather than axioms set in stoneand declared as the absolute truth, we present here

some basic bricks from which one can build a model at will. Moreover, our new herd
simulator (see Sec. 8.3) allows the user to very simply and quickly modify the axioms of
their model, and re-run their tests immediately, without having to dive into the code of
the simulator. This reduced the cost of experimenting with several different variants
of a model, or fine-tuning a model. We give a flavour of such experimentations and
fine-tuning in our discussion about the ARM model (see for example Tab. V).

5. INSTRUCTION SEMANTICS

In this section, we specialise the discussion to Power, to make the reading easier. Before
presenting the preserved program order for Power, given in Fig. 25, we need to define
dependencies. We borrow the names and notations of Sarkar et al. [2011] for more
consistency.
To define dependencies formally, we need to introduce some more possible actions

for our events. In addition to the read and write events relative to memory locations,
we can now have:

— read and write events relative to registers, e.g. for a register r we can have a read of
the value 0, noted Rr=0, or a write of the value 1, noted Wr=1;

— branching events, which represent the branching decisions being made;
— fence events, e.g. lwfence.

Note that in general a single instruction can involve several accesses, for example, to
registers. Events coming from the same instruction can be related by the relation iico
(intra-instruction causality order) that reflects the causal dependencies beween one
instruction events. We give examples of such a situation below.

5.1. Semantics of instructions

We now give examples of the semantics of instructions. We do not intend to be ex-
haustive, but rather to give the reader enough understanding of the memory, reg-
ister, branching and fence events that an instruction can generate, so that we can
define dependencies w.r.t. these events in due course. We use Power assembly syn-
tax [IBM Corp. 2009].

Here is the semantics of a load “lwz r2,0(r1)” with r1 holding the address x, assuming
that x contains the value 0. The instruction reads the content of the register r1, and
finds there the memory address x; then (following iico) it reads from location x, and
finds there the value 0. Finally, it writes this value into register r2:

28 J. Alglave et al.

load

a: Rx=0

c: Wr2=0

b: Rr1=x

iico

iico

Here is the semantics of a store “stw r1,0(r2)” with r1 holding the value 1 and r2
holding the address x. The instruction reads the content of the register r2, and finds
there the memory address x. In parallel, it reads the content of the register r1, and
finds there the value 1. After (in iico) these two events, it writes the value 1 into memory
address x:

store

a: Wx=1

b: Rr1=1c: Rr2=x

iicoiico

Here is the semantics of a “sync” fence, simply an eponymous event:

sync fence

a: sync

Here is the semantics for a branch “bne L0”, which branches to the label
L0 if the value of a special register (the Power ISA specifies it to be register
CR0 [IBM Corp. 2009, Ch. 2, p. 35]) is not equal to 0 (“bne” stands for “branch if not
equal”). Thus the instruction reads the content of CR0, and emits a branching event.
Note that it emits the branching event regardless of the value of CR0, just to signify
that a branching decision has been made:

branching

a: RCR0=0

b: branch

iico

Here is the semantics for a “xor r9,r1,r1”, which takes the bitwise xor of the value in
r1 with itself and puts the result into the register r9. The instruction reads (twice) the
value in the register r1, takes their xor, and writes the result (necessarily 0) in r9:

Herding cats 29

xor

a: Rr1=1

c: Wr9=0

b: Rr1=1

iicoiico

Here is the semantics for a comparison “cmpwi r1, 1”, which compares the value
in register r1 with 1. The instruction writes the result of the comparison (2 encodes
equality) into the special register CR0 (the same that is used by branches to make
branching decisions). Thus the instruction reads the content of r1, then writes to CR0
accordingly:

comparison

a: Rr1=1

b: WCR0=2

iico

Here is the semantics for an addition “add r9,r1,r1”, which reads the value in register
r1 (twice) and writes the sum into register r9:

addition

a: Rr1=1

c: Wr9=2

b: Rr1=1

iicoiico

5.2. Dependencies

We can now define dependencies formally, in terms of the events generated by the in-
structions involved in implementing a dependency.We borrow the textual explanations
from [Sarkar et al. 2011].
In Fig. 22, we give the definitions of address (addr), data (data), control (ctrl) and

control+cfence (ctrl+cfence) dependencies. Below we detail and illustrate what they
mean.
In Fig. 22, we use the notations that we have defined before (see Sec. 4 for sets of

events. We write “M” for the set of all memory events, so that for example RM is the
set of pairs (r, e) where r is a read and e any memory event (i.e. a write or a read). We
write “B” for the set of branch events (coming from a branch instruction); thus RB is
the set of pairs (r, b) where r is a read and b a branch event.

Each definition uses the relation dd-reg, defined as (rf-reg ∪ iico)
+
. This relation dd-reg

builds chains of read-from through registers (rf-reg) and intra-instruction causality
order (iico). Thus it is a special kind of data dependency, over register accesses only.
We find that the formal definitions in Fig. 22 make quite evident that all these depen-

dencies (addr, data, ctrl and ctrl+cfence) correspond to data dependencies over registers
(dd-reg), starting with a read. The key difference between each of these dependencies is
the kind of events that they target: whilst addr targets any kind of memory event, data

30 J. Alglave et al.

dd-reg = (rf-reg ∪ iico)
+

Data dependency over registers

addr = dd-reg ∩ RM The last rf-reg is to the address entry port of
the target instruction.

data = dd-reg ∩ RW The last rf-reg is to the value entry port of
the target store instruction.

ctrl = (dd-reg ∩ RB); po On Power or ARM, control dependencies
targetting a read do not belong to ppo.

ctrl+cfence = (dd-reg ∩ RB); cfence On Power or ARM, branches followed by a
control fence (isync on Power, isb on ARM)
targetting a read belong to ppo.

Fig. 22. Definitions of dependency relations

only targets writes. A ctrl dependency only targets branch events; a ctrl+cfence also tar-
gets only branch events, but requires a control fence cfence to immediately follow the
branch event.

address dependency from a to b

a: Rx=0

d: Wr2=0

b: Ry=0

c: Rr1=x

e: Rr2=0 f: Rr2=0

g: Wr9=0

h: Rr9=0 i: Rr3=y

j: Wr4=0

iico

addr

iico

rf po rf po

iico iico

rf po po

iico

iico iico

data dependency from a to b

a: R0=0

d: Wr1=0

b: Wy=0

c: Rr2=0

e: Rr1=0 f: Rr1=0

g: Wr9=0

h: Rr9=0 i: Rr4=y

iico

data

iico

rf po rf po

iico iico

rf po po

iico iico

Fig. 23. Data-flow dependencies

5.2.1. Address dependencies Address dependencies are gathered in the addr relation.
There is an address dependency from a memory read r to a po-subsequent memory
event e (either read or write) if there is a data flow path (i.e. a dd-reg relation) from r to

Herding cats 31

the address of e through registers and arithmetic or logical operations (but not through
memory accesses). Note that this notion also includes false dependencies, e.g. when
xor’ing a value with itself and using the result of the xor in an address calculation. For
example, in Power (on the left) or ARM assembly (on the right), the following excerpt

(1) lwz r2,0(r1) ldr r2,[r1]
(2) xor r9,r2,r2 eor r9,r2,r2
(3) lwzx r4,r9,r3 ldr r4,[r9,r3]

ensures that the load at line (3) cannot be reordered with the load at line (1), despite
the result of the xor at line (2) being always 0.
Graphically (see the left diagram of Fig. 23), the read a from address x is related by

addr to the read b from address y because there is a path of rf and iico (through register
events) between them. Notice that the last rf is to the index register (here r9) of the
load from y instruction.

5.2.2. Data dependencies Data dependencies are gathered in the data relation. There is
a data dependency from a memory read r to a po-subsequent memory write w if there
is a data flow path (i.e. a dd-reg relation) from r to the value written by w through
registers and arithmetic or logical operations (but not through memory accesses). This
also includes false dependencies, as described above. For example

(1) lwz r2,0(r1) ldr r2,[r1]
(2) xor r9,r2,r2 eor r9,r2,r2
(3) stw r9,0(r4) str r9,[r4]

ensures that the store at line (3) cannot be reordered with the load at line (1), despite
the result of the xor at line (2) being always 0.
Graphically (see the right diagram of Fig. 23), the read a from address x is related by

data to the write b to address y because there is a path of rf and iico (through registers)
between them, the last rf being to the value entry port of the store.

ARM’s conditional execution Our semantics does not account for conditional execu-
tion in the ARM sense (see [ARM Ltd. 2010, Sec. A8.3.8 “Conditional execution”] and
[Grisenthwaite 2009, Sec. 6.2.1.2]). Informally, most instructions can be executed or
not, depending on condition flags. It is unclear how to handle them in full generality,
both as target of dependencies (conditional load and conditional store instructions); or
in the middle of a dependency chain (e.g. conditional move). In the target case, a de-
pendency reaching a conditional memory instruction through its condition flag could
act as a control dependency. In the middle case, the conditional move could contribute
to the data flow path that defines address and data dependencies. We emphasise that
we have not tested these hypotheses.

5.2.3. Control dependencies Control dependencies are gathered in the ctrl relation.
There is a control dependency from a memory read r to a po-subsequent memory
write w if there is a data flow path (i.e. a dd-reg relation) from r to the test of a condi-
tional branch that precedes w in po. For example

(1) lwz r2,0(r1) ldr r2,[r1]
(2) cmpwi r2,0 cmp r2,#0
(3) bne L0 bne L0
(4) stw r3,0(r4) str r3,[r4]
(5) L0: L0:

ensures that the store at line (4) cannot be reordered with the load at line (1). We note
that there will still be a control dependency from the load to the store, even if the label
immediately follows the branch, i.e. the label L0 is placed between the conditional
branch instruction at line (3) and the store. This property may not hold for all
architectures, but it does hold for Power and ARM, as stated in their documentation

32 J. Alglave et al.

control dependency from a to b

a: Rx=0

d: Wr2=0

b: Wy=0

c: Rr1=x

e: Rr2=0

f: WCR0=2

g: RCR0=2

h: branch

i: Rr3=0 j: Rr4=y

iico

ctrl

iico

rf po

iico

rf po

iico

po po

iico iico

control+cfence dependency from a to b

a: Rx=0

d: Wr2=0

b: Ry=0

c: Rr1=x

e: Rr2=0

f: WCR0=2

g: RCR0=2

h: branch

i: isync

j: Rr3=y

k: Wr4=0

iico

ctrl+cfence

iico

rf po

iico

rf po

iico

po

po

iico

iico

Fig. 24. Control-flow dependencies

and as we have checked on numerous implementations. As a side note, the analogue
of the construct in a high-level language would be the sequence of an “if” statement,
guarding an empty instruction, and a store. Most compilers would optimize the
“if” statement away and would thus not preserve the control dependency.
Graphically (see the left diagram3 of Fig. 24), the read a from address x is related by

ctrl to the write b to address y because there is a path of rf and iico (through registers)
between a and a branch event (h in that case) po-before b (some po edges are omitted
for clarity).

3The diagram depicts the situation for Power; ARM status flags are handled differently.

Herding cats 33

Such a data flow path between two memory reads is not enough to order them in
general. To order two memory reads, one needs to place a control fence cfence (isync on
Power, isb on ARM, as shown on top of Fig. 25) after the branch, as described below.

5.2.4. Control+cfence dependencies All the control+cfence dependencies are gathered in
the ctrl+cfence relation. There is such a dependency from a memory read r1 to a po-
subsequent memory read r2 if there is a data flow path (i.e. a dd-reg relation) from r1
to the test of a conditional branch that po-precedes a control fence, the fence itself
preceding r2 in po. For example

(1) lwz r2,0(r1) ldr r2,[r1]
(2) cmpwi r2,0 cmp r2,#0
(3) bne L0 bne L0
(4) isync isb
(5) lwz r4,0(r3) ldr r4,[r3]
(6) L0: L0:

ensures, thanks to the control fence at line (4), that the load at line (5) cannot be
reordered with the load at line (1).
Graphically (see the right diagram3 of Fig. 24), the read a from address x is related

by ctrl+cfence to the read b from address y because there is a path of rf and iico (through
registers) between a and a branch event (h here) po-before a cfence (i : isync here) po-
before b.

6. PRESERVED PROGRAM ORDER FOR POWER

We can now present how to compute the preserved program order for Power, which we
give in Fig. 25. Some readers might find it easier to read the equivalent specification
given in Fig. 38. ARM is broadly similar; we detail it in the next section, in the light of
our experiments.
To define the preserved program order, we first need to distinguish two parts for each

memory event. To name these parts, we again borrow the terminology of the models
of [Sarkar et al. 2011; Mador-Haim et al. 2012] for more consistency. We give a table
of correspondence between the names of [Sarkar et al. 2011; Mador-Haim et al. 2012]
and the present paper in Tab. IV.

present paper [Sarkar et al. 2011] [Mador-Haim et al. 2012]

init read i(r) satisfy read satisfy read
commit read c(r) commit read commit read
init write i(w) n/a init write

commit write c(w) commit write commit write

Table IV. Terminology correspondence

A memory read r consists of an init i(r), where it reads its value, and a commit part
c(r), where it becomes irrevocable. A memory write w consists of an init part i(w),
where its value becomes available locally, and a commit part c(w), where the write is
ready to be sent out to other threads.
We now describe how the parts of events relate to one another. We do a case disjunc-

tion over the part of the events we are concerned with (init or commit).
Thus we define four relations (see Fig. 25): ii relates the init parts of events; ic relates

the init part of a first event to the commit part of a second event; ci relates the commit
part of a first event to the init part of a second event; cc relates the commit parts of

34 J. Alglave et al.

dp , addr ∪ data rdw , po-loc ∩ (fre; rfe) detour , po-loc ∩ (coe; rfe)

ii0 , dp ∪ rdw ∪ rfi ci0 , (ctrl+cfence) ∪ detour

ic0 , ∅ cc0 , dp ∪ po-loc ∪ ctrl ∪ (addr; po)

ii , ii0 ∪ ci ∪ (ic; ci) ∪ (ii; ii) ci , ci0 ∪ (ci; ii) ∪ (cc; ci)

ic , ic0 ∪ ii ∪ cc ∪ (ic; cc) ∪ (ii; ic) cc , cc0 ∪ ci ∪ (ci; ic) ∪ (cc; cc)

ppo , (ii ∩ RR) ∪ (ic ∩ RW)

Fig. 25. Preserved program order for Power

events. We define these four relations recursively, with a least fixed point semantics;
we write r0 for the base case of the recursive definition of a relation r.
Note that the two parts of an event e are ordered: its init i(e) precedes its commit c(e).

Thus for two events e1 and e2, if for example the commit of e1 is before the commit
of e2 (i.e. (e1, e2) ∈ cc), then the init of e1 is before the commit of e2 (i.e. (e1, e2) ∈ ic).
Therefore we have the following inclusions (see also Fig. 25 and 26): ii contains ci;
ic contains ii and cc; cc contains ci.

ic

ii cc

ci

Fig. 26. Inclusions between subevents relations

Moreover, these orderings hold transitively: for three events e1, e2 and e3, if the init
of e1 is before the commit of e2 (i.e. (e1, e2) ∈ ic), which is itself before the init of e3 (i.e.
(e2, e3) ∈ ci), then the init of e1 is before the init of e3 (i.e. (e1, e3) ∈ ii). Therefore we
have the following inclusions (see also Fig. 25): ii contains (ic; ci) and (ii; ii); ic contains
(ic; cc) and (ii; ic); ci contains (ci; ii) and (cc; ci); cc contains (ci; ic) and (cc; cc).
We now describe the base case for each of our four relations, i.e. ii0, ic0, ci0 and cc0.

We do so by a case disjunction over whether the concerned events are reads or writes.
We omit the cases where there is no ordering, e.g. between two init writes.

Init reads (ii0 ∩ RR in Fig. 25) are ordered by (i) the addr relation, which is included
in the more general “dependencies” (dp) relation that gathers address (addr) and data
(data) dependencies as defined above; (ii) the rdw relation (“read different writes”), de-
fined as po-loc ∩ (fre; rfe).
For case (i), if two reads are separated (in program order) by an address depen-

dency, then their init parts are ordered. The micro-architectural intuition is immedi-
ate: we simply lift to the model level the constraints induced by data-flow paths in the
core. The vendors’ documentations for Power [IBM Corp. 2009, Book II, Sec. 1.7.1] and
ARM [Grisenthwaite 2009, Sec. 6.2.1.2] support our intuition, as shown next.
Quoting Power’s documentation [IBM Corp. 2009, Book II, Sec. 1.7.1]: “[i]f a load

instruction depends on the value returned by a preceding load instruction (because
the value is used to compute the effective address specified by the second load), the

Herding cats 35

corresponding storage accesses are performed in program order with respect to any
processor or mechanism [. . .].” We interpret this bit as a justification for address de-
pendencies (addr) contributing to the ppo.
Furthermore, Power’s documentation adds: “[t]his applies even if the dependency

has no effect on program logic (e.g., the value returned by the first load is ANDed
with zero and then added to the effective address specified by the second load).” We
interpret this as a justification for “false dependencies”, as described in Sec. 5.2.1.
Quoting ARM’s documentation [Grisenthwaite 2009, Sec. 6.2.1.2]: “[if] the value re-

turned by a read is used to compute the virtual address of a subsequent read or write
(this is known as an address dependency), then these two memory accesses will be
observed in program order. An address dependency exists even if the value read by the
first read has no effect in changing the virtual address (as might be the case if the value
returned is masked off before it is used, or if it had no effect on changing a predicted
address value).” We interpret this ARM rule as we do for the Power equivalent.
We note, however, that the Alpha architecture (see our discussion of mp+fence+addr

being allowed on Alpha on page 18) demonstrates that sophisticated hardware may
invalidate the lifting of core constraints to the complete system.

Case (ii) means that the init parts of two reads b and c are ordered when the instruc-
tions are in program order, reading from the same location, and the first read b reads
from an external write which is co-before the write a from which the second read c
reads, as shown in Fig. 27.

rdw

T0

a: Wx=2

c: Rx=2

T1

b: Rx=1

rf

fr
pordw

Fig. 27. The read different writes rdw relation

We may also review this case in the write-propagation model [Sarkar et al. 2011;
Mador-Haim et al. 2012]: as the read b reads from some write that is co-before the
write a, b is satisfied before the write a is propagated to T1; furthermore as the read c
reads from the write a, it is satisfied after the write a is propagated to T1. As a result,
the read b is satisfied before the read c is.

Init read and init write (ii0 ∩ RW) relate by address and data dependencies, i.e. dp.
This bit is similar to the ordering between two init reads (see ii0∩RR), but here both ad-
dress and data dependencies are included. Vendors’ documentations [IBM Corp. 2009,
Book II, Sec. 1.7.1] and [ARM Ltd. 2010, Sec. A3.8.2] document address and data de-
pendencies from read to write.
Quoting Power’s documentation [IBM Corp. 2009, Book II, Sec. 1.7.1]: “[b]ecause

stores cannot be performed “out-of-order” (see Book III), if a store instruction depends
on the value returned by a preceding load instruction (because the value returned
by the load is used to compute either the effective address specified by the store or
the value to be stored), the corresponding storage accesses are performed in program
order.” We interpret this bit as a justification for lifting both address and data depen-
dencies to the ppo.

36 J. Alglave et al.

Quoting ARM’s documentation [ARM Ltd. 2010, Sec. A3.8.2]: “[i]f the value returned
by a read access is used as data written by a subsequent write access, then the two
memory accesses are observed in program order.” We interpret this ARM rule as we
did for Power above.

Init write and init read (ii0 ∩WR) relate by the internal read-from rfi. This ordering
constraint stems directly from our interpretation of init subevents (see Tab. IV): init
for a write is the point in time when the value stored by the write becomes available
locally, while init for a read is the point in time when the read picks its value. Thus a
read can be satisfied from a local write only once the write in question has made its
value available locally.

Commit read and init read or write (ci0 ∩RM) relate by ctrl+cfence dependencies. The
ctrl+cfence relation models the situation where a first read controls the execution of a
branch which contains a control fence that po-precedes the second memory access. An
implementation of the control fence could re-fetch the instructions that po-follows the
fence (see for example the quote of ARM’s documentation [ARM Ltd. 2010, Sec. A3.8.3]
that we give below), and prevent any speculative execution of the control fence. As a
result, instructions that follow the fence may start only once the branching decision is
irrevocable, i.e. once the controlling read is irrevocable.
Quoting Power’s documentation [IBM Corp. 2009, Sec. 1.7.1]: “[b]ecause an isync in-

struction prevents the execution of instructions following the isync until instructions
preceding the isync have completed, if an isync follows a conditional branch instruc-
tion that depends on the value returned by a preceding load instruction, the load on
which the branch depends is performed before any loads caused by instructions follow-
ing the isync.” We interpret this bit as saying that a branch followed by an isync orders
read-read pairs on Power (read-write pairs only need a branch, without an isync). Fur-
thermore the documentation adds: ”[t]his applies even if the effects of the dependency
are independent of the value loaded (e.g., the value is compared to itself and the branch
tests the EQ bit in the selected CR field), and even if the branch target is the sequen-
tially next instruction.” This means that the dependency induced by the branch and
the isync can be a “false dependency”.
Quoting ARM’s documentation [ARM Ltd. 2010, Sec. A3.8.3]: “[a]n isb instruction

flushes the pipeline in the processor, so that all instructions that come after the isb
instruction in program order are fetched from cache or memory only after the isb in-
struction has completed.” We interpret this bit as saying that a branch followed by an
isb orders read-read and read-write pairs on ARM.

Commit write and init read (ci0 ∩ WR) relate by the relation detour, defined as
po-loc ∩ (coe; rfe). This means that the commit of a write b to memory location x pre-
cedes the init of a read c from x when c reads from an external write a which follows b
in coherence, as shown in Fig. 28.

detour

T0

a: Wx=2

c: Rx=2

T1

b: Wx=1

rf

co
podetour

Fig. 28. The detour relation

Herding cats 37

This effect is similar to the rdw effect (see Fig. 27) but applied to write-read pairs in-
stead of read-read pairs in the case of rdw. As a matter of fact, in the write-propagation
model of [Sarkar et al. 2011; Mador-Haim et al. 2012], the propagation of a write w2 to
a thread T before that thread T makes a write w1 to the same address available to
the memory system implies that w2 co-precedes w1. Thus, if the local w1 co-precedes
the external w2, it must be that w2 propagates to T after w1 is committed. In turn this
implies that any read that reads from the external w2 is satisfied after the local w1 is
committed.

Commits relate read and write events by program order if they access the same
memory location, i.e. if they are related by po-loc. Thus in Fig. 25, cc0 contains po-loc.
We inherit this constraint from [Mador-Haim et al. 2012]. From the implementation
standpoint, the core has to perform some actions to enforce the SC PER LOCATION

check, i.e. the five patterns of Fig. 6. One way to achieve this could be to perform these
actions at commit time, which this bit of the ppo represents.
However, note that our model performs the SC PER LOCATION check independently

of the definition of the ppo. Thus, the present commit-to-commit ordering constraint is
not required to enforce this particular axiom of the model. Nevertheless, if this bit of
the ppo definition is adopted, it will yield the specific ordering constraint po-loc ∈ cc0.
As we shall see in Sec. 8.1.2 this very constraint needs to be relaxed to account for
some behaviours observed on Qualcomm systems.
In addition, commit read and commit read or write (cc0∩RM) relate by address, data

and control dependencies, i.e. dp and ctrl.
Here and below (see Fig. 29) we express “chains of irreversibility”, when some mem-

ory access depends, by whatever means, on a po-preceding read it can become irrevo-
cable only when the read it depends upon has.
Finally, a read rmust be committed before the commit of any access e that is program

order after any access e′ which is addr-after r, as in the lb+addrs+ww4 pattern in Fig. 29.

lb+addrs+ww

T0

a: Rx=1

b: Wy=1

c: Wz=1

d: Rz=1

T1

e: Wa=1

f: Wx=1

addr

po rf

addr

porf

Fig. 29. A variant of the load buffering pattern lb (forbidden, see also Fig. 7)

In the thread T0 of Fig. 29, the write to z cannot be read by another thread before
the write b knows its own address, which in turn requires the read a to be committed
because of the address dependency between a and b. Indeed if the address of b was z,
the two writes b and c to z could violate the coWW pattern, an instance of our SC PER

4We note that this pattern does not quite follow the naming convention that we have outlined in Tab. III,
but we keep this name for more consistency with [Sarkar et al. 2011; 2012; Mador-Haim et al. 2012].

38 J. Alglave et al.

LOCATION axiom. Hence the commit of the write c has to be delayed (at least) until
after the read a is committed.
Note that the same pattern with data instead of address dependencies is allowed

and observed (see http://diy.inria.fr/cats/data-addr).

7. OPERATIONAL MODELS

We introduce here an operational equivalent of our model, our intermediate machine,
inspired by our earlier work [Alglave et al. 2013a] and given in Fig. 30, which we then
compare to a previous model, the PLDI machine of Sarkar et al. [2011].

Outline of this section We want to show that a path allowed by the PLDI machine
corresponds to an execution valid in our model.
Note that the converse direction (that any execution valid in our model corresponds

to a path allowed by the PLDI machine) is not desirable. Indeed, the PLDI machine for-
bids behaviours observed on Power hardware (see http://diy.inria.fr/cats/pldi-power/#lessvs).
Moreover, although the PLDI machine was not presented as such, it was thought to be
a plausible ARM model. Yet, the PLDI machine forbids behaviours observed on ARM
hardware (see http://diy.inria.fr/cats/pldi-arm/#lessvs).
Our proof has two steps. We first prove our axiomatic model and this intermediate

machine equivalent:

THEOREM 7.1. All behaviours allowed by the axiomatic model are allowed by the
intermediate machine and conversely.

Then we show that any path allowed by the PLDI machine is allowed by our inter-
mediate machine:

LEMMA 7.2. Our intermediate machine allows all behaviours allowed by the PLDI
machine.

Thus by Thm. 7.1 and 7.2, a path allowed by the PLDI machine corresponds to an
axiomatic execution:

THEOREM 7.3. Our axiomatic model allows all behaviours allowed by the PLDI
machine.

7.1. Intermediate machine

Our intermediate machine is simply a reformulation of our axiomatic model as a tran-
sition system. We give its formal definition in Fig. 30, which we explain below. In this
section, we write udr(r) for the union of the domain and the range of the relation r. We
write r++[e] to indicate that we append the element e at the end of a total order r.
Like the axiomatic model, our machine takes as input the events E, the program

order po and an architecture (ppo, fences, prop).
It also needs a path of labels, i.e. a total order over labels; a label triggers a transition

of the machine. We borrow the names of the labels from Sarkar et al. [2011; 2012] for
consistency.
We build the labels from the events E as follows: a write w corresponds to a commit

write label c(w) and a write reaching coherence point label cp(w); a read r first guesses
from which write w it might read, in an angelic manner; the pair (w, r) then yields two
labels: satisfy read s(w, r) and commit read c(w, r).
For the architecture’s functions ppo, fences and prop to make sense, we need to build a

coherence order and a read-from map. We define them from the events E and the path
p as follows:

http://diy.inria.fr/cats/data-addr
http://diy.inria.fr/cats/pldi-power/#lessvs
http://diy.inria.fr/cats/pldi-arm/#lessvs

Herding cats 39

Input data: (ppo, fences, prop), (E, po) and p

Derived from p: co(E, p) , {(w1, w2) | addr(w1) = addr(w2) ∧ (cp(w1), cp(w2)) ∈ p}

COMMIT WRITE

(CW: SC PER LOCATION/coWW) (CW: PROPAGATION)
¬(∃w′ ∈ cw s.t. (w,w′) ∈ po-loc) ¬(∃w′ ∈ cw s.t. (w,w′) ∈ prop)

(CW: fences ∩WR)
¬(∃r ∈ sr s.t. (w, r) ∈ fences)

s
c(w)
−−−→ (cw∪{w}, cpw, sr, cr)

WRITE REACHES COHERENCE POINT

(CPW: WRITE IS COMMITTED)
w ∈ cw

(CPW: po-locAND cpw ARE IN ACCORD) (CPW: PROPAGATION)
¬(∃w′ ∈ udr(cpw) s.t. (w,w′) ∈ po-loc) ¬(∃w′ ∈ udr(cpw) s.t. (w,w′) ∈ prop)

s
cp(w)
−−−→ (cw, cpw ++[w], sr, cr)

SATISFY READ

(SR: WRITE IS EITHER LOCAL OR COMMITTED)
(w, r) ∈ po-loc ∨ w ∈ cw

(SR: PPO/ii0 ∩ RR) (SR: OBSERVATION)
¬(∃r′ ∈ sr s.t. (r, r′) ∈ ppo ∪ fences) ¬(∃w′ s.t. (w,w′) ∈ co ∧ (w′, r) ∈ prop; hb∗)

s
s(w,r)
−−−−→ (cw, cpw, sr∪{r}, cr)

COMMIT READ

(CR: READ IS SATISFIED) (CR: SC PER LOCATION/coWR, coRW{1,2}, coRR)
r ∈ sr visible(w, r)

(CR: PPO/cc0 ∩ RW) (CR: PPO/(ci0 ∪ cc0) ∩ RR)
¬(∃w′ ∈ cw s.t. (r, w′) ∈ ppo ∪ fences) ¬(∃r′ ∈ sr s.t. (r, r′) ∈ ppo ∪ fences)

s
c(w,r)
−−−−→ (cw, cpw, sr, cr∪{r})

Fig. 30. Intermediate machine

— co(E, p) gathers the writes to the same memory location in the order that their

corresponding coherence point labels have in p: co(E, p) , {(w1, w2) | addr(w1) =
addr(w2) ∧ (cp(w1), cp(w2)) ∈ p};

— rf(E, p) gathers the write-read pairs with same location and value which have a com-

mit label in p: rf(E, p) , {(w, r) | addr(w) = addr(r)∧val(w) = val(r)∧c(w, r) ∈ udr(p)}.

In the definition of our intermediate machine, we consider the relations defined w.r.t.
co and rf in the axiomatic model (e.g. happens-before hb, propagation prop) to be defined
w.r.t. the coherence and read-from above.
Now, our machine operates over a state (cw, cpw, sr, cr) composed of

— a set cw (“committed writes”) of writes that have been committed;

40 J. Alglave et al.

—a relation cpw over writes having reached coherence point, which is a total order per
location;

— a set sr (“satisfied reads”) of reads having been satisfied;
— a set cr (“committed reads”) of reads having been committed.

7.1.1. Write transitions The order in which writes enter the set cw for a given location
corresponds to the coherence order for that location. Thus a write w cannot enter cw
if it contradicts the SC PER LOCATION and PROPAGATION axioms. Formally, a commit
write c(w) yields a commit write transition, which appends w at the end of cw for its
location if

— (CW: SC PER LOCATION/coWW) there is no po-loc-subsequent write w′ which is al-
ready committed, which forbids the coWW case of the SC PER LOCATION axiom, and

— (CW: PROPAGATION) there is no prop-subsequent write w′ which is already committed,
which ensures that the PROPAGATION axiom holds, and

— (CW: fences ∩WR) there is no fences-subsequent read r which has already been satis-
fied, which contributes to the semantics of the full fence.

A write can reach coherence point (i.e. take its place at the end of the cpw order) if:

— (CPW: WRITE IS COMMITTED) the write has already been committed, and
— (CPW: po-loc AND cpw ARE IN ACCORD) all the po-loc-previous writes have reached

coherence point, and
— (CPW: PROPAGATION) all the prop-previous writes have reached coherence point.

This ensures that the order in which writes reach coherence point is compatible with
the coherence order and the propagation order.

7.1.2. Read transitions The read set sr is ruled by the happens-before relation hb. The
way reads enter sr ensures NO THIN AIR and OBSERVATION, whilst the way they enter
cr ensures parts of SC PER LOCATION and of the preserved program order.

Satisfy read The satisfy read transition s(w, r) places the read r in sr if:

— (SR: WRITE IS EITHER LOCAL OR COMMITTED) the write w from which r reads is
either local (i.e. w is po-loc-before r), or has been committed already (i.e. w ∈ cw), and

— (SR: PPO/ii0 ∩ RR) there is no (ppo ∪ fences)-subsequent read r′ that has already been
satisfied, which implements the ii0 ∩ RR part of the preserved program order, and

— (SR: OBSERVATION) there is no write w′ co-after w was5 s.t. (w′, r) ∈ prop; hb∗, which
ensures OBSERVATION.

Commit read To define the commit read transition, we need a preliminary notion.
We define a write w to be visible to a read r when

—w and r share the same location ℓ;
—w is equal to, or co-after5, the last write wb to ℓ that is po-loc-before r, and
—w is po-loc-before r, or co-before the first write wa to ℓ that is po-loc-after r.

We give here an illustration of the case where w is co-after wb and before wa:

5Recall that in the context of our intermediate machine, (w,w′) ∈ co means that w and w′ are relative to
the same address and (cp(w), cp(w′)) ∈ p.

Herding cats 41

visibility of w to r

a: wb

b: r d: w

c: wa

po-loc co

po-loc co

Now, recall that our read labels contain both a read r and a write w that it might
read. The commit read transition c(w, r) records r in cr when:

— (CR: READ IS SATISFIED) r has been satisfied (i.e. is in sr), and
— (CR: SC PER LOCATION/ coWR, coRW{1,2}, coRR) w is visible to r, which prevents

the coWR, coRW1 and coRW2 cases of SC PER LOCATION, and
— (CR: PPO/cc0∩RW) there is no (ppo∪fences)-subsequent write w′ that has already been

committed, which implements the cc0 ∩RW part of the preserved program order, and
— (CR: PPO/(ci0 ∪ cc0)∩RR) there is no (ppo∪ fences)-subsequent read r′ that has already

been satisfied, which implements the ci0 ∩ RR and cc0 ∩ RR parts of the preserved
program order.

To forbid the coRR case of SC PER LOCATION, one needs to (i) make the read set cr
record the write from which a read takes its value, so that cr is a set of pairs (w, r) and
no longer just a set of reads; and (ii) augment the definition of visible(w, r) to require
that there is no (w′, r′) s.t. r′ is po-loc-before r yet w′ is co-after w. We chose to present
the simpler version of the machine to ease the reading.

7.2. Equivalence of axiomatic model and intermediate machi ne (proof of Thm. 7.1)

We prove Thm. 7.1 in two steps. We first show that given a set of events E, a program
order po over these, and a path p over the corresponding labels such that (E, po, p) is
accepted by our intermediate machine, the axiomatic execution (E, po, co(E, p), rf(E, p))
is valid in our axiomatic model:

LEMMA 7.4. All behaviours allowed by the intermediate machine are allowed by
the axiomatic model.

Conversely, from a valid axiomatic execution (E, po, co, rf), we build a path accepted
by the intermediate machine:

LEMMA 7.5. All behaviours allowed by the axiomatic model are allowed by the in-
termediate machine.

We give below the main arguments for proving our results. For more confidence, we
have implemented the equivalence proof between our axiomatic model and our inter-
mediate machine in the Coq proof assistant [Bertot and Casteran 2004]. We provide
our proof scripts online: http://diy.inria.fr/cats/proofs.

7.2.1. From intermediate machine to axiomatic model (proof of Lem. 7.4) We show here that
a path of labels p relative to a set of events E and a program order po accepted by our
intermediate machine leads to a valid axiomatic execution. To do so, we show that the
execution (E, po, co(E, p), rf(E, p)) is valid in our axiomatic model.

http://diy.inria.fr/cats/proofs

42 J. Alglave et al.

Well-formedness of co(E, p) (i.e. co is a total order on writes to the same location)
follows from p being a total order.

Well-formedness of rf(E, p)(i.e. rf relates a read to a unique write to the same location
with same value) follows from the fact that we require that each read r in E has a
unique corresponding write w in E, s.t. r and w have same location and value, and
c(w, r) is a label of p.

The SC PER LOCATION axiom holds To prove this, we show that coWW, coRW1,
coRW2, coWR and coRR are forbidden.

coWW is forbidden Suppose as a contradiction two writes e1 and e2 to the same
location s.t. (e1, e2) ∈ po and (e2, e1) ∈ co(E, p). The first hypothesis entails that
(cp(e1), cp(e2)) ∈ p, otherwise we would contradict the premise (CPW: po-loc AND cpw
ARE IN ACCORD) of the WRITE REACHES COHERENCE POINT rule. The second hypoth-
esis means by definition that (cp(e2), cp(e1)) ∈ p. This contradicts the acyclicity of p.

coRW1 is forbidden Suppose as a contradiction a read r and a write w relative to the
same location, s.t. (r, w) ∈ po and (w, r) ∈ rf(E, p). Thus w cannot be visible to r as it
is po-after r. This contradicts the premise (CR: SC PER LOCATION/ coWR, coRW{1,2},
coRR) of the COMMIT READ rule.

coRW2 is forbidden Suppose as a contradiction a read r and two writes w1 and w2

relative to the same location, s.t. (r, w2) ∈ po and (w2, w1) ∈ co(E, p) and (w1, r) ∈
rf(E, p). Thus w1 cannot be visible to r as it is co-after w2, w2 itself being either equal
or co-after the first write wa in po-loc after r. This contradicts the premise (CR: SC PER

LOCATION/ coWR, coRW{1,2}, coRR) of the COMMIT READ rule.

coWR is forbidden Suppose as a contradiction two writes w0 and w1 and a read r
relative to the same location, s.t. (w1, r) ∈ po, (w0, r) ∈ rf(E, p) and (w0, w1) ∈ co(E, p).
Thus w0 cannot be visible to r as it is co-before w1, w1 being itself either equal or co-
before the last write wb in po-loc before r. This contradicts the premise (CR: SC PER

LOCATION/ coWR, coRW{1,2}, coRR) of the COMMIT READ rule.

coRR is forbidden: (note that this holds only for the modified version of the machine
outlined at the end of Sec. 7.1) suppose as a contradiction two writes w1 and w1 and two
reads r1 and r2 relative to the same location, s.t. (r1, r2) ∈ po, (w1, r1) ∈ rf, (w2, r2) ∈
rf and (w2, w1) ∈ co. Thus w2 cannot be visible to r2 as it is co-before w1 (following
their order in co), and r1 is po-loc-before r2. This contradicts the premise (CR: SC PER

LOCATION/ coWR, coRW{1,2}, coRR) of the COMMIT READ rule.

The NO THIN AIR axiom holds Suppose as a contradiction that there is a cycle in

hb+, i.e. there is an event x s.t. (x, x) ∈ ((ppo ∪ fences); rfe)
+
. Thus there exists y s.t. (i)

(x, y) ∈ (ppo∪ fences); rfe and (ii) (y, x) ∈ ((ppo ∪ fences); rfe)
+
. Note that x and y are

reads, since the target of rf is always a read.

We now show that (iii) for two reads r1 and r2, having (r1, r2) ∈ ((ppo ∪ fences); rfe)
+

implies (s(r1), s(r2)) ∈ p. We are abusing our notations here, writing s(r) instead of
s(w, r) where w is the write from which r reads. From the fact (iii) and the hypotheses
(i) and (ii), we derive a cycle in p, a contradiction since p is an order.
Proof of (iii): let us show the base case; the inductive case follows immediately. Let us

have two reads r1 and r2 s.t. (r1, r2) ∈ (ppo ∪ fences); rfe. Thus there is w2 s.t. (r1, w2) ∈
ppo∪ fences and (w2, r2) ∈ rfe. Now, note that when we are about to take the SATISFIED

READ transition triggered by the label s(w2, r2), we know that the premise (SR: WRITE

IS EITHER LOCAL OR COMMITTED) holds. Thus we know that either w2 and r2 belong
to the same thread, which immediately contradicts the fact that they are in rfe, or that

Herding cats 43

w2 has been committed. Therefore we have (iv) (c(w2), s(r2)) ∈ p. Moreover, we can
show that (v) (s(r1), c(w2)) ∈ p by the fact that (r1, w2) ∈ ppo ∪ fences. Thus by (iv) and
(v) we have our result.
Proof of (v): take a read r and a write w s.t. (r, w) ∈ ppo ∪ fences. We show below that

(vi) (c(r), c(w)) ∈ p. Since it is always the case that (s(r), c(r)) ∈ p (thanks to the fact
that a read is satisfied before it is committed, see premise (CR: READ IS SATISFIED) of
the COMMIT READ rule), we can conclude. Now for (vi): since p is total, we have either
our result or (c(w), c(r)) ∈ p. Suppose the latter: then when we are about to take the
COMMIT READ transition triggered by c(r), we contradict the premise (CR: PPO/cc0 ∩
RW). Indeed we have w ∈ cw by c(w) preceding c(r) in p, and (r, w) ∈ ppo ∪ fences by
hypothesis.

The OBSERVATION axiom holds Suppose as a contradiction that fre; prop; hb∗ is not
irreflexive, i.e. there are w and r s.t. (r, w2) ∈ fre and (w2, r) ∈ prop; hb∗. Note that
(r, w2) ∈ fr implies the existence of a write w1 s.t. (w1, w2) ∈ co and (w1, r) ∈ rf. Observe
that this entails that r, w1 and w2 are relative to the same location.
Thus we take two writes w1, w2 and a read r relative to the same location

s.t. (w1, w2) ∈ co, (w1, r) ∈ rf and (w2, r) ∈ prop; hb∗ as above. This contradicts the
(SR: OBSERVATION) hypothesis. Indeed when we are about to process the transition
triggered by the label s(r), we have (w2, r) ∈ prop; hb∗ by hypothesis, and (w1, w2) ∈ co
by hypothesis.

The PROPAGATION axiom holds Suppose as a contradiction that there is a cycle in

(co ∪ prop)
+
, i.e. there is an event x s.t. (x, x) ∈ (co ∪ prop)

+
. In other terms there is y

s.t. (i) (x, y) ∈ co; prop and (ii) (y, x) ∈ (co; prop)
+
. Note that x and y are writes, since the

source of co is always a write.

We now show that (iii) for two writes w1 and w2, having (w1, w2) ∈ (co; prop)
+
implies

(cp(w1), cp(w2)) ∈ p+. From the fact (iii) and the hypotheses (i) and (ii), we derive a cycle
in p, a contradiction since p is an order.
Proof of (iii): let us show the base case; the inductive case follows immediately. Let us

have two writes w1 and w2 s.t. (w1, w2) ∈ co; prop; thus there is a write w s.t. (w1, w) ∈ co
and (w,w2) ∈ prop. Since p is total, we have either the result or (cp(w2), cp(w1)) ∈ p.
Suppose the latter. Thus we contradict the (CPW: PROPAGATION) hypothesis. Indeed
when we are about to take the WRITE REACHES COHERENCE POINT transition trig-
gered by the label cp(w), we have (w,w2) ∈ prop by hypothesis, and w2 already in
cpw: the hypothesis (w1, w) ∈ co entails that (cp(w1), cp(w)) ∈ p, and we also have
(cp(w2), cp(w1)) ∈ p by hypothesis. Therefore when we are about to process cp(w) we
have placed w2 in cpw by taking the transition cp(w2).

7.2.2. From axiomatic model to intermediate machine (proof of Lem. 7.5) We show here that
an axiomatic execution (E, po, co, rf) leads to a valid path p of the intermediate ma-

chine. To do so, we show that the intermediate machine accepts certain paths6 that
linearise the transitive closure of the relation r defined inductively as follows (we abuse
our notations here, writing e.g. c(r) instead of c(w, r) where w is the write from which
r reads):

— for all r ∈ E, (s(r), c(r)) ∈ r, i.e. we satisfy a read before committing it;

6The path has to linearise r so that for all writes w1 and w2, if (cp(w1), cp(w2)) ∈ p then (c(w1), c(w2)) ∈ p.
We refer to this property as “p being fifo.” In other words, the linearisation must be such that coherence
point labels and commit labels are in accord. Note that this does not affect the generality of Lem. 7.5, as to
prove this lemma, we only need to find one valid intermediate machine path for a given axiomatic execution;
our path happens to be so that coherence point and commit labels are in accord.

44 J. Alglave et al.

— for all w ∈ E, (c(w), cp(w)) ∈ r, i.e. we commit a write before it can reach its coherence
point;

— for all w and r separated by a fence in program order, (c(w), s(r)) ∈ r, i.e. we commit
the write w before we satisfy the read r;

— for all (w, r) ∈ rfe, (c(w), s(w, r)) ∈ r, i.e. we commit a write before reading externally
from it;

— for all (w1, w2) ∈ co, (cp(w1), cp(w2)) ∈ r, i.e. cpw and the coherence order are in
accord;

— for all (r, e) ∈ ppo∪ fences, we commit a read r before processing any other event e (i.e.
satisfying e if e is a read, or committing e if e is a write), if r and e are separated e.g.
by a dependency or a barrier;

— for all (w1, w2) ∈ prop+, (cp(w1), cp(w2)) ∈ r, i.e. cpw and propagation order are in
accord.

Since we build p as a linearisation of the relation r defined above, we first need to show
that we are allowed to linearise r, i.e. that r is acyclic.

Linearisation of r Suppose as a contradiction that there is a cycle in r, i.e. there
is a label l s.t. (l, l) ∈ r+. Let us write S1 for the set of commit writes, satisfy reads
and commit reads, and S2 for the set of writes reaching coherence points. We show by
induction that for all pair of labels (l1, l2) ∈ r+, either:

— l1 and l2 are both in S1, and their corresponding events e1 and e2 are ordered by
happens-before, i.e. (e1, e2) ∈ hb

+, or
— l1 and l2 are both in S2 and their corresponding events e1 and e2 are ordered by

(co ∪ prop)
+
, or

— l1 is in S1, l2 in S2, and their corresponding events e1 and e2 are ordered by happens-
before, or

— l1 is in S1, l2 in S2, and their corresponding events e1 and e2 are ordered by

(co ∪ prop)
+
, or

— l1 is in S1, l2 in S2, and their corresponding events e1 and e2 are ordered by

hb+; (co ∪ prop)+, or
— l1 is a satisfy read and l2 the corresponding commit read.
— l1 is a commit write and l2 the write reaching coherence point.

Each of these items contradicts the fact that l1 = l2: the first two resort to the axioms
of our model prescribing the acyclicity of hb on the one hand (NO THIN AIR), and co ∪
prop on the second hand (PROPAGATION); all the rest resorts to the transitions being
different.
We now show that none of the transitions of the machine given in Fig. 30 can block.

COMMIT WRITE does not block Suppose as a contradiction a label c(w) s.t. the tran-
sition of the intermediate machine triggered by c(w) blocks. This means that one of the
premises of the COMMIT WRITE rule is not satisfied.
First case: the premise (CW: SC PER LOCATION/coWW) is not satisfied, i.e. there

exists w′ in cw s.t. (w,w′) ∈ po-loc. Since (w,w′) ∈ po-loc we have (w,w′) ∈ co by SC

PER LOCATION. By construction of p, we deduce (cp(w), cp(w′)) ∈ p. By p being fifo (see
footnote on page 43), we deduce (i) (c(w), c(w′)) ∈ p. Moreover if w′ is in cw when we are
about to process c(w), then w′ has been committed before w, hence (ii) (c(w′), c(w)) ∈ p.
By (i) and (ii), we derive a cycle in p, a contradiction since p is an order (since we build
it as a linearisation of a relation).

Second case: the premise (CW: PROPAGATION) is not satisfied, i.e. there exists w′

in cw s.t. (w,w′) ∈ prop. Since w′ is in cw when we are about to process the label

Herding cats 45

c(w), we have (i) (c(w′), c(w)) ∈ p. Since (w,w′) ∈ prop, we have (ii) (cp(w), cp(w′)) ∈ p
(recall that we build p inductively; in particular the order of the cp(w) transitions in
p respects the order of the corresponding events in prop). Since we build p so that it is
fifo, we deduce from (i) the fact (iii) (c(w), c(w′)) ∈ p. From (ii) and (iii), we derive a cycle
in p, a contradiction since p is an order.

Third case: the premise (CW: fences ∩ WR) is not satisfied, i.e. there exists r in sr
s.t. (w, r) ∈ fences. From r ∈ sr we deduce (s(r), c(w)) ∈ p. From (w, r) ∈ fences we
deduce (by construction of p) (c(w), s(r)) ∈ p, which creates a cycle in p.

WRITE REACHES COHERENCE POINT does not block Suppose as a contradiction a
label cp(w) s.t. the transition of the intermediate machine triggered by cp(w) blocks.
This means that one of the premises of the WRITE REACHES COHERENCE POINT rule
is not satisfied.
First case: the premise (CPW: WRITE IS COMMITTED) is not satisfied, i.e. w has not

been committed. This is impossible since (c(w), cp(w)) ∈ p by construction of p.
Second case: the premise (CPW: po-loc AND cpw ARE IN ACCORD) is not satisfied,

i.e. there is a write w′ that has reached coherence point s.t. (w,w′) ∈ po-loc. From
(w,w′) ∈ po-loc, we know by SC PER LOCATION that (w,w′) ∈ co. Thus by construction
of p, we know (i) (cp(w), cp(w′)) ∈ p. From w′ having reached coherence point before w,
we know (ii) (cp(w′), cp(w)) ∈ p. By (i) and (ii), we derive a cycle in p, a contradiction
since p is an order.

Third case: the premise (CPW: PROPAGATION) is not satisfied, i.e. there is a write w′

that has reached coherence point s.t. (w,w′) ∈ prop. By construction of p, we deduce
(i) (cp(w), cp(w′) ∈ p). From w′ having reached coherence point before w, we know (ii)
(cp(w′), cp(w)) ∈ p. By (i) and (ii), we derive a cycle in p, a contradiction since p is an
order (since we build it as a linearisation of a relation).

SATISFY READ does not block Suppose as a contradiction a label s(w, r) s.t. the tran-
sition of the intermediate machine triggered by s(w, r) blocks. This means that one of
the premises of the SATISFY READ rule is not satisfied. Note that since s(w, r) is a label
of p, we have (i) (w, r) ∈ rf.
First case: the premise (SR: WRITE IS EITHER LOCAL OR COMMITTED) is not satis-

fied, i.e. w is neither local nor committed. Suppose w not local (otherwise we contradict
our hypothesis); let us show that it has to be committed. Suppose it is not, therefore
we have (s(r), c(w)) ∈ p. Since w is not local, we have (w, r) ∈ rfe, from which we deduce
(by construction of p) that (c(w), s(r)) ∈ p; this leads to a cycle in p.
Second case: the premise (SR: PPO/ii0 ∩ RR) is not satisfied, i.e. there is a satisfied

read r′ s.t. (r, r′) ∈ ppo∪ fences. From r′ being satisfied we deduce (s(r′), s(r)) ∈ p. From
(r, r′) ∈ ppo ∪ fences and by construction of p, we deduce (c(r), s(r′)) ∈ p. Since s(r)
precedes c(r) in p by construction of p, we derive a cycle in p, a contradiction.

Third case: the premise (SR: OBSERVATION) is not satisfied, i.e. there is a write w′

s.t. (w,w′) ∈ co and (w′, r) ∈ prop; hb∗. Since (w,w′) ∈ co, by (i) (r, w′) ∈ fr. Therefore we
contradict the OBSERVATION axiom.

COMMIT READ does not block Suppose as a contradiction a label c(w, r) s.t. the tran-
sition of the intermediate machine triggered by c(w, r) blocks. This means that one of
the premises of the COMMIT READ rule is not satisfied.
First case: the premise (CR: READ IS SATISFIED) is not satisfied, i.e. r is not in sr.

This is impossible since we impose (s(r), c(r)) ∈ p when building p.
Second case: the premise (CR: SC PER LOCATION/ coWR, coRW{1,2}, coRR) is not

satisfied, i.e. w is not visible to r. This contradicts the SC PER LOCATION axiom, as
follows. Recall that the visibility definition introduces wa as the first write to the same

46 J. Alglave et al.

location as r which is po-loc-after r; and wb as the last write to the same location as r
which is po-loc-before r. Now, if w is not visible to r we have either (i) w is co-before wb,
or (ii) equal or co-after wa.
Suppose (i), we have (w,wb) ∈ co. Hence we have (w,wb) ∈ co, (wb, r) ∈ po-loc by

definition of wb, and (w, r) ∈ rf by definition of s(w, r) being in p. Thus we contradict
the coWR case of the SC PER LOCATION axiom. The (ii) case is similar, and contradicts
(coRW1) if w = wa or (coRW2) if (wa, w) ∈ cw.

Third case: the premise (CR: PPO/cc0 ∩ RW) is not satisfied, i.e. there is a write w′ in
cw s.t. (r, w′) ∈ ppo ∪ fences. From w′ ∈ cw we deduce (c(w′), c(r)) ∈ p. From (r, w′) ∈
ppo∪ fences we deduce (c(r), c(w′)) ∈ p by construction of p. This leads to a cycle in p, a
contradiction.

Fourth case: the premise (CR: PPO/(ci0 ∪ cc0) ∩ RR) is not satisfied, i.e. there is a
read r′ in sr s.t. (r, r′) ∈ ppo ∪ fences. From r′ ∈ sr we deduce (s(r′), c(r)) ∈ p. From
(r, r′) ∈ ppo∪ fences we deduce (c(r), s(r′)) ∈ p by construction of p. This leads to a cycle
in p, a contradiction.

7.3. Comparing our model and the PLDI machine

The PLDI machine is an operational model, which we describe here briefly
(see [Sarkar et al. 2011] for details). This machine maintains a coherence order (a
strict partial order over the writes to the same memory location), and, per thread,
a list of the writes and fences that have been propagated to that thread.
A load instruction yields two transitions of this machine (amongst others): a sat-

isfy read transition, where the read takes its value, and a commit read transition,
where the read becomes irrevocable. A store instruction yields a commit write transi-
tion, where the write becomes available to be read, several propagate write transitions,
where the write is sent out to different threads of the system, and a reaching coher-
ence point transition, where the write definitely takes place in the coherence order. We
summarise the effect of a PLDI transition on a PLDI state in the course of this section.
We show that a valid path of the PLDI machine leads to valid path of our interme-

diate machine.

First, we show how to relate the two machines.

7.3.1. Mapping PLDI objects (labels and states) to intermediate objects We write pl2l(l) to
map a PLDI l to a label of the intermediate machine. For technical convenience we as-
sume a special noop intermediate label such that, from any state s of the intermediate
machine, we may perform a transition from s to s via noop .
We can then define pl2l(l) as being the eponymous label in the intermediate machine

if it exists (i.e. for commit write, write reaches coherence point, satisfy read and commit
read), and noop otherwise. We derive from this mapping the set Li of intermediate
labels composing our intermediate path.
We build a state of our intermediate machine from a PLDI state s and an accepting

PLDI path p; we write ps2s(p, s) = (cw, cpw, sr, cr) for the intermediate state built as
follows:

— for a given location, cw is simply the set of writes to this location that have been
committed in s;

—we take cpw to be all the writes having reached coherence point in s, ordered w.r.t. p;
— the set sr gathers the reads that have been satisfied in the state s: we simply add a

read to sr if the corresponding satisfy transition appears in p before the transition
leading to s;

— the set cr gathers the reads that have been committed in the state s.

Herding cats 47

7.3.2. Building a path of the intermediate machine from a PLDI path A given path p of the

PLDI machine entails a run s0
l1−→ s1

l2−→ · · ·
ln−→ sn such that (l, l′) ∈ p if and only if

there exist i and j such that i < j and l = li and l′ = lj .

We show that ps2s(s0)
pl2l(l1)
−−−−→ ps2s(s1)

pl2l(l2)
−−−−→ · · ·

pl2l(ln)
−−−−→ ps2s(sn) is a path of our

intermediate machine. We proceed by induction for 0 ≤ m ≤ n. The base case m = 0 is
immediately satisfied by the single-state path ps2s(s0).

Now, inductively assume that ps2s(s0)
pl2l(l1)
−−−−→ ps2s(s1)

pl2l(l2)
−−−−→ · · ·

pl2l(lm)
−−−−−→ ps2s(sm)

is a path of the intermediate machine. We prove the case for m + 1. Take the transi-

tion sm
lm+1

−−−→ sm+1 of the PLDI machine. We prove ps2s(sm)
pl2l(lm+1)
−−−−−−→ ps2s(sm+1) to

complete the induction. There are several cases.
When pl2l(lm+1) = noop we have that ps2s(sm) = ps2s(sm+1) simply because the PLDI

labels that have noop as an image by pl2l do not affect the components cw, cpw, sr and
cr of our state.
Only the PLDI transitions that have an eponymous transition in our machine affect

our intermediate state. Thus we list below the corresponding four cases.

Commit write In the PLDI machine, a commit transition of a write w makes this
write co-after all the writes to the same location that have been propagated to its
thread. The PLDI transition guarantees that (i) w had not been committed in sm.
Observe that w takes its place in the set cw, ensuring that we modify the state as

prescribed by our COMMIT WRITE rule. Now, we check that we do not contradict the
premises of our COMMIT WRITE rule.
First case: contradict the premise (CW: SC PER LOCATION/coWW), i.e. take a write

w′ in cw s.t. (w,w′) ∈ po-loc. In that case, we contradict the fact that the commit order
respects po-loc (see [Sarkar et al. 2011, p. 7, item 4 of § Commit in-flight instruction]).

Second case: contradict the premise (CW: PROPAGATION), i.e. take a write w′ in cw
s.t. (w,w′) ∈ prop. In that case, (w,w′) ∈ prop guarantees that w was propagated to the
thread of w′ in sm. Therefore (see [Sarkar et al. 2011, p. 6, premise of § Propagate write
to another thread]), w was seen in sm. For the write to be seen, it needs to have been
sent in a write request [Sarkar et al. 2011, p. 6, item 1 of §Accept write request]; for
the write request to be sent, the write must have been committed [Sarkar et al. 2011,
p. 8, action 4 of §Commit in-flight instruction]. Thus we contradict (i).

Third case: contradict the premise (CW: fences∩WR), i.e. take a read r in sr s.t. (w, r) ∈
fences. Since r is in sr, r is satisfied. Note that the write from which r reads can be
either local (see [Sarkar et al. 2011, p. 8, § Satisfy memory read by forwarding an in-
flight write directly to reading instruction]) or committed (see [Sarkar et al. 2011, p. 8,
§ Satisfy memory read from storage subsystem]).
In both cases, the fence between w and r must have been committed

(see [Sarkar et al. 2011, p. 8, item 2 of § Satisfy memory read by forwarding an in-
flight write directly to reading instruction and item 2 of § Satisfy memory read from
storage subsystem]). Thus by [Sarkar et al. 2011, p. 7, item 6 of § Commit in-flight
instruction], w has been committed, a contradiction of (i).

Write reaches coherence point In the PLDI machine, write reaching coherence point

transitions order writes following a linearisation of (co ∪ prop)+. Our cw implements
that per location, then we make the writes reach coherence point following cw and

(co ∪ prop)
+
.

Observe that a write w reaching coherence point takes its place after all the writes
having already reached coherence point, ensuring that we modify the intermediate

48 J. Alglave et al.

state as prescribed by our WRITE REACHES COHERENCE POINT rule. Now, we check
that we do not contradict the premises of WRITE REACHES COHERENCE POINT.
First case: contradict the premise (CPW: WRITE IS COMMITTED), i.e. suppose that

w is not committed. This is impossible as the PLDI machine requires a write to have
been seen by the storage subsystem for it to reach coherence point [Sarkar et al. 2012,
p. 3, §Write reaches its coherence point]. For the write to be seen, it needs to have been
sent in a write request [Sarkar et al. 2011, p. 6, item 1 of §Accept write request]; for
the write request to be sent, the write must have been committed [Sarkar et al. 2011,
p. 7, action 4 of §Commit in-flight instruction].

Second case: contradict the premise (CPW: po-loc AND cpw ARE IN ACCORD), i.e. take
a write w′ in cpw s.t. (w,w′) ∈ po-loc. This means that (i) w′ has reached coherence point
before w, despite w preceding w′ in po-loc. This is a contradiction, as we now explain.
If (w,w′) ∈ po-loc, then w is propagated to its own thread before w′ [Sarkar et al. 2011,
p. 7, action 4 of §Commit in-flight instruction]. Since w and w′ access the same ad-
dress, when w′ is propagated to its own thread, w′ is recorded as being co-after all
the writes to the same location already propagated to its thread [Sarkar et al. 2011,
p. 6, item 3 of §Accept write request], in particular w. Thus we have (w,w′) ∈ co. Now,
when w′ reaches coherence point, all its coherence predecessors must have reached
theirs [Sarkar et al. 2012, p. 4, item 2 of §Write reaches its coherence point], in partic-
ular w. Thus w should reach its coherence point before w′, which contradicts (i).

Third case: contradict the premise (CPW: PROPAGATION), i.e. take a write w′ in cpw
s.t. (w,w′) ∈ prop. This contradicts the fact that writes cannot reach coherence point
in an order that contradicts propagation (see [Sarkar et al. 2012, p. 4, item 3 of §Write
reaches coherence point]).

Satisfy read In the PLDI machine, a satisfy read transition does not modify the
state (i.e. s1 = s2). In the intermediate state, we augment sr with the read that was
satisfied. Now, we check that we do not contradict the premises SATISFY READ.
First case: contradict the (SR: WRITE IS EITHER LOCAL OR COMMITTED) premise,

i.e. suppose that w is neither local nor committed. Then we contradict the fact that a
read can read either from a local po-loc-previous write (see [Sarkar et al. 2011, p. 8,
item 1 of §Satisfy memory read by forwarding an in-flight write directly to reading
instruction]), or from a write from the storage subsytem—which therefore must have
been committed (see [Sarkar et al. 2011, p. 8, § Satisfy memory read from storage
subsystem]).

Second case: contradict the (SR: PPO/ii0 ∩ RR) premise, i.e. take a satisfied read r′

s.t. (r, r′) ∈ ppo ∪ fences. Then we contradict the fact that read satisfaction follows the
preserved program order and the fences (see [Sarkar et al. 2011, p. 8, all items of both
§Satisfy memory read by forwarding an in-flight write directly to reading instruction
and §Satisfy memory read from storage subsystem]).

Third case: contradict the (SR: OBSERVATION) premise, i.e. take a write w′ in co
after w s.t. (w′, r) ∈ prop; hb∗. Since w and w′ are related by co, they have the same
location. The PLDI transition guarantees that (i) w is the most recent write to addr(r)
propagated to the thread of r (see [Sarkar et al. 2011, p. 6, §Send a read response to
a thread]). Moreover, (w′, r) ∈ prop; hb∗ ensures that (ii) w′ has been propagated to
the thread of r, or there exists a write e such that (w′, e) ∈ co and e is propagated to
the thread of r. Therefore, we have (w′, w) ∈ co by [Sarkar et al. 2011, p. 6, item 2 of
§Propagate write to another thread].
Therefore by (w,w′) ∈ co, we know that w reaches its coherence point before w′. Yet

w′ is a co-predecessor of w, which contradicts [Sarkar et al. 2012, p. 4, item 2 of §Write
reaches coherence point].

Herding cats 49

Proof of (ii): we take (w′, r) ∈ prop; hb∗ as above. This gives us a write w′′ s.t. (w′, w′′) ∈
prop and (w′′, r) ∈ hb∗. Note that (w′, w′′) ∈ prop requires the presence of a barrier
between w′ and w′′.
We first remind the reader of a notion from [Sarkar et al. 2011], the group A of a

barrier: the group A of a barrier is the set of all the writes that have been prop-
agated to the thread holding the barrier when the barrier is sent to the system
(see [Sarkar et al. 2011, p. 5,§Barriers (sync and lwsync) and cumulativity by fiat]).
When a barrier is sent to a thread, all the writes in its group A must have been prop-
agated to that thread (see [Sarkar et al. 2011, p. 6 item 2 of §Propagate barrier to an-
other thread]). Thus if we show that (a) the barrier between w′ and w′′ is propagated
to the thread of r and (b) w′ is in the group A of this barrier, we have our result.

Let us now do a case disjunction over (w′, w′′) ∈ prop. When (w′, w′′) ∈ prop-base, we
have a barrier b such that (i) (w′, b) ∈ fences ∪ (rfe; fences) and (ii) (b, r) ∈ hb∗. Note (i)
immediately entails that w′ is in the group A of b. For (ii), we reason by induction over
(b, r) ∈ hb∗, the base case being immediate. In the inductive case, we have a write e
such that b is propagated to the thread of e before e and e is propagated to the thread
of r before r. Thus, by [Sarkar et al. 2011, p. 6, item 3 of §Propagate write to another
thread], b is propagated to r.
When (w′, w′′) ∈ com∗; prop-base∗; ffence; hb∗, we have a barrier b (which is a full fence)

such that (w′, b) ∈ com∗; prop-base∗ and (b, r) ∈ hb∗. We proceed by reasoning over com∗.
If there is no com step, then we have (w′, b) ∈ prop-base∗, thus w′ is propagated to the

thread of b before b by the prop-base case above. Note that this entails that w′ is in the
group A of b. Since b is a full fence, b propagates to all threads (see [Sarkar et al. 2011,
premise of §Acknowledge sync barrier]), in particular to the thread of r. Thus from
[Sarkar et al. 2011, item 2 of §Propagate barrier to another thread] it follows that w′

is propagated to r.
In the com+ case (i.e. (w′, b) ∈ com∗; prop-base∗), we remark that com+ = com∪ co; rf ∪

fr; rf. Thus since w′ is a write, only the cases rf, co and co; rf apply. In the rf case, we
have (w′, b) ∈ prop-base∗, which leads us back to the base case (no com step) above. In
the co and co; rf cases, we have (w′, b) ∈ co; prop-base∗, i.e. there exists a write e such
that (w′, e) ∈ co and (e, b) ∈ prop-base∗, i.e. our result.

Commit read In the PLDI machine, a commit read transition does not modify the
state. In the intermediate state, we augment cr with the read that was committed. We
now check that we do not contradict the premises of our COMMIT READ rule.
First case: contradict the premise (CR: READ IS SATISFIED), i.e. suppose that the

read that we want to commit is not in sr; this means that this read has not been
satisfied. This is impossible since a read must be satisfied before it is committed
(see [Sarkar et al. 2011, p. 7, item 1 of §Commit in-flight instruction]).

Second case: contradict the (CR: SC PER LOCATION/ coWR, coRW{1,2}, coRR)
premise. This is impossible since the PLDI machine prevents coWR, coRW1
and coRW2) (see [Sarkar et al. 2011, p. 3, §Coherence]).

Third case: contradict the premise (CR: PPO/cc0 ∩ RW), i.e. take a committed
write w′ s.t. (r, w′) ∈ ppo ∪ fences. Since r must have been committed before w′

(by [Sarkar et al. 2011, p. 7, items 2, 3, 4, 5, 7 of §Commit in-flight instruction]), we
get a contradiction.

Fourth case: contradict the premise (CR: PPO/(ci0 ∪ cc0)∩RR), i.e. take a satisfied read
r′ s.t. (r, r′) ∈ ppo ∪ fences. Since r must have been committed before r′ was satisfied
(by [Sarkar et al. 2011, p. 8, item 3 of §Satisfy memory read from storage subsystem
and item 3 of §Satisfy memory read by forwarding an in-flight write directly to reading
instruction]), we get a contradiction.

50 J. Alglave et al.

8. TESTING AND SIMULATION

As usual in this line of work, we developed our model in tandem with extensive exper-
iments on hardware. We report here on our experimental results on Power and ARM
hardware. Additionally, we experimentally compared our model to the ones of Sarkar
et al. [2011] and Mador-Haim et al. [2012]. Moreover, we developed a new simulation
tool called herd7 and adapted the CBMC tool [Alglave et al. 2013b] to our new models.

8.1. Hardware testing

We performed our testing on several platforms using the diy tool suite
[Alglave et al. 2010;2012] (see also [Alglave, Maranget, Sarkar, and Sewell 2011];) .
This tool generates litmus tests, i.e. very small programs in x86, Power or ARM as-
sembly code, with specified initial and final states. It then runs these tests on hard-
ware and collects the memory and register states that it observed during the runs.
Most of the time, litmus tests violate SC: if one can observe their final state on a given
machine, then this machine exhibits features beyond SC.
We generated 8117 tests for Power and 9761 tests for ARM, illustrating various

features of the hardware, e.g. lb, mp, sb, and their variations with dependencies and
barriers, e.g. lb+addrs, mp+lwsync+addr, sb+syncs.
We tested the model described in Fig. 5, 18, and 25 on Power and ARM machines,

to check experimentally whether this model was suitable for these two architectures.
In the following, we write “Power model” for this model instantiated for Power, and
“Power-ARM model” for this model instantiated for ARM. We summarise these exper-
iments in Tab. V.

Power ARM

tests 8117 9761
invalid 0 1500
unseen 1182 1820

Table V. Summary of our experiments on Power and ARM h/w (w.r.t. our Power-ARM model)

For each architecture, the row “unseen” gives the number of tests that our model al-
lows but that the hardware does not exhibit. This can be the case because our model is
too coarse (i.e. fails to reflect the architectural intent in forbidding some behaviours),
or because the behaviour is intended to be allowed by the architect, but is not imple-
mented yet.
The row “invalid” gives the number of tests that our model forbids but that the hard-

ware does exhibit. This can be because our model is too strict and forbids behaviours
that are actually implemented, or because the behaviour is a hardware bug.

8.1.1. Power We tested three generations of machines: Power G5, 6 and 7. The com-
plete logs of our experiments can be found at http://diy.inria.fr/cats/model-power.
Our Power model is not invalidated by Power hardware (there is no test in the

“invalid” row on Power in Tab. V). In particular it allows mp+lwsync+addr-po-detour,
which [Sarkar et al. 2011] wrongly forbids, as this behaviour is observed on hardware
(see http://diy.inria.fr/cats/pldi-power/#lessvs).

7We acknowledge that we reused some code written by colleagues, in particular Susmit Sarkar, in an earlier
version of the tool.

http://diy.inria.fr/cats/model-power
http://diy.inria.fr/cats/pldi-power/#lessvs

Herding cats 51

coRSDWI

T0

a: Wz=1

b: Ry=0

d: Rz=1

e: Wz=2

c: Rz=2

T1

po
rf

co

addr

po fr

rf

Fig. 31. An observed behaviour that features a coRR violation

Our Power model allows some behaviours (see the “unseen” row on Power), e.g. lb,
that are not observed on Power hardware. This is to be expected as the lb pattern
is not yet implemented on Power hardware, despite being clearly architecturally al-
lowed [Sarkar et al. 2011].

8.1.2. ARM We tested several system configurations: NVDIA Tegra2 and 3, Qual-
comm APQ8060 and APQ8064, Apple A5X and A6X, and Samsung Exynos4412, 5250
and 5410. The complete logs of our experiments can be found at http://diy.inria.fr/cats/
model-arm. This section about ARM testing is structured as follows:

—we first explain how our Power-ARM model is invalidated by ARM hardware
by 1500 tests (we detail and document the discussion below at http://diy.inria.fr/cats/
arm-anomalies);

—we then propose a model for ARM;
—we then explain how we tested this model on ARM machines, examining some of the

anomalies that we have found whilst testing.

Our Power-ARMmodel is invalidated by ARM hardware Amongst the tests we have
run on ARM hardware, some unveiled a load-load hazard bug in the coherence mech-
anism of all machines. This bug is a violation of the coRR pattern shown in Sec. 4,
and was later acknowledged as such by ARM, in the context of Cortex-A9 cores (in the
note [ARM Ltd. 2011]).8

Amongst the machines that we have tested, this note applies directly to Tegra2
and 3, A5X, Exynos 4412. Additionally Qualcomm’s APQ8060 is supposed to have
many architectural similarities with the ARM Cortex-A9, thus we believe that the
note might apply to APQ8060 as well. Moreover we have observed load-load hazards
anomalies on Cortex-A15 based systems (Exynos 5250 and 5410), on the Cortex-A15
compatible Apple “Swift” (A6X) and on the Krait-based APQ8064, although much less
often than on Cortex-A9 based systems. Note that we observed the violation of coRR
itself quite frequently, as illustrated by the first row of Tab. VI. The second row of
Tab. VI refers to a more sophisticated test, coRSDWI (see Fig. 31), the executions of

8We note that violating coRR invalidates the implementation of C++ modification order mo (e.g. the im-
plementation of memory order relaxed), which explicitly requires the five coherence patterns of Fig. 6 to be
forbidden [Batty et al. 2011, p. 6, col. 1].

http://diy.inria.fr/cats/model-arm
http://diy.inria.fr/cats/model-arm
http://diy.inria.fr/cats/arm-anomalies
http://diy.inria.fr/cats/arm-anomalies

52 J. Alglave et al.

which reveal violations of the coRR pattern on location z. Both tests considered, we
observed the load-load hazard bug on all the ARM machines that we have tested.

model machines

coRR forbidden allowed, 10M/95G
coRSDWI forbidden allowed, 409k/18G
mp+dmb+fri-rfi-ctrlisb forbidden allowed, 153k/178G
lb+data+fri-rfi-ctrl forbidden allowed, 19k/11G
moredetour0052 forbidden allowed, 9/17G
mp+dmb+pos-ctrlisb+bis forbidden allowed, 81/32G

Table VI. Some counts of invalid observations on ARM machines

Others, such as the mp+dmb+fri-rfi-ctrlisb behaviour of Fig. 32, were claimed to be
desirable behaviours by the designers that we talked to. This behaviour is a variant
of the message passing example, with some more accesses to the flag variable y before
the read of the message variable x. We observed this behaviour quite frequently (see
the third row of Tab. VI) albeit on one machine (of type APQ8060) only.
Additionally, we observed similar behaviours on APQ8064 (see also http://diy.inria.fr/

cats/model-qualcomm/compare.html#apq8064-invalid). We give three examples of these be-
haviours in Fig. 33. The first two are variants of the load buffering example of Fig. 7.
The last, s+dmb+fri-rfi-data, is a variant of the s pattern of Fig. 39. We can only assume
that these are as desirable as the behaviour in Fig. 32
For reasons explained in the next paragraph, we gather all such behaviours under

the name “early commit behaviours” (see reason (ii) in the next paragraph “Our pro-
posed ARM model”).

mp+dmb+fri-rfi-ctrlisb

T0

a: Wx=1

b: Wy=1

c: Ry=1

d: Wy=2

T1

e: Ry=2

f: Rx=0

dmb
rf

co

fr

rf

fr ctrlisb

Fig. 32. A feature of some ARM machines

Our proposed ARM model Our Power-ARM model rejects the mp+dmb+fri-rfi-ctrlisb
behaviour via the OBSERVATION axiom, as the event c is ppo-before the event f . More
precisely, from our description of preserved program order (see Fig. 25), the order from
c to f derives from three reasons: (i) reads are satisfied before they are committed (i(r)
precedes c(r)), (ii) instructions that touch the same location commit in order (po-loc
is in cc0), and (iii-a) instructions in a branch that are po-after a control fence (here

http://diy.inria.fr/cats/model-qualcomm/compare.html#apq8064-invalid
http://diy.inria.fr/cats/model-qualcomm/compare.html#apq8064-invalid

Herding cats 53

lb+data+fri-rfi-ctrl

T0

a: Rx=1

b: Wy=1

c: Ry=1

d: Wy=2

T1

e: Ry=2

f: Wx=1

data
rf

co

fr

rf

rf ctrl

lb+data+data-wsi-rfi-addr

T0

a: Rx=1

b: Wy=1

c: Ry=1

T1

d: Wz=1

e: Wz=2

f: Rz=2

g: Wx=1

data
rf

data

co

rf

rf addr

s+dmb+fri-rfi-data

T0

a: Wx=2

b: Wy=1

c: Ry=1

d: Wy=2

T1

e: Ry=2

f: Wx=1

dmb
rf

co

fr

rf

co data

Fig. 33. Putative features of some ARM machines

isb) do not start before the isb executes, and isb does not execute before the branch is
settled, which in turn requires the read (e in the diagram) that controls the branch to
be committed (ctrl+cfence is in ci0).
Our Power-ARM model rejects the s+dmb+fri-rfi-data behaviour via the PROPAGA-

TION axiom for the same reason: the event c is ppo-before the event f .
Similarly, our Power-ARM model rejects the lb+data+fri-rfi-ctrl behaviour via the NO

THIN AIR axiom, as the event c is ppo-before the event f . Here, still from our descrip-
tion of preserved program order (see Fig. 25) the order from c to f derives from three
reasons: (i) reads are satisfied before they commit (i(r) precedes c(r)), (ii) instructions
that touch the same location commit in order (po-loc is in cc0), and (iii-b) instructions
(in particular store instructions) in a branch do not commit before the branch is set-
tled, which in turn requires the read (e in the diagram) that controls the branch to be
committed (ctrl is in cc0).
Finally, our Power-ARM model rejects lb+data+data-wsi-rfi-addr via the NO THIN AIR

axiom, because the event c is ppo-before the event g. Again, from our description of
preserved program order (see Fig. 25) the order from c to f derives from three reasons:
(i) reads are satisfied before they commit (i(r) precedes c(r)), (ii) instructions that touch
the same location commit in order (po-loc is in cc0), and (iii-c) instructions (in particular
store instructions) do not commit before a read they depend on (e.g. the read f) is
satisfied (addr is in ic0 because it is in ii0 and ii0 is included in ic0).
The reasons (i), (iii-a), (iii-b) and (iii-c) seem uncontroversial. In particular for (iii-a),

if ctrl+cfence is not included in ppo, then neither the compilation scheme from C++
nor the entry barriers of locks would work [Sarkar et al. 2012]. For (iii-b), if ctrl to a
write event is not included in ppo, then some instances of the pattern lb+ppos (see
Fig. 7) such as lb+ctrls would be allowed. From the architecture standpoint, this could
be explained by value speculation, an advanced feature that current commodity ARM
processors do not implement. A similar argument applies for (iii-c), considering this
time that lb+addrs should not be allowed by a hardware model. In any case, allowing
such simple instances of the pattern lb+ppos would certainly contradict (low-level)
programmer intuition.
As for (ii) however, one could argue that this could be explained by an “early commit”

feature. For example, looking at mp+dmb+fri-rfi-ctrlisb in Fig. 32 and lb+data+fri-rfi-ctrl
in Fig. 33, the read e (which is satisfied by forwarding the local write d) could commit
without waiting for the satisfying write d to commit, nor for any other write to the same

54 J. Alglave et al.

Power-
ARM

ARM ARM llh

skeleton Fig. 5 Fig. 5 Fig. 5 s.t. SC PER LOCATION

ḃecomes acyclic(po-loc-llh∪com),

with po-loc-llh , po-loc \RR

propagation Fig. 18 Fig. 18 Fig. 18

ppo Fig. 25 Fig. 25 s.t. cc0 becomes
dp ∪ ctrl ∪ (addr; po)

Fig. 25 s.t. cc0 becomes dp∪ctrl∪
(addr; po)

Table VII. Summary of ARM models

location that is po-before d. Moreover, the read e could commit without waiting for the
commit of any read from the same location that is po-before its satisfying write. We be-
lieve that this might be plausible from a micro-architecture standpoint: the value read
by e cannot be changed by any later observation of incoming writes performed by load
instructions po-before the satisfying write d; thus the value read by e is irrevocable.

In conclusion, to allow the behaviours of Fig. 32, we need to weaken the definition
of preserved program order of Fig. 25. For the sake of simplicity, we chose to remove
po-loc altogether from the cc0 relation, which is the relation ordering the commit parts
of events. This means that two accesses relative to the same location and in program
order do not have to commit in this order.9

Thus we propose the following model for ARM, which has so far not been invali-
dated on hardware (barring the load-load hazard behaviours, acknowledged as bugs
by ARM [ARM Ltd. 2011] and the other anomalies presented in the next section “Test-
ing our model”, which we take to be undesirable). We go back to the soundness of our
ARM model in the section “Remarks on our proposed ARM model” (page 57).
The general skeleton of our ARM model should be the four axioms given in Fig. 5,

and the propagation order should be as given in Fig. 18. For the preserved program
order, we take it to be as the Power one given in Fig. 25, except for cc0 which now
excludes po-loc entirely, to account for the early commit behaviours, i.e. cc0 should now
be dp ∪ ctrl ∪ (addr; po). Tab. VII gives a summary of the various ARM models that we
consider in this section.

Testing our model For the purpose of these experiments only, because our machines
suffered from the load-load hazard bug, we removed the read-read pairs from the SC

PER LOCATION check as well. This allowed us to have results that were not cluttered
by this bug.
We call the resulting model “ARM llh” (ARM load-load hazard). This is the model

of Fig. 5, 18 and 25, where we remove read-read pairs from po-loc in the SC PER LOCA-
TION axiom to allow load-load hazards, and where cc0 is dp ∪ ctrl ∪ (addr; po). Tab. VII
gives a summary of this model, as well as Power-ARM and our proposed ARM model.
We then compared our original Power-ARM model (i.e. taking literally the defi-

nitions of Fig. 5, 18 and 25) and the ARM llh model with hardware—we omit the
ARM model (middle column of Tab. VII) because of the acknowledged hardware
bugs [ARM Ltd. 2011]:
More precisely, we classify the executions of both models: for each model we count

the number of invalid executions (in the sense of Sec. 4.1). By invalid we mean that an

9This is the most radical option; one could choose to remove only po-loc∩WR and po-loc∩RR , as that would
be enough to explain the behaviours of Fig. 32 and similar others. We detail our experiments with alternative
formulations for cc0 at http://diy.inria.fr/cats/arm-anomalies/index.html#alternative. Ultimately we chose
to adopt the weakest model since, as we explain in this section, it still exhibits hardware anomalies.

http://diy.inria.fr/cats/arm-anomalies/index.html#alternative

Herding cats 55

ALL S T P ST SO SP OP STO SOP

Power-ARM 37907 21333 842 1133 2471 1130 5561 872 111 4062
ARM llh 1121 105 0 0 0 16 10 460 0 530

Table VIII. Classification of anomalies observed on ARM hardware

execution is forbidden by the model yet observed on hardware. A given test can have
several executions, which explains why the numbers in Tab. VIII are much higher than
the number of tests.
Tab. VIII is organised by sets of axioms of our model (note that these sets are pair-

wise disjoint): “S” is for SC PER LOCATION, “T” for NO THIN AIR, “O” for OBSERVATION,
and “P” is for PROPAGATION. For each set of axioms (column) and model (row), we
write the number of executions forbidden by said axiom(s) of said model, yet have been
observed on ARM hardware. We omit a column (namely O, TO, TP, STP, TOP, STOP)
if the counts are 0 for both models.
For example, an execution is counted in the column “S” of the row “Power-ARM” if

it is forbidden by the SC PER LOCATION check of Fig. 5 (and allowed by other checks).
The column “S” of the row “ARM llh” is SC PER LOCATION minus the read-read pairs.
An execution is counted in the column “OP” of the row “Power-ARM” if it is forbidden
by both OBSERVATION and PROPAGATION as defined in Fig. 5 (and allowed by other
checks); for the row “ARM llh”, one needs to take into account the modification to cc0
mentioned above in the definition of the ppo.

While our original Power-ARMmodel featured 1500 tests that exhibited 37907 invalid
executions forbidden by the model yet observed on ARM machines, those numbers
drop to 31 tests and 1121 invalid executions for the ARM llh model (see row “ARM llh”,
column “ALL”; see also http://diy.inria.fr/cats/relaxed-classify/index.html).
An inspection of each of these anomalies revealed what we believe to be more

bugs. We consider the violations of SC PER LOCATION to be particularly se-
vere (see all rows mentioning S). By contrast, the load-load hazard behaviour
could be argued to be desirable, or at least not harmful, and was indeed offi-
cially allowed by Sparc RMO [SPARC International Inc. 1994] and pre-Power 4 ma-
chines [Tendler et al. 2002], as we mentioned in Sec. 4.8.
Fig. 34 shows a violation of SC PER LOCATION. Despite the apparent complexity of

the picture, the violation is quite simple. The violation occurs on T1 wich loads the
value 4 from the location y (event f), before writing the value 3 to same location y
(event g). However, 4 is the final value of the location y, as the test harness has ob-
served once the test has completed. As a consequence, the event e co-precedes the

event f and we witness a cycle g
co
→ e

rf
→ f

po-loc
→ g. That is, we witness a violation

of the coRW2 pattern (see Sec. 4). Notice that this violation may hinder the C/C++
semantics of low level atomics. Namely, accesses to atomics performed by using the
relaxed memory order are usually compiled as plain accesses when their size permit,
but nevertheless have to be “coherent”, i.e. must follow the SC PER LOCATION axiom.
Note that we observed this behaviour rather infrequently, as shown in the fifth

row of Tab. VI. However, the behaviour is observed on two machines of type Tegra3
and Exynos4412.
In addition to the violations of SC PER LOCATION shown in Fig. 34, we observed the

two behaviours of Fig. 35 (rather infrequently, as shown on the last row of Tab. VI, and
on one machine only, of type Tegra3), which violate OBSERVATION.
The test mp+dmb+pos-ctrlisb+bis includes the simpler test mp+dmb+ctrlisb plus one

extra read (c on T1) and one extra write (f on T2) of the flag variable y. The depicted
behaviours are violations of the mp+dmb+ctrlisb pattern, which must uncontroversially

http://diy.inria.fr/cats/relaxed-classify/index.html

56 J. Alglave et al.

moredetour0052

T0

a: Wx=1

b: Wy=1 i: Rx=1

c: Wy=2

d: Ry=2

g: Wy=3

e: Wy=4

f: Ry=4 h: Ry=4

T1 T2

po rf

co

rf

co

fr

fr

rf
rf

po

co

addr

Fig. 34. A violation of SC PER LOCATION observed on ARM hardware

mp+dmb+pos-ctrlisb+bis

T0

a: Wx=1

b: Wy=1

c: Ry=1

d: Ry=1

T1

e: Rx=0

T2

f: Wy=2

dmb
rf

rf

po

ctrlisbfr

co

mp+dmb+pos-ctrlisb+bis

T0

a: Wx=1

b: Wy=1

c: Ry=1

d: Ry=1

f: Wy=2

T1

e: Rx=0

T2

dmb
rf

rf
co

po
fr

ctrlisb

fr

fr

Fig. 35. Two violations of OBSERVATION observed on ARM hardware

be forbidden. Indeed the only way to allow mp+dmb+ctrlisb is to remove ctrl+cfence from
the preserved program order ppo. We have argued above that this would for example
break the compilation scheme from C++ to Power (see [Sarkar et al. 2012]).
It is worth noting that we have observed other violations of OBSERVATION on Tegra3,

as one can see at http://diy.inria.fr/cats/relaxed-classify/OP.html. For example we have ob-
served mp+dmb+ctrlisb, mp+dmb+addr, mp+dmb.st+addr, which should be uncontrover-
sially forbidden. We tend to classify such observations as bugs of the tested chip. How-
ever, since the tested chip exhibits the acknowledged read-after-read hazard bug, the
blame can also be put on the impact of this acknowledged bug on our testing infras-
tructure. Yet this would mean that this impact on our testing infrastructure would
show up on Tegra3 only.
In any case, the interplay between having several consecutive accesses relative to

the same location on one thread (e.g. c, d and e on T1 in mp+dmb+fri-rfi-ctrlisb—see
Fig. 32), in particular two reads (c and e), and the message passing pattern mp,
seems to pose implementation difficulties (see the violations of OBSERVATION listed
in Tab. VIII, in the columns containing “O”, and the two examples in Fig. 35).

http://diy.inria.fr/cats/relaxed-classify/OP.html

Herding cats 57

Remarks on our proposed ARM model Given the state of affairs for ARM, we do
not claim our model (see model “ARM” in Tab. V) to be definitive. In particular, we
wonder whether the behaviour mp+dmb+fri-rfi-ctrlisb of Fig. 32 can only be imple-
mented on a machine with load-load hazards, which ARM acknowledged to be a flaw
(see [ARM Ltd. 2011]), as it involves two reads from the same address.
Nevertheless, our ARM contacts were fairly positive that they would like this be-

haviour to be allowed. Thus we think a good ARM model should account for it. As to
the similar early commit behaviours given in Fig. 33, we can only assume that they
should be allowed as well.
Hence our ARM model allows such behaviours, by excluding po-loc from the commit

order cc0 (see Fig. 25 and Tab. V). We have performed experiments to compare our
ARM model and ARM hardware. To do so, we have excluded the load-load hazard
related behaviours.10

We give the full comparison table at http://diy.inria.fr/cats/proposed-arm/. As one can see,
we still have 31 behaviours that our model forbids yet are observed on hardware (on
Tegra2, Tegra3 and Exynos4412).
All of them seem to present anomalies, such as the behaviours that we show in

Fig. 34 and 35. We will consult with our ARM contacts for confirmation.

8.2. Experimental comparisons of models

Using the same 8117 and 9761 tests that we used to exercise Power and ARMmachines,
we have experimentally compared our model to the one of Sarkar et al. [2011] and the
one of Mador-Haim et al. [2012].

Comparison with the model of Sarkar et al. [2011] Our experimental data can be
found at http://diy.inria.fr/cats/pldi-model. Experimentally, our Power model allows all the
behaviours that are allowed by the one of Sarkar et al. [2011], which is in line with our
proofs of Sec. 7.
We also observe experimentally that our Power model and the one of Sarkar et

al. [2011] differ only on the behaviours that [Sarkar et al. 2011] wrongly forbids (see
http://diy.inria.fr/cats/pldi-power/#lessvs). We give one such example in Fig. 36: the behaviour
mp+lwsync+addr-po-detour is observed on hardware yet forbidden by the model of
Sarkar et al. [2011].
We note that some work is ongoing to adapt the model of Sarkar et al. [2011] to allow

these tests (see http://diy.inria.fr/cats/op-power). This new variant of the model of Sarkar et
al. [2011] has so far not been invalidated by the hardware.
Finally, the model of Sarkar et al. [Sarkar et al. 2011] forbids the ARM “fri-rfi” be-

haviours such as the ones given in Fig. 32. Some work is ongoing to adapt the model of
Sarkar et al. [2011] to allow these tests.

Comparison with the model of Mador-Haim et al. [2012] Our experimental data can
be found at http://diy.inria.fr/cats/cav-model. Our Power model and the one of Mador-Haim
et al. [2012] are experimentally equivalent on our set of tests, except for a few tests
of similar structure. Our model allows them, whereas the model of Mador-Haim et
al. [2012] forbids them, and they are not observed on hardware. We give the simplest
such test in Fig. 37. The test is a refinement of the mp+lwsync+ppo pattern (see Fig. 8).
The difference of acceptance between the two models can be explained as follows: the

10More precisely, we have built the model that only allows load-load hazard behaviours. In herd parlance,
this is a model that only has one check: reflexive(po-loc; fr; rf). We thus filtered the behaviours observed on
hardware by including only the behaviours that are not allowed by this load-load hazard model (i.e. all but
load-load hazard behaviours). We then compared these filtered hardware behaviours with the ones allowed
by our ARM model.

http://diy.inria.fr/cats/proposed-arm/
http://diy.inria.fr/cats/pldi-model
http://diy.inria.fr/cats/pldi-power/#lessvs
http://diy.inria.fr/cats/op-power
http://diy.inria.fr/cats/cav-model

58 J. Alglave et al.

mp+lwsync+addr-po-detour

T0

a: Wx=2

b: Wy=1

c: Ry=1

T1

d: Rz=0

e: Rx=0

f: Rx=1

g: Wx=1

T2

lwsync
rf

addr

pofr

po

fr

fr

co

rf

Fig. 36. A behaviour forbidden by the model of Sarkar et al. but observed on Power hardware

model of Mador-Haim et al. [2012] preserves the program order from T1 initial read c
to T1 final read f , while our model does not. More precisely, the issue reduces to reads d
and e (on T1) being ordered or not. And, indeed, the propagation model for writes of
Mador-Haim et al. [2012] enforces the order, while our definition of ppo does not.

mp+lwsync+addr-bigdetour-addr

T0

a: Wx=1

b: Wy=1

c: Ry=1

T1

d: Rz=0

e: Rw=1

g: Wz=1

f: Rx=0

T2

h: Ww=1

lwsync
rf

addr

po

fr

addrfr

rf

lwsync

Fig. 37. A behaviour allowed by our model while forbidden by [Mador-Haim et al. 2012]

If such a test is intentionally forbidden by the architect, it seems to suggest that one
could make the preserved program order of Power (see Fig. 25) stronger. Indeed one
could take into account the effect of barriers (such as the one between the two writes g
and h on T2 in the figure above) within the preserved program order.
Yet, we think that one should tend towards more simplicity in the definition of the

preserved program order. It feels slightly at odds with our intuition that the preserved
program order should take into account dynamic notions such as the propagation or-
der of the writes g and h. By dynamic notions, we here mean notions which require
execution relations, such as rf or prop, in their definition.

Herding cats 59

As a related side note, although we did include the dynamic relations rdw and detour
into the definition of the preserved program order in Fig. 25, we would rather prescribe
not to include them. This would lead to a weaker notion of preserved program order,
but more stand-alone. By this we mean that the preserved program order would just
contain per-thread information (e.g. the presence of a control fence, or a dependency
between two accesses), as opposed to external communications such as rfe.
We experimented with a weaker, more static, version of the preserved program order

for Power and ARM, where we excluded rdw from ii0 and detour from ci0 (see Fig. 25).
We give the full experiment report at http://diy.inria.fr/cats/nodetour-model/ On our set of
tests, this leads to only 24 supplementary behaviours allowed on Power and 8 on ARM.
We believe that this suggests that it might not be worth complicating the ppo for the
sake of only a few behaviours being forbidden. Yet it remains to be seen whether these
patterns are so common that it is important to determine their precise status w.r.t. a
given model.

8.3. Model-level simulation

Simulation was done using our new herd tool: given a model specified in the terms
of Sec. 4 and a litmus test, herd computes all the executions allowed by the model. We
distribute our tool, its sources and documentation at http://diy.inria.fr/herd.
Our tool herd understands models specified in the style of Sec. 4, i.e. defined in terms

of relations over events, and irreflexivity or acyclicity of these relations. For example,
Fig. 38 gives the herd model corresponding to our Power model (see Sec. 4 and 6). We
emphasise the concision of Fig. 38, which contains the entirety of our Power model.

Language description We build definitions with let, let rec and let rec ... and
... operators. We build unions, intersections and sequences of relations with “|”, “&”
and “;” respectively; transitive closure with “+”, and transitive and reflexive closure
with “*”. The empty relation is “0”.
We have some built-in relations, e.g. po-loc, rf, fr, co, addr, data, and operators to spec-

ify whether the source and target events are reads or writes. For example RR(r) gives
the relation r restricted to both the source and target being reads.
Finally, model checks are implemented by the acyclic and irreflexive instructions.

These are instructions with the following semantics: if the property does not hold,
model simulation stops, otherwise it continues. See herd’s documentation for a more
thorough description of syntax and semantics.

To some extent, the language that herd takes as input shares some similarities with
the much broader Lem project [Owens et al. 2011]. However, we merely intend to have
a concise way of defining a variety of memory models, whereas Lem aims at (citing
the website: http://www.cs.kent.ac.uk/people/staff/sao/lem/) “large scale semantic definitions.
It is also intended as an intermediate language for generating definitions from domain-
specific tools, and for porting definitions between interactive theorem proving systems.”

The alloy tool [Jackson 2002] (see also http://alloy.mit.edu/alloy) is closer to herd than
Lem. Both alloy and herd allow a concise relational definition of a given system. But
while alloy is very general, herd is only targeted at memory models definitions.
Thus one could see herd as a potential front-end to alloy. For example, herd provides

some built-in objects (e.g. program order, read-from), that spare the user the effort of
defining these objects; alloy would need the user to make these definitions explicit.
More precisely, to specify a memorymodel in alloy, one would need to explicitly define

an object “memory event”, for example a record with an identifier, a direction, i.e. write
or read, a location and a value, much like we do in our Coq development (see http://diy.
inria.fr/cats/proofs).

http://diy.inria.fr/cats/nodetour-model/
http://diy.inria.fr/herd
http://www.cs.kent.ac.uk/people/staff/sao/lem/
http://alloy.mit.edu/alloy
http://diy.inria.fr/cats/proofs
http://diy.inria.fr/cats/proofs

60 J. Alglave et al.

(* sc per location *) acyclic po-loc|rf|fr|co

(* ppo *)
let dp = addr|data
let rdw = po-loc & (fre;rfe)
let detour = po-loc & (coe;rfe)

let ii0 = dp|rdw|rfi
let ic0 = 0
let ci0 = (ctrl+isync)|detour
let cc0 = dp|po-loc|ctrl|(addr;po)

let rec ii = ii0|ci|(ic;ci)|(ii;ii)
and ic = ic0|ii|cc|(ic;cc)|(ii;ic)
and ci = ci0|(ci;ii)|(cc;ci)
and cc = cc0|ci|(ci;ic)|(cc;cc)
let ppo = RR(ii)|RW(ic)

(* fences *)
let fence = RM(lwsync)|WW(lwsync)|sync

(* no thin air *)
let hb = ppo|fence|rfe
acyclic hb

(* prop *)
let prop-base = (fence|(rfe;fence));hb*
let prop = WW(prop-base)|(com*;prop-base*;sync;hb*)

(* observation *) irreflexive fre;prop;hb*
(* propagation *) acyclic co|prop

Fig. 38. herd definition of our Power model

One would also need to hand-craft relations over events (e.g. the program order po),
as well as the well-formedness conditions of these relations (e.g. the program order is
total order per thread), using first order logic. Our tool herd provides all these basic
bricks (events, relations and their well-formedness conditions) to the user.
Finally, alloy uses a SAT solver as a back end, whereas herd uses a custom solver opti-

mised for the limited constraints that herd supports (namely acyclicity and irreflexivity
of relations).

Efficiency of simulation Our axiomatic description underpins herd, which allows for
a greater efficiency in the simulation. By contrast, simulation tools based on opera-
tional models (e.g. ppcmem [Sarkar et al. 2011], or the tool of Boudol et al. [2012]11) are
not able to process all tests within the memory bound of 40 GB for [Sarkar et al. 2011]
and 6 GB for [Boudol et al. 2012]: ppcmem processes 4704 tests out of 8117; the tool of
Boudol et al. [2012] processes 396 tests out of 518.

11All the results relative to the tool of [Boudol et al. 2012] are courtesy of Arthur Guillon, who exercised the
simulator of [Boudol et al. 2012] on a subset of the tests that we used for exercising the other tools.

Herding cats 61

Tools based on multi-event axiomatic models (which includes our reimplementation
of [Mador-Haim et al. 2012] inside herd) are able to process all 8117 tests, but require
more than eight times the time that our single-event axiomatic model needs.
Tab. IX gives a summary of the number of tests that each tool can process, and the

time needed to do so.

tool model style # of tests (user) time in s

ppcmem [Sarkar et al. 2011] operational 4704 14922996
herd [Mador-Haim et al. 2012] multi-event axiomatic 8117 2846
— [Boudol et al. 2012] operational 396 53100

herd this model single-event axiomatic 8117 321
Table IX. Comparison of simulation tools (on Power)

As we have implemented the model of Mador-Haim et al. [2012]12 and the present
model inside herd using the same techniques, we claim that the important gain in run-
time efficiency originates from reducing the number of events. On a reduced number
of events, classical graph algorithms such as acyclicity test and, more significantly,
transitive closure and other fixed point calculations run much faster.
We note that simulation based on axiomatic models outperforms simulation based on

operational models. This is mostly due to a state explosion issue, which is aggravated
by the fact that Power and ARM are very relaxed architectures. Thus in any given
state of the operational machine, there are numerous operational transitions enabled.
We note that ppcmem is not coded as efficiently as it could be. Better implementa-

tions are called for, but the distance to herd is considerable: herd is about 45000 times
faster than ppcmem, and ppcmem fails to process about half of the tests.
We remark that our single-event axiomatic model also needs several subevents to

describe a given instruction (see for example our definition of the preserved program
order for Power, in Fig. 25). Yet the opposition between multi-event and single-event
axiomatic models lies in the number of events needed to describe the propagation of
writes to the system. In multi-eventmodels, there is roughly one propagation event per
thread, mimicking the transitions of an operational machine. In single-event models,
there is only one event to describe the propagation to several different threads; the
complexity of the propagation mechanism is captured through our use of the relations
(e.g. rf, co, fr and prop).
We note that single-event axiomatic simulators also suffer from combinatorial explo-

sion. The initial phase computes executions (in the sense of Sec. 4.1) and thus enumer-
ates all possible rf and co relations. However, as clearly shown in Tab. IX, the situation
is less severe, and we can still process litmus tests of up to four or five threads.

8.4. Verification of C programs

While assembly-level litmus tests enable detailed study of correctness of the
model, the suitability of our model for the verification of high-level programs re-
mains to be proven. To this effect, we experimented with a modified version of
CBMC [Clarke et al. 2004], which is a bounded model checker for C programs. Recent
work [Alglave et al. 2013b] has implemented the framework of [Alglave et al. 2010;
2012] in CBMC, and observed speedups of an order of magnitude w.r.t. other verifi-
cation tools. CBMC thus features several models, ranging from SC to Power.

12The original implementations tested in [Mador-Haim et al. 2012] were, despite using the same model,
much less efficient.

62 J. Alglave et al.

In addition [Alglave et al. 2013a] proposes an instrumentation technique, which
transforms a concurrent program so that it can be processed by an SC verification
tool, e.g. CBMC in SC mode. This relies on an operational model equivalent to the one
of [Alglave et al. 2012]; we refer to it in Tab. X under the name “goto-instrument+tool”.
The advantage of supporting existing tools in SC mode comes at the price of a consider-
ably slower verification time when compared to the implementation of the equivalent
axiomatic model within the verification tool, as Tab. X shows.

tool model # of tests time in s

goto-instrument+CBMC (SC) [Alglave et al. 2012] 555 2511.6
CBMC (Power) [Alglave et al. 2012] 555 14.3

Table X. Comparison of operational vs. axiomatic model implementation

We adapted the encoding of [Alglave et al. 2013b] to our present framework, and
recorded the time needed to verify the reachability of the final state of more than
4000 litmus tests (translated to C). As a comparison point, we also implemented the
model of Mador-Haim et al. [2012] in CBMC, and compared the verification times,
given in Tab. XI. We observe some speedup with the present model over the implemen-
tation of the model of Mador-Haim et al. [2012].

tool model # of tests time in s

CBMC [Mador-Haim et al. 2012] 4450 1944
CBMC present one 4450 1041

Table XI. Comparison of verification tools on litmus tests

We also compared the same tools, but on more fully-fledged examples, de-
scribed in detail in [Alglave et al. 2013a; 2013b]: PgSQL is an excerpt of the
PostgreSQL database server software (see http://archives.postgresql.org/pgsql-hackers/
2011-08/msg00330.php); RCU is the Read-Copy-Update mechanism of the Linux ker-
nel [McKenney and Walpole 2007], and Apache is a queue mechanism extracted from
the Apache HTTP server software. In each of the examples we added correctness prop-
erties, described in [Alglave et al. 2013b], as assertions to the original source code. We
observed that the verification times of these particular examples are not affected by
the choice of either of the two axiomatic models, as shown in Tab. XII.

tool model PgSQL RCU Apache

CBMC [Mador-Haim et al. 2012] 1.6 0.5 2.0
CBMC present one 1.6 0.5 2.0

Table XII. Comparison of verification tools on full-fledged examples

http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php
http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php

Herding cats 63

9. A PRAGMATIC PERSPECTIVE ON OUR MODELS

To conclude our paper, we put our modelling framework into perspective, in the light of
actual software. Quite pragmatically, we wonder whether it is worth going through the
effort of defining, on the one hand, then studying or implementing, on the other hand,
complex models such as the Power and ARM models that we present in Sec. 6. Are
there fragments of these models that are simpler to understand, and embrace pretty
much all the patterns that are used in actual software?
For example, there is a folklore notion that iriw (see Fig. 20) is very rarely used in

practice. If that is the case, do we need models that can explain iriw?
Conversely, one flaw of the model of Alglave et al. [2012] (and also of the model of

Boudol et al. [2012]) is that it forbids the pattern r+lwsync+sync (see Fig. 16), against
the architect’s intent [Sarkar et al. 2011]. While designing the model that we present
in the current paper, we found that accounting for this pattern increased the com-
plexity of the model. If this pattern is never used in practice, it might not be worth
inventing a model that accounts for it, if it makes the model much more complex.
Thus we ask the following questions: what are the patterns used in modern soft-

ware? What are their frequencies?
Additionally, we would like to understand whether there are programming patterns

used in current software that are not accounted for by our model. Are there program-
ming patterns that are not represented by one of the axioms of our model, i.e. SC PER

LOCATION, NO THIN AIR, OBSERVATION or PROPAGATION, as given in Fig. 5?
Conversely, can we understand all the patterns used in current software through

the prism of, for example, our OBSERVATION axiom, or is there an actual need for
the PROPAGATION axiom too? Finally, we would like to understand to what extent do
hardware anomalies, such as the load-load hazard behaviour that we observed on ARM
chips (see Sec. 8) impair the behaviour of actual software.
To answer these questions, we resorted to the largest code base available to us: an

entire Linux distribution.

What we analysed We picked the current stable release of the Debian Linux dis-
tribution (version 7.1, http://www.debian.org/releases/stable/), which contains more than
17 000 software packages (including the Linux kernel itself, server software such as
Apache or PostgreSQL, but also user-level software, such as Gimp or Vim).
David A. Wheeler’s SLOCCount tool (http://www.dwheeler.com/sloccount/) reports more

than 400 million lines of source code in this distribution. C and C++ are still the pre-
dominant languages: we found more than 200 million lines of C and more than 129
million lines of C++.
To search for patterns, we first gathered the packages which possibly make use of

concurrency. That is, we selected the packages that make use of either POSIX threads
or Linux kernel threads anywhere in their C code. This gave us 1590 source packages
to analyse; this represents 9.3% of the full set of source packages.
The C language [ISO 2011] does not have an explicit notion of shared memory.

Therefore, to estimate the number of shared memory interactions, we looked for vari-
ables with static storage duration (in the C11 standard sense [ISO 2011, §6.2.4]) that
were not marked thread local. We found a total of 2 733 750 such variables. In addition
to these, our analysis needs to consider local variables shared through global pointers
and objects allocated on the heap to obtain an overapproximation of the set of objects
(in the C11 standard sense [ISO 2011, §3.15]) that may be shared between threads.

A word on C++ The C++memorymodel has recently received considerable academic
attention (see e.g. [Batty et al. 2011; 2013; Sarkar et al. 2012]). Yet to date even a plain
text search in all source files for uses of the corresponding stdatomic.h and atomic

http://www.debian.org/releases/stable/
http://www.dwheeler.com/sloccount/

64 J. Alglave et al.

header files only reveals occurrences in the source code of compilers, but not in any of
the other source packages.
Thus practical assessment of our subset of the C++ memory model is necessarily left

for future work. At the same time, this result reinforces our impression that we need
to study hardware models to inform current concurrent programming.

9.1. Static pattern search

To look for patterns in Debian 7.1, we implemented a static analysis in a new tool
called mole. This means that we are looking for an overapproximation—see below
for details—of the patterns used in the program. Building on the tool chain de-
scribed in [Alglave et al. 2013a], we use the front-end goto-cc and a variant of the
goto-instrument tool of [Alglave et al. 2013a], with the new option --static-cycles. We
distribute our tool mole, along with a documentation, at http://diy.inria.fr/mole.

9.1.1. Preamble on the goto-* tools goto-cc and goto-instrument are part of the tool chain
of CBMC [Clarke et al. 2004], which is widely recognised for its maturity.13 goto-cc
may act as compiler substitute as it accepts the same set of command line options
as several C compilers, such as gcc. Instead of executables, however, goto-cc com-
piles C programs to an intermediate representation shared by the tool chain around
CBMC: goto-programs. These goto-programs can be transformed and inspected using
goto-instrument. For instance, goto-instrument can be applied to insert assertions of
generic invariants such as valid pointer dereferencing or data race checks, or dump
goto-programs as C code – and was used in [Alglave et al. 2013a] to insert buffers for
simulating weak memory models. Consequently we implemented the search described
below in goto-instrument, adding the new option --static-cycles.

9.1.2. Cycles Note that a pattern like all the ones that we have presented in this
paper corresponds to a cycle of the relations of our model. This is simply because our
model is defined in terms of irreflexivity and acyclicity checks. Thus looking for pat-
terns corresponds here to looking for cycles of relations.

Critical cycles Previous works [Shasha and Snir 1988; Alglave and Maranget 2011;
Bouajjani et al. 2011; 2013] show that a certain kind of cycles, which we call critical
cycles (following [Shasha and Snir 1988]), characterises many weak behaviours. Intu-
itively, a critical cycle violates SC in a minimal way.
We recall here the definition of a critical cycle (see [Shasha and Snir 1988] for more

details). Two events x and y are competing, written (x, y) ∈ cmp, if they are from
distinct processors, to the same location, and at least one of them is a write (e.g. in iriw,

the write a to x on T0 and the read b from x on T2). A cycle σ ⊆ (cmp ∪ po)
+
is critical

when it satisfies the following two properties:

— (i) per thread, there are at most two memory accesses involved in the cycle on this
thread and these accesses have distinct locations, and

— (ii) for a given memory location ℓ, there are at most three accesses relative to ℓ, and
these accesses are from distinct threads ((w,w′) ∈ cmp, (w, r) ∈ cmp, (r, w′) ∈ cmp or
{(r, w), (w, r′)} ⊆ cmp).

All the executions that we give in Sec. 4 show critical cycles, except for the SC PER LO-
CATION ones (see Fig. 6). Indeed a critical cycle has to involve more than one memory
location by definition.

Static critical cycles More precisely, our tool mole looks for cycles which:

13http://www.research.ibm.com/haifa/conferences/hvc2011/award.shtml

http://diy.inria.fr/mole
http://www.research.ibm.com/haifa/conferences/hvc2011/award.shtml

Herding cats 65

—alternate program order po and competing accesses cmp,
— traverse a thread only once (see (i) above), and
— involve at most three accesses per memory location (see (ii) above).

Observe that the definition above is not limited to the well-known patterns that we
presented in Sec. 4. Consider the two executions in Fig. 39, both of which match the
definition of a critical cycle given above.

ww+rw+r

T0

a: Wx=2

b: Wy=1

c: Ry=1

T1

d: Wx=1

e: Rx=1

T2

po
rf

po
co rf

fr

s

T0

a: Wx=2

b: Wy=1

c: Ry=1

T1

d: Wx=1

po
rf

po
co

Fig. 39. The pattern s (on the right), and an extended version of it (on the left)

On the left-hand side, the thread T1 writes 1 to location x (see event d); the thread T2

reads this value from x (i.e. (d, e) ∈ rf), before the thread T0 writes 2 to x (i.e. (e, a) ∈ fr).
By definition of fr, this means that the write d of value 1 into x by T1 is co-before the
write a of value 2 into x by T0. This is reflected by the execution on the right-hand side,
where we simply omitted the reading thread T2.
Thus to obtain our well-known patterns, such as the ones in Sec. 4 and the s pattern

on the right-hand side of Fig. 39, we implement the following reduction rules, which
we apply to our cycles:

— co; co = co, which means that we only take the extremities of a chain of coherence
relations;

— rf; fr = co, which means that we omit the intermediate reading thread in a sequence
of read-from and from-read, just like in the s case above;

— fr; co = fr which means that we omit the intermediate writing thread in a sequence
of from-read and coherence.

We call the resulting cycles static critical cycles. Thus mole looks for all the static
critical cycles that it can find in the goto-program given as argument. In addition, it
also looks for SC PER LOCATION cycles, i.e. coWW, coRW1, coRW2, coWR and coRR as
shown in Fig. 6.
In the remainder of this section, we simply write cycles for the cycles gathered by

mole, i.e. static critical cycles and SC PER LOCATION cycles.

9.1.3. Static search Looking for cycles poses several challenges, which are also perva-
sive in static data race analysis (see [Kahlon et al. 2007]):

— identify program fragments that may be run concurrently, in distinct threads;
— identify objects that are shared between these threads.

Finding shared objects may be further complicated by the presence of inline assembly.
We find inline assembly in 803 of the packages to be analysed. At present, mole only in-
terprets a subset of inline assembly deemed relevant for concurrency, such as memory
barriers, but ignores all other inline assembly.

66 J. Alglave et al.

We can now explain how our pattern search works. Note that our approach does not
require analysis of whole, linked, programs – which is essential to achieve scalability
to a code base this large. Our analysis proceeds as follows:

1. identify candidate functions that could act as entry points for a thread being
spawned (an entry point is a function such that its first instruction will be sched-
uled for execution when creating a thread);

2. group these candidate entry points, as detailed below, according to shared objects
accessed – where we consider an object as shared when it either has static storage
duration (and is not marked thread local), or is referenced by a shared pointer;

3. assuming concurrent execution of the threads in each such group, enumerate cy-
cles using the implementation from [Alglave et al. 2013a] with a flow-insensitive
points-to analysis and, in order to include SC PER LOCATION cycles, weaker re-
strictions than when exclusively looking for critical cycles;

4. classify the candidates following their patterns (i.e. using the litmus naming
scheme that we outlined in Tab. III) and the axioms of the model. The categori-
sation according to axioms proceeds by testing the sequence of relations occurring
in a cycle against the axioms of Fig. 5; we detail this step below.

Note that our analysis does not take into account program logic, e.g. locks, that may
forbid the execution of a given cycle. If no execution of the (concurrent) program in-
cludes a certain cycle, we call it a spurious cycle, and refer to others as genuine cycles.
Note that this definition is independent of fences or dependencies that may render a
cycle forbidden for a given (weak) memory model. Our notion of genuine simply ac-
counts for the feasibility of a concurrent execution. This overapproximation, and fact
that we also overapproximate on possible entry points, means that any numbers of
cycles given in this section cannot be taken as a quantitative analysis of cycles that
would be actually executed.
With this approach, instead, we focus on not missing cycles rather than avoiding

the detection of spurious cycles. In this sense, the results are best compared to com-
piler warnings. Performing actual proofs of cycles being either spurious or genuine is
an undecidable problem. In principle we could thus only do so in a best-effort man-
ner, akin to all software verification tools aiming at precise results. In actual practice,
however, the concurrent reachability problem to be solved for each such cycle will be
a formidable challenge for current software verification tools, including several addi-
tional technical difficulties (such as devising complex data structures as input values)
as we are looking at real-world software rather than stylised benchmarks. With more
efficient tools such as the one of [Alglave et al. 2013b] we hope to improve on this situ-
ation in future work, since with the tool of [Alglave et al. 2013b] we managed to verify
selected real-world concurrent systems code for the first time.
We now explain these steps in further detail, and use the Linux Read-Copy-Update

(RCU) code [McKenney and Walpole 2007] as an example. Fig. 40 shows a code snippet,
which was part of the benchmarks that we used in [Alglave et al. 2013b], employing
RCU. The original code contains several macros, which were expanded using the C
preprocessor.

Finding entry points To obtain an overapproximate set of cycles even for, e.g. library
code, which does not have a defined entry point and thus may be used in a concurrent
context even when the code parts under scrutiny do contain thread spawn instructions,
we consider thread entry points as follows:

— explicit thread entries via POSIX or kernel thread create functions;
— any set of functions f1, . . . , fn, provided that fi is not (transitively) called from an-

other function fj in this set and fi has external linkage (see [ISO 2011, §5.1.1.1]).;

Herding cats 67

01 struct foo *gbl_foo;
02
03 struct foo foo1, foo2;
04
05 spinlock_t foo_mutex=(spinlock_t){ { .rlock = { .raw_lock = { 0 }, } } };
06
06 void* foo_update_a(void* new_a)
07 {
08 struct foo *new_fp;
09 struct foo *old_fp;
10
11 foo2.a=100;
12 new_fp = &foo2;
13 spin_lock(&foo_mutex);
14 old_fp = gbl_foo;
15 *new_fp = *old_fp;
16 new_fp->a = *(int*)new_a;
16
17 ({ __asm__ __volatile__ ("lwsync" " " : : :"memory");
18 ((gbl_foo)) = (typeof(*(new_fp)) *)((new_fp)); });
19
20 spin_unlock(&foo_mutex);
21 synchronize_rcu();
22 return 0;
23 }
24
25 void* foo_get_a(void* ret)
26 {
26 int retval;
27 rcu_read_lock();
28 retval=({typeof(*(gbl_foo)) *_________p1 =
29 (typeof(*(gbl_foo))*)(*(volatile typeof((gbl_foo))*)&((gbl_foo)));
30 do { } while (0); ; do { } while(0);
31 ((typeof(*(gbl_foo)) *)(_________p1)); })->a;
32 rcu_read_unlock();
33 *(int*)ret=retval;
34 return 0;
35 }
36
36 int main()
37 {
38 foo1.a=1;
39 gbl_foo=&foo1;
40 gbl_foo->a=1;
41
42 int new_val=2;
43 pthread_create(0, 0, foo_update_a, &new_val);
44 static int a_value=1;
45 pthread_create(0, 0, foo_get_a, &a_value);
46
46 assert(a_value==1 || a_value==2);
47 }

Fig. 40. Code example from RCU

68 J. Alglave et al.

—for mutually recursive functions an arbitrary function from this set of recursive
functions.

For any function identified as entry point we create 3 threads, thereby accounting for
multiple concurrent access to shared objects only used by a single function, but also
for cases where one of the called functions is running in an additional thread. Note
that in the case of analysing library functions this may violate assumptions about an
expected client-side locking discipline expressed in documentation, as is the case with
any library not meant to be used in a concurrent context. As discussed above, we did
restrict our experiments to those software packages that do contain some reference to
POSIX threads or Linux kernel threads anywhere in their code—but this is a heuristic
filter only.
For RCU, as shown in Fig. 40, we see several functions (or function calls): main,

foo get a, foo update a, spin lock, spin unlock, synchronize rcu, rcu read lock and
rcu read unlock. If we discard main, we no longer have a defined entry point nor
POSIX thread creation through pthread create. In this case, our algorithmwould con-
sider foo get a and foo update a as the only potential thread entry points, because all
other functions are called from one of these two, and there is no recursion.

Finding threads’ groups As next step we form groups of threads using the identified
thread entry points. We group the functions fi and fj if and only if the set of objects
read or written by fi or any of the functions (transitively) called by fi has a non-empty
intersection with the set for fj. Note the transitivity in this requirement: for functions
fi, fj , fk with fi and fj sharing one object, and fj and fk sharing another object, all
three functions end up in one group. In general, however, wemay obtain several groups
of such threads, which are then analysed individually.
When determining shared objects, as noted above, pointer derefer-

encing has to be taken into account. This requires the use of points-
to analyses, for which we showed that theoretically they can be
sound [Alglave, Kroening, Lugton, Nimal, and Tautschnig 2011], even under weak
memory models. In practice, however, pointer arithmetic, field-sensitivity, and inter-
procedural operation require a performance-precision trade-off. In our experiments we
use a flow-insensitive, field-insensitive and interprocedural analysis. We acknowledge
that we may thus still be missing certain cycles due to the incurred incompleteness of
the points-to analysis.
For RCU, main, foo get a and foo update a form a group, because they jointly ac-

cess the pointer gbl foo as well as the global objects foo1 and foo2 through this
pointer. Furthermore main and foo update a share the local object new val, and main
and foo get a share a value, both of which are communicated via a pointer.

Finding patterns With thread groups established, we enumerate cycles as described
in [Alglave et al. 2013a]. We briefly recall this step here for completeness:

—we first construct one control-flow graph (CFG) per thread;
— then we add communication edges between shared memory accesses to the same ob-

ject, if at least one of these objects is a write (this is the cmp relation in the definition
of critical cycles given at the beginning of this section);

—we enumerate all cycles amongst the CFGs and communication edges using Tarjan’s
1973 algorithm [Tarjan 1973], resulting in a set that also contains all critical cycles
(but possibly more);

— as final step we filter the set of cycles for those that satisfy the conditions of static
critical cycles or SC PER LOCATION as described above.

Herding cats 69

Let us explain how we may find the mp pattern (see Fig. 8 in Sec. 4) in RCU. The
writing thread T0 is given by the function foo update a, the reading thread T1 by the
function foo get a. Now for the code of the writing thread T0: in foo update a, we write
foo2 at line 11, then we have an lwsync at line 17, and a write to gbl foo at line 18.
For the code of the reading thread T1: the function foo get a first copies the value of

gbl foo at line 29 into the local variable p1. Now, note that the write to gbl foo
at line 18 made gbl foo point to foo2, due to the assignment to new fp at line 12.
Thus dereferencing p1 at line 31 causes a read of the object foo2 at that line.

Observe that the dereferencing introduces an address dependency between the read of
gbl foo and the read of foo2 on T1.

Categorisation of cycles As we said above, for each cycle that we find, we apply a
categorisation according to the axioms of our model (see Fig. 5). For the purpose of this
categorisation we instantiate our model for SC (see Fig. 21). We use the sequence of
relations in a given cycle: for example for mp, this sequence is lwsync; rfe; dp; fre. We
first test if the cycle is an SC PER LOCATION cycle: we check if all the relations in our
input sequence are either po-loc or com. If, as for mp, this is not the case, we proceed
with the test for NO THIN AIR. Here we check if all the relations in our sequence match
hb, i.e. po ∪ fences ∪ rfe. As mp includes an fre, the cycle cannot be categorised as NO

THIN AIR, and we proceed to OBSERVATION. Starting from fre we find lwsync ∈ prop (as
prop = po∪ fences ∪ rf ∪ fr on SC), and rfe; dp ∈ hb∗. Thus we categorise the cycle as as a
observation cycle. In the general case, we check for PROPAGATION last.

Litmus tests We exercised mole on the set of litmus tests that we used for exercis-
ing CBMC (see Sec. 8.4). For each test we find its general pattern (using the naming
scheme that we presented in Sec. 4): for example for mp we find the cycle po; rfe; po; fre.
Note that our search looks for memory barriers but does not try to look for dependen-
cies; this means that for the variant mp+lwfence+addr of the mp pattern, we find the
cycle lwfence; rfe; po; fre, where the barrier appears but not the dependency.

Examples that we had studied manually before (see [Alglave et al. 2013a; 2013b]) in-
clude Apache, PgSQL and RCU, as mentioned in Sec. 8.4. We analysed these examples
with mole to confirm the patterns that we had found before.14

In Apache we find 5 patterns distributed over 75 cycles: 4×mp (see Fig. 8); 1× s (see
Fig. 39); 28× coRW2, 25× coWR, and 17× coRW1 (see Fig. 6).
In PgSQL, we find 22 different patterns distributed over 463 cycles. We give the

details in Tab. XIII.
In RCU we find 9 patterns in 23 critical cycles, as well as one SC PER LOCATION

cycle. We give the details in Tab. XIV. For each pattern we give one example cycle:
we refer to the excerpt in Fig. 40 to give the memory locations and line numbers15 it
involves. Note that we list an additional example of mp in the table, different from the
one explained above.

9.2. Results for Debian 7.1

We report on the results of running mole on 137 163 object files generated while com-
piling source packages using goto-cc, in 1 251 source packages of the Debian Linux
distribution, release 7.1.

14In the remainder of this paper we mention patterns that we have not displayed in the paper, and which
do not follow the convention outlined in Tab. III: z6.[0-5], 3.2w, or irrwiw. For the sake of brevity, we do not
show them in the paper, and refer the reader to the companion web site: http://diy.inria.fr/doc/gen.html#
naming.
15Lines 1 and 3 result from initialisation of objects with static storage duration, as prescribed by the C11
standard [ISO 2011, §6.7.9].

http://diy.inria.fr/doc/gen.html#naming
http://diy.inria.fr/doc/gen.html#naming

70 J. Alglave et al.

pattern # cycles

r (see Fig. 16) 93
w+rr+2w 68

w+rr+wr+ww 62
z6.4 54

sb (see Fig. 14) 37
2+2w (see Fig. 13(a)) 25
w+rwc (see Fig. 19) 23

mp (see Fig. 8) 16
w+rw 14

s (see Fig. 39) 14
z6.5 6

w+rw+wr 6
w+rw+2w 4

z6.0 2
wrc (see Fig. 11) 2

lb (see Fig. 7) 2
irrwiw 2

coWR (see Fig. 6) 19
coWW (see Fig. 6) 6
coRW1 (see Fig. 6) 4
coRW2 (see Fig. 6) 4

Table XIII. Patterns in PgSQL

pattern # cycles memory locations line numbers

2+2w (see Fig. 13(a)) 6 foo2, gbl foo 1, 3, 16
3.2w 4 foo1, foo2, gbl foo 3, 16, 39, 40

w+rr+ww+ww 3 foo1, foo2, gbl foo 3, 14, 15, 16, 39
z6.5 2 foo1, foo2, gbl foo 3, 11, 14, 39, 40

r (see Fig. 16) 2 foo1, foo2 3, 11, 15
mp (see Fig. 8) 2 foo1, gbl foo 14, 15, 38, 39
w+rr+ww+wr 2 foo1, foo2, gbl foo 3, 11, 14, 29, 31, 39

z6.3 1 foo1, foo2, gbl foo 3, 16, 29, 31
w+rr+2w 1 foo1, gbl foo 29, 31, 38, 39

coWW (see Fig. 6) 1 foo2 15 16

Table XIV. Patterns in RCU

We provide all the files compiled with goto-cc and present our experimental data
(i.e. the patterns per packages) at http://diy.inria.fr/mole.
Our experiment runs on a system equipped with 8 cores and 64 GB of main memory.

In our setup, we set the time and memory bounds for each object file subject to cycle
search to 15 minutes and 16 GB of RAM. We spent more than 199 CPU days in cycle
search, yet 19 930 runs did not finish within the above time and memory limits. More
than 50% of time are spent within cycle enumeration for a given graph of CFGs and
communication edges, whereas only 12% are spent in the points-to analysis. The re-
maining time is consumed in generating the graph. The resulting 79 GB of raw data
were further processed to determine the results presented below.
Note that, at present, we have no information on how many of the detected cycles

may be spurious for one of the reasons discussed above. We aim to refine these results
in future work.

http://diy.inria.fr/mole

Herding cats 71

9.2.1. General results We give here some general overview of our experiments. We
detected a total of 86 206 201 critical cycles, plus 11 295 809 SC PER LOCATION cycles.
Amongst these, we find 551 different patterns. Fig. 41 gives the thirty most frequent
patterns.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·106

rw
c

ir
iw

co
R
R

r
w
rw

+
w
r

ir
rw

iw
w
rr
+
2
w

co
R
W
2

w
rc

m
p

w
rw

+
2
w

co
W
R

sb
2
+
2
w

co
W
W

w
+
rr
+
w
+
rr
+
w
r

s
w
+
rr
+
w
+
rr
+
w
w

w
+
rr
+
w
+
rr
+
w
+
rr

w
+
rr
+
w
+
rr
+
w
+
rw

w
+
rr
+
w
w
+
rr

w
+
rr
+
w
w
+
w
w

ir
w
iw

w
+
rr
+
w
+
rr
+
w
+
rr
+
w
+
rw

w
w
c

z6
.5

z6
.3

w
+
rr
+
w
w
+
w
r

w
+
rr
+
w
r+

w
r

z6
.4

pattern

n
u
m
b
er

of
cy
cl
es

Fig. 41. Thirty most frequent patterns

The source package with most cycles is mlterm (a multilingual terminal emulator,
http://packages.debian.org/wheezy/mlterm, 4 261 646 cycles) with the most frequently occur-
ring patterns iriw (296 219), w+rr+w+rr+w+rw (279 528) and w+rr+w+rw+w+rw (218 061)
The source package with the widest variety of cycles is ayttm (an instant messaging
client, http://packages.debian.org/wheezy/ayttm, 238 different patterns); its most frequent
patterns are z6.4 (162 469), z6.5 (146 005) and r (90 613).
We now give an account of what kind of patterns occur for a given functionality. By

functionality we mean what the package is meant for, e.g. web servers (httpd), mail
clients (mail), video games (games) or system libraries (libs). For each functionality,
Tab. XV gives the number of packages (e.g. 11 for httpd), the three most frequent pat-
terns within that functionality with their number of occurrences (e.g. 30 506 for wrr+2w
in httpd) and typical packages with the number of cycles contained in that package (e.g.
70 283 for apache2).

http://packages.debian.org/wheezy/mlterm
http://packages.debian.org/wheezy/ayttm

72 J. Alglave et al.

function patterns typical packages

httpd (11) wrr+2w (30 506), mp (27 618), rwc (13 324) libapache2-mod-perl2
(120 869), apache2 (70 283),
webfs (27 260)

mail (24) w+rr+w+rw+ww (75 768), w+rr+w+rr+ww
(50 842), w+rr+w+rr+w+rw (45 496)

opendkim (702 534), citadel
(337 492), alpine (105 524)

games (57) 2+2w (198 734), r (138 961), w+rr+w+rr+wr
(134 066)

spring (1 298 838), gcom-
pris (559 905), liquidwar
(257 093)

libs (266) iriw (468 053), wrr+2w (387 521), irrwiw
(375 836)

ecore (1 774 858), lib-
selinux (469 645), psqlodbc
(433 282)

Table XV. Patterns per functionality

9.2.2. Summary per axiom Tab. XVI gives a summary of the patterns we found, organ-
ised per axioms of our model (see Sec. 4). We chose a classification with respect to SC,
i.e. we fixed prop to be defined as shown in Fig. 21. For each axiom we also give some
typical examples of packages that feature patterns relative to this axiom.

axiom # patterns typical packages

SC PER LOCATION 11 295 809 vips (412 558), gauche (391 180), python2.7 (276 991)

NO THIN AIR 445 723 vim (36 461), python2.6 (25 583), python2.7 (16 213)

OBSERVATION 5 786 239 mlterm (285 408), python2.6 (183 761), vim (159 319)

PROPAGATION 79 974 239 isc-dhcp (891 673), cdo (889 532), vim (878 289)

Table XVI. Patterns per axiom

We now give a summary of the patterns we found, organised by axioms. Several
distinct patterns can correspond to the same axiom, e.g. mp, wrc and isa2 all correspond
to the OBSERVATION axiom (see Sec. 4). For the sake of brevity, we do not list all the
551 patterns. Fig. 42 gives one pie chart of patterns per axiom.

Observations We did find 4 775 091 occurrences of iriw (see Fig. 20), which represents
4.897% of all the cycles that we have found. As such it is the second most frequent
pattern detected, which appears to invalidate the folklore claim that iriw is rarely used.
It should be noted, however, that these static cycles need not correspond to genuine
ones that are actually observed in executions, as discussed further below.
We found 4 083 639 occurrences of r (see Fig. 16), which represents 4.188% of the cycles

that we have found. Observe that r appears in PgSQL (see Tab. XIII) and RCU (see
Tab. XIV), as well as in the thirty most frequent patterns (see Fig. 41). This seems to
suggest that a good model needs to handle this pattern properly.
We also found 4 606 915 occurrences of coRR, which corresponds to the acknowledged

ARM bug that we presented in Sec. 8. This represents 4.725% of all the cycles that we
have found. Additionally, we found 2 300 724 occurrences of coRW2, which corresponds
to the violation of SC PER LOCATION, observed on ARM machines that we show in
Fig. 34. This represents 2.360% of all the cycles that we have found. These two per-
centages perhaps nuance the severity of the ARM anomalies that we expose in Sec. 8.
We believe that our experiments with mole provide results that could be used by

programmers or static analysis tools to identify where weak memory may come into

Herding cats 73

coWW

16%

coWR

19%

coRW1 (3%)

coRW2
20%

coRR

40%

sc per location

lb

84%

3.lb
13%

4.lb (1%)

no thin air

mp

38%

wrc

38%

isa2 (8%)

other

14%

observation

sb (2%)
2+2w (2%)

rwc (5%)

iriw (5%)

r (5%)

s (2%)

wrw+wr (4%)

irrwiw (4%)

wrr+2w (3%)

other 63%

propagation

Fig. 42. Proportions of patterns per axiom

play and ensure that it does not introduce unexpected behaviours. Moreover, we think
that the data that mole gathers can be useful to both hardware designers and software
programmers.
While we do provide quantitative data, we would like to stress that, at present, we

have little information on how many of the detected cycles are actually genuine. Many
of the considered cycles may be spurious, either because of additional synchronisation
mechanisms such as locks, or simply because the considered program fragments are
not executed concurrently in any concrete execution. Thus, as said above, at present
the results are best understood as warnings similar to those emitted by compilers. In
future work we will both work towards the detection of spurious cycles, but also aim at
studying particular software design patterns that may give rise to the most frequently
observed patterns of our models.
We nevertheless performed manual spot tests of arbitrarily selected cycles in the

packages 4store, acct and acedb. For instance, the SC PER LOCATION patterns in the
package acct appear genuine, because the involved functions could well be called con-
currently as they belong to a memory allocation library. An analysis looking at the
entire application at once would be required to determine whether this is the case.
For other cases, however, it may not at all be possible to rule out such concurrent op-
erations: libraries, for instance, may be used by arbitrary code. In those cases only
locks (or other equivalent mutual exclusion primitives) placed on the client side would
guarantee data-race free (and thus weak-memory insensitive) operation. The same ra-
tionale applies for other examples that we looked at: while our static analysis considers

74 J. Alglave et al.

this case in order to achieve the required safe overapproximation, the code involved in
some of the iriw cycles in the package acedb or 4store is not obviously executed concur-
rently at present. Consequently these examples of iriw might be spurious, but we note
that no locks are in place to guarantee this.
For the RCU and PgSQL examples presented in this paper we use harnesses that

perform concurrent execution. For RCU this mimics the intended usage scenario of
RCU (concurrent readers and writers), and in the case of PgSQL this was modelled
after a regression test16 built by PostgreSQL’s developers. Consequently we are able to
tell apart genuine and spurious cycles in those cases.
For PgSQL, the SC PER LOCATION patterns (coWW, coWR, coRW1, coRW2, listed

in Tab. XIII) and the critical cycles described in detail in [Alglave et al. 2013a] are
genuine: one instance of lb (amongst the 2 listed in Tab. XIII) and one instance of mp
(amongst the 16 listed).
For RCU, the coWW cycle liste in Tab. XIV and the instance of mp described above

(see top of page 69) are genuine – but note that the latter contains synchronisation
using lwsync, which means that the cycle is forbidden on Power.
All other cycles appear to be genuine as well, but are trivially forbidden by the or-

dering of events implied by spawning threads. For example, we report instances of mp
in RCU over lines 38 and 39 in function main as first thread, and lines 14 and 15 in func-
tion foo update a as second, and seemingly concurrent, thread. As that second thread
is only spawned after execution of lines 38 and 39, no true concurrency is possible.

10. CONCLUSION

To close this paper, we recapitulate the criteria that we listed in the introduction, and
explain how we address each of them.

Stylistic proximity of models: the framework that we presented embraces a wide vari-
ety of hardware models, including SC, x86 (TSO), Power and ARM. We also explained
how to instantiate our framework to produce a significant fragment of the C++ mem-
ory model, and we leave the definition of the complete model (in particular including
consume atomics) for future work.

Concision is demonstrated in Fig. 38, which contains the unabridged specification of
our Power model.

Efficient simulation and verification: the performance of our tools, our new simulator
herd (see Tab. IX), and the bounded model checker CBMC adapted to our new Power
model (see Tab. XI), confirm (following [Mador-Haim et al. 2012; Alglave et al. 2013b])
that the modelling style is crucial.

Soundness w.r.t. hardware: to the best of our knowledge, our Power and ARM mod-
els are to this date not invalidated by hardware, except for the 31 surprising ARM
behaviours detailed in Sec. 8. Moreover, we keep on running experiments regularly,
which we record at http://diy.inria.fr/cats.

Adaptability of the model was demonstrated by the ease with which we were able to
modify our model to reflect the subtle mp+dmb+fri-rfi-ctrlisb behaviour (see Sec. 8).

Architectural intent: to the best of our knowledge, our Power model does not contradict
the architectural intent, in that we build on the model of Sarkar et al. [2011], which
should reflect said intent, and that we have regular contacts with hardware designers.
For ARM, wemodel the mp+dmb+fri-rfi-ctrlisb behaviour which is claimed to be intended
by ARM designers.

16See the attachment at http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us

http://diy.inria.fr/cats
http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us

Herding cats 75

Account for what programmers do: with our new tool mole, we explored the C code
base of the Debian Linux distribution version 7.1 (about 200 millions lines of code) to
collect statistics of concurrency patterns occurring in real world code. Just like our
experiments on hardware, we keep on running our experiments on Debian regularly;
we record them at http://diy.inria.fr/mole.

As future work, on the modelling side, we will integrate the semantics of the lwarx

and stwcx. Power instructions (and their ARM equivalents ldrex and strex), which are
used to implement locking or compare-and-swap primitives. We expect their integra-
tion to be relatively straight forward: the model of Sarkar et al. [2012] uses the con-
cept of a write reaching coherence point to describe them, a notion that we have in our
model as well.
On the rationalist side, it remains to be seen if our model is well-suited for proofs of

programs: we regard our experiments w.r.t. verification of programs as preliminary.

ACKNOWLEDGMENTS

We thank Nikos Gorogiannis for suggesting that the extension of the input files for herd should be .cat and
Daniel Kroening for infrastructure for running mole. We thank Carsten Fuhs (even more so since we forgot

to thank him in [Alglave et al. 2013b]) and Matthew Hague for their patient and careful comments on a

draft. We thank Mark Batty, Shaked Flur, Vinod Grover, Viktor Vafeiadis, Tyler Sorensen and Gadi Tellez

for comments on a draft. We thank our reviewers for their careful reading, comments and suggestions. We

thank Arthur Guillon for his help with the simulator of [Boudol et al. 2012]. We thank Susmit Sarkar, Peter

Sewell and Derek Williams for discussions on the Power model(s). Finally, this paper would not have been

the same without the last year of discussions on related topics with Richard Bornat, Alexey Gotsman, Peter

O’Hearn and Matthew Parkinson.

REFERENCES

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson, and Ahmed
Rezine. 2012. Counter-Example Guided Fence Insertion under TSO. In TACAS. Springer,
204–219.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson, and Ahmed
Rezine. 2013. Memorax, a Precise and Sound Tool for Automatic Fence Insertion under TSO.
In TACAS. Springer, 530–536.

Allon Adir, Hagit Attiya, and Gil Shurek. 2003. Information-Flow Models for Shared Memory
with an Application to the PowerPC Architecture. IEEE Trans. Parallel Distrib. Syst. 14, 5
(2003), 502–515.

Sarita V. Adve and Hans-Juergen Boehm. 2010. Memory models: a case for rethinking parallel
languages and hardware. Commun. ACM 53, 8 (2010), 90–101.

Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory Consistency Models: A Tuto-
rial. IEEE Computer 29, 12 (1996), 66–76.

Jade Alglave. 2010. A Shared Memory Poetics. Ph.D. Dissertation. Université Paris 7.
Jade Alglave. 2012. A formal hierarchy of weak memory models. Formal Methods in System

Design 41, 2 (2012), 178–210.
Jade Alglave, Anthony C. J. Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar, Peter

Sewell, and Francesco Zappa Nardelli. 2009. The semantics of power and ARM multipro-
cessor machine code. In DAMP. ACM, 13–24.

Jade Alglave, Daniel Kroening, John Lugton, Vincent Nimal, and Michael Tautschnig. 2011.
Soundness of Data Flow Analyses for Weak Memory Models. In APLAS. Springer, 272–288.

Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. 2013a. Software Verifi-
cation for Weak Memory via Program Transformation. In ESOP. Springer, 512–532.

Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013b. Partial Orders for Efficient
Bounded Model Checking of Concurrent Software. In CAV. Springer, 141–157.

Jade Alglave and Luc Maranget. 2011. Stability in Weak Memory Models. In CAV. Springer,
50–66.

http://diy.inria.fr/mole

76 J. Alglave et al.

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in Weak Memory
Models. In CAV. Springer, 258–272.

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus: Running Tests
against Hardware. In TACAS. Springer, 41–44.

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. Fences in weak memory
models (extended version). Formal Methods in System Design 40, 2 (2012), 170–205.

ARM Ltd. 2010. ARM Architecture Reference Manual: ARMv7-A and ARMv7-R Edition. ARM
Ltd.

ARM Ltd. 2011. Cortex-A9 MPCore, Programmer Advice Notice, Read-after-Read Hazards. ARM
Ltd.

Arvind and Jan-Willem Maessen. 2006. Memory Model = Instruction Reordering + Store Atom-
icity. In ISCA. IEEE Computer Society, 29–40.

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi.
2010. On the verification problem for weak memory models. In POPL. ACM, 7–18.

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi.
2012. What’s Decidable about Weak Memory Models?. In ESOP. Springer, 26–46.

Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. 2011. Getting Rid of Store-
Buffers in TSO Analysis. In CAV. Springer, 99–115.

Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library abstraction for C/C++ concurrency.
In POPL. ACM, 235–248.

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing
C++ concurrency. In POPL. ACM, 55–66.

Yves Bertot and Pierre Casteran. 2004. Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer Verlag, EATCS.

Hans-Juergen Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory
model. In PLDI. ACM, 68–78.

Hans-Juergen Boehm and Sarita V. Adve. 2012. You don’t know jack about shared variables or
memory models. Commun. ACM 55, 2 (2012), 48–54.

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robust-
ness against TSO. In ESOP. Springer, 533–553.

Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. 2011. Deciding Robustness against Total
Store Ordering. In ICALP (2). Springer, 428–440.

Gérard Boudol and Gustavo Petri. 2009. Relaxed memory models: an operational approach. In
POPL. ACM, 392–403.

Gérard Boudol, Gustavo Petri, and Bernard P. Serpette. 2012. Relaxed Operational Semantics
of Concurrent Programming Languages. In EXPRESS/SOS. 19–33.

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007. CheckFence: checking consis-
tency of concurrent data types on relaxed memory models. In PLDI. ACM, 12–21.

Sebastian Burckhardt, Alexey Gotsman, and Hongseok Yang. 2013. Understanding eventual
consistency. Technical Report TR-2013-39. Microsoft Research.

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated
data types: specification, verification, optimality. In POPL. ACM, 271–284.

Sebastian Burckhardt and Madan Musuvathi. 2008. Memory Model Safety of Programs. In
(EC)2.

Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. 2007. The Java Memory Model: Op-
erationally, Denotationally, Axiomatically. In ESOP. Springer, 331–346.

Nathan Chong and Samin Ishtiaq. 2008. Reasoning about the ARM weakly consistent memory
model. In MSPC. ACM, 16–19.

Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C
Programs. In TACAS. Springer, 168–176.

William Collier. 1992. Reasoning About Parallel Architectures. Prentice-Hall.
Compaq Computer Corp. 2002. Alpha Architecture Reference Manual. Compaq Computer Corp.
Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop Gupta, and

John L. Hennessy. 1990. Memory Consistency and Event Ordering in Scalable Shared-
Memory Multiprocessors. In ISCA. ACM, 15–26.

Jacob Goodman. 1989. Cache consistency and Sequential consistency. Technical Report. IEEE
Scalable Coherent Interface Group.

Herding cats 77

Ganesh Gopalakrishnan, Yue Yang, and Hemanthkumar Sivaraj. 2004. QB or Not QB: An Effi-
cient Execution Verification Tool for Memory Orderings. In CAV. Springer, 401–413.

Michael J. C. Gordon. 2002. Relating Event and Trace Semantics of Hardware Description Lan-
guages. Comput. J. 45, 1 (2002), 27–36.

Richard Grisenthwaite. 2009. ARM Barrier Litmus Tests and Cookbook. ARM Ltd.
Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit, Juin-Yeu Joseph Lu, and Sridhar

Narayanan. 2004. TSOtool: A Program for Verifying Memory Systems Using the Memory
Consistency Model. In ISCA. IEEE Computer Society, 114–123.

C. A. R. Hoare and Peter E. Lauer. 1974. Consistent and Complementary Formal Theories of the
Semantics of Programming Languages. Acta Inf. 3 (1974), 135–153.

David Howells and Paul E. McKenney. 2013. Linux Kernel Memory Barriers, 2013 version.
(2013). https://www.kernel.org/doc/Documentation/memory-barriers.txt.

IBM Corp. 2009. Power ISA Version 2.06. IBM Corp.
Intel Corp. 2002. A Formal Specification of Intel Itanium Processor Family Memory Ordering.

Intel Corp.
Intel Corp. 2009. Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel Corp.
ISO. 2011. ISO/IEC 9899:2011 Information technology — Programming languages — C. Inter-

national Organization for Standardization.
Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.

Methodol. 11, 2 (2002), 256–290.
Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. 2007. Fast and Accurate

Static Data-Race Detection for Concurrent Programs. In CAV. Springer, 226–239.
Michael Kuperstein, Martin T. Vechev, and Eran Yahav. 2010. Automatic inference of memory

fences. In FMCAD. IEEE, 111–119.
Michael Kuperstein, Martin T. Vechev, and Eran Yahav. 2011. Partial-coherence abstractions

for relaxed memory models. In PLDI. ACM, 187–198.
Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multi-

process Programs. IEEE Trans. Computers 28, 9 (1979), 690–691.
Richard J. Lipton and Jonathan S. Sandberg. 1988. PRAM: a scalable shared memory. Technical

Report CS-TR-180-88. Princeton University.
Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and Eran Yahav. 2012. Dy-

namic synthesis for relaxed memory models. In PLDI. ACM, 429–440.
Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin. 2010. Generating Litmus Tests for Con-

trasting Memory Consistency Models. In CAV. Springer, 273–287.
Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott

Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams. 2012. An Ax-
iomatic Memory Model for POWER Multiprocessors. In CAV. Springer, 495–512.

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java memory model. In POPL.
ACM, 378–391.

Paul E. McKenney and JonathanWalpole. 2007.What is RCU, fundamentally? (2007). http://lwn.
net/Articles/262464/.

Gil Neiger. October 2000. A Taxonomy of Multiprocessor Memory-Ordering Models. In Tutorial
and Workshop on Formal Specification and Verification Methods for Shared Memory Sys-
tems.

Scott Owens, Peter Böhm, Francesco Zappa Nardelli, and Peter Sewell. 2011. Lem: A
Lightweight Tool for Heavyweight Semantics. In ITP. Springer, 363–369.

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In
TPHOLs. Springer, 391–407.

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade
Alglave, and Derek Williams. 2012. Synchronising C/C++ and POWER. In PLDI. ACM, 311–
322.

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Under-
standing POWER multiprocessors. In PLDI. ACM, 175–186.

Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge, Thomas
Braibant, Magnus O. Myreen, and Jade Alglave. 2009. The semantics of x86-CC multipro-
cessor machine code. In POPL. ACM, 379–391.

https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://lwn.net/Articles/262464/
http://lwn.net/Articles/262464/

78 J. Alglave et al.

Dennis Shasha and Marc Snir. 1988. Efficient and Correct Execution of Parallel Programs that
Share Memory. ACM Trans. Program. Lang. Syst. 10, 2 (1988), 282–312.

SPARC International Inc. 1992. The SPARC Architecture Manual Version 8. SPARC Interna-
tional Inc.

SPARC International Inc. 1994. The SPARC Architecture Manual Version 9. SPARC Interna-
tional Inc.

Robert C. Steinke and Gary J. Nutt. 2004. A unified theory of shared memory consistency. J.
ACM 51, 5 (2004), 800–849.

Robert Tarjan. 1973. Enumeration of the Elementary Circuits of a Directed Graph. SIAM J.
Comput. 2, 3 (1973), 211–216.

Joel M. Tendler, J. Steve Dodson, J. S. Fields Jr., Hung Le, and Balaram Sinharoy. 2002.
POWER4 systemmicroarchitecture. IBM Journal of Research and Development 46, 1 (2002),
5–26.

Emina Torlak, Mandana Vaziri, and Julian Dolby. 2010. MemSAT: checking axiomatic specifi-
cations of memory models. In PLDI. ACM, 341–350.

Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind. 2004. Nemos: A Frame-
work for Axiomatic and Executable Specifications of Memory ConsistencyModels. In IPDPS.
IEEE Computer Society, 31b.

Francesco Zappa Nardelli, Peter Sewell, Jaroslav Sevcik, Susmit Sarkar, Scott Owens, Luc
Maranget, Mark Batty, and Jade Alglave. 2009. Relaxed memory models must be rigorous.
In (EC)2.

	Introduction
	Related work
	Preamble on axiomatic models
	A model of weak memory
	Preliminaries
	SC per location
	No thin air
	Observation
	Message passing (mp)
	Cumulativity
	Write to read causality (wrc)
	Power ISA2 (isa2)

	Propagation
	Fences and propagation on Power and ARM
	Some instances of our framework
	A note on the genericity of our framework

	Instruction semantics
	Semantics of instructions
	Dependencies
	Address dependencies
	Data dependencies
	Control dependencies
	Control+cfence dependencies

	Preserved program order for Power
	Operational models
	Intermediate machine
	Write transitions
	Read transitions

	Equivalence of axiomatic model and intermediate machine (proof of Thm. 7.1)
	From intermediate machine to axiomatic model (proof of Lem. 7.4)
	From axiomatic model to intermediate machine (proof of Lem. 7.5)

	Comparing our model and the PLDI machine
	Mapping PLDI objects (labels and states) to intermediate objects
	Building a path of the intermediate machine from a PLDI path

	Testing and simulation
	Hardware testing
	Power
	ARM

	Experimental comparisons of models
	Model-level simulation
	Verification of C programs

	A pragmatic perspective on our models
	Static pattern search
	Preamble on the goto-* tools
	Cycles
	Static search

	Results for Debian 7.1
	General results
	Summary per axiom

	Conclusion

